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This paper deals with aerodynamic shape optimization using an high fidelity solver.

Due to the computational cost and restitution time needed to solve the RANS equations,

this type of optimization framework must improve the solution using very few objec-

tive function evaluations despite the high number of design variables. The choice of the

optimizer is thus largely based on its speed of convergence. The quickest optimization

algorithms use gradient information to converge along a descent path departing from

the baseline shape to a local optimum. Within the past few decades, numerous design

problems were successfully solved using this method. In our framework, the reference

algorithm uses a quasi-Newton gradient method and an adjoint method to inexpen-

sively compute the sensitivities of the functions with respect to shape variables. As

usual aerodynamic functions show numerous local optima when varying shape, a more

global optimizer can be beneficial at the cost of more function evaluations. More re-

cently, the use of expensive global optimizers became possible by implementing response

surfaces between optimizer and CFD code. In this way, a Kriging based optimizer is

described. This optimizer proceeds in iteratively refining at up to three points per

iteration by using a balancing between function minimization and error minimization.

It is compared to the reference algorithm on two drag minimization problems. The test

cases are 2D and 3D lifting bodies parameterized with six to more than forty design

variables driving deformation of meshes with Hicks-Henne bumps. The new optimizer

effectively proves to converge to lower function values without prohibitively increasing

the cost. However, response surfaces are known to become inefficient when dimension

increases. In order to efficiently apply this response surface based optimizer on such

problems, a Cokriging method is used to interpolate gradient information at sample

locations.

Nomenclature

C(x) Sampling refinement criterion
Cd Drag coefficient
Cl Lift coefficient
Cp Pressure coefficient
c Mean chord length
D Domain of design variables
Fs Exact function at samples [N ]
F (x) Objective function
H(x) Hessian matrix of the objective function
L Likelihood estimate
N Order of the correlation matrix / quantity of information
naug Number of gradient augmented samples
ndv Number of design variables
neval Number of function evaluations
ngrad Number of gradient evaluations
niter Number of iterations of the optimization process
npop Optimizer population size
ns Number of samples
P Set of possible optima on the response surface
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R Correlation matrix [N × N ]
r(x) Correlation vector [N ]
S Domain of sample points
SCF (., .) Spatial correlation function
S(x) Standard error
si i-th sample
x Vector of design variables [ndv]
Z(x) Stochastic process
β Zero order regression model
σ2 Model variance
θ SCF correlation coefficients [ndv]
||.|| Euclidian norm; 2-norm

Subscripts

i ∈ [1, ns]
j ∈ [1, ns]
k ∈ [1, niter]
c ∈ [1, neval]
r ∈ [1, npop]
v ∈ [1, ndv]

Superscripts

ini initial sampling database
.̂ approximated value
ref current best value

I. Introduction

In the field of aerodynamic aircraft design, the functions studied are very sensitive to small changes
on the shape and it is then particularly hard for designers to reach an optimal solution by trial-and-error.
Shape optimization tools are thus particularly favoured by aerodynamicians. These tools are completely
automatic process capable of running by themselves computer expensive numerical simulation given some
degrees of freedom on the geometry and a figure of merit qualifying the performance of each shape. In
the context of detailed design, it was decided that the same level of fidelity of the analysis code should
be used for absolute performance assessment and for shape optimization purpose. As computational
cost of CFD problems generally increases with computational resources (size of meshes can be adpated
to available computational power), the typical restitution time required for one flow anaylsis cannot be
sufficiently decreased to enable the use of expensive global optimization algorithms requiring thousands
objective function evaluations such as genetic algorithms. This drawback can be circumvent by using
the shape given by studies performed during conceptual and preliminary design phases as a starting
point for a gradient based local optimization. The first aerodynamic shape optimizations by Hicks
et al.1 demonstrate the efficiency of this type of process, still in use nowadays2–5 in combination with
efficient gradient calculation techniques based on adjoint method maintaining the cost of the optimization
independent of the number of design variables.

Despite its speed of convergence, gradient based algorithms are known to lack design space exploration
and are easily trapped by local optima. As the non-linear physical phenomena occuring in transonic flows
imply numerous local optima on aerodynamic functions (drag, lift, momentum), a significant gain is ex-
pected by the use of more global optimizers. The use of such optimizers for applications driven by analysis
of full Navier-Stokes equations was made possible more recently by the use of surrogate models (or re-
sponse surfaces)6–9 approximating the expensive CFD function by an inexpensive to evaluate black-box
model. Moreover, the use of response surfaces coupled with a multi-objective global optimizer enables
to have a clearer view of possibles trade-offs between concurrent objective functions10 and facilitates
multidisciplinary analysis,11, 12 whereas gradient based algorithms are limited to mono-objective prob-
lems and solved multi-objective problems only by using pre-determined equivalence coefficients between
functions.

In the section II of this paper is presented the high-fidelity optimization suite OPTaliA and the gra-
dient based optimizer DOT. This algorithm uses a classical quasi-Newton method and is taken as the
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reference optimizer. Numerous application were successfully conducted using this optimization frame-
work,5, 12 but to tackle the limitations underlined previously a response surface based optimizer was
developped using a Kriging method and is presented in section III. The performance of this optimizer
should largely exceed the reference on low-dimensional problems by using a multi-criteria refinement
process enabling to run multiples CFD runs in parallel. As surrogate models are known to become
inefficient as dimension increased, a third optimizer using a Cokriging (gradient-enhanced Kriging) for-
mulation is presented. It uses a sample limited Cokriging approach. This formulation was set up to
overcome the large computational cost needed to build a surrogate model interpolating high dimensional
gradient vectors.

The last section (section IV), compares the two new response surface based optimizers to the gradient
reference on a low-dimensional drag reduction problem considering 6 design variables on a RAE2822
airfoil and a high dimensional test problem considering 45 design variables on a wing.

II. Optimization suite

The software OPTaliA, internally developed at Airbus, is used to perform aerodynamic shape opti-
mization. This high-fidelity optimization suite can improve aerodynamic performance of an aircraft by
changes in the external shape (planform variables fixed) and is adapted to the work done during the
detailed design phases.

A. Common optimization framework

A general optimization framework, represented in Figure 1, has been set up in OPTaliA, in order to
implement various type of optimizers (gradient, genetic, response surface). From the global point of
view, the optimization process can be interpreted as a succession of two main tasks: evaluation and
optimization. Within the evaluator, the function value and if needed the gradient value corresponding
to npop shapes are computed. The population size depends on the optimization algorithm chosen, but
if it is superior to one the evaluator performs the simulations of all shapes simultaneously by running
multiple jobs on high performance computers. A large population can reduce the restitution time of
the optimization process, at the risk of saturating computational resources. Once all shapes have been
evaluated, the optimizer proposes a new population of shapes by using the new information on functions
and the next iteration begins. In addition to optimizer internal stopping criteria, the convergence is

Evaluate
Gradient(s)

No

No

Yes

Evaluate Function(s)

Initial Population

Gradient ?

Optimizer

Convergence ?

New Population

Figure 1. General Optimization Process

forced at the OPTaliA level when the number of iterations or the number of function evaluations exceeds
a given threshold, niter ≤ 100, neval ≤ 200.

One of the challenges in aerodynamic shape optimization is to manage running efficiently evaluator
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and optimizer automatically in batch mode. More particularly, the evaluator itself is a complex process
requiring large computational resources.

B. Evaluator for CFD functions

1. Shape parameterization and mesh deformation

The shape parameterization consists in applying Hicks-Henne sinusoidal bumps on a surface skin of an
initial block-structured mesh. Each bump is defined by three shape variables driving the amplitude,
the position and the width expansion. The direction of the deformation can be either along the vector
locally normal to the surface or along a fixed vector (vertical axis). This type of deformation was initially
developed by Hicks et al.1 for numerical optimization of airfoils. When applied on a bidimensional
surface corresponding to a three dimensional shape, a linear propagation of the bump is done in the
second direction using fixed propagation distances.

Once computed, the vector field of deformation at the surface skin is propagated to the volume mesh
using a mixed integral / transfinite interpolation method.5 The integral method is used to compute
deformation of nodes defining boundaries between blocks and then the transfinite interpolation computes
deformation inside each block in parallel.

An analytical linearization of the shape parameterization and mesh deformation modules enables to
inexpensively compute (in terms of CPU time) the sensitivity of the surface mesh and the sensitivity of
the volume mesh with respect to design variables.

2. Flow simulation

Flow analysis were performed with the elsA13 software developed by Onera. The flow is simulated
by solving the Reynolds Averaged Navier-Stokes (RANS) equations associated with the one-equation
Spalart-Allmaras turbulence model on block structured meshes using a cell-centered finite volume ap-
proach. The second order Roe’s upwind scheme with the Van Albada limiter is used as spatial scheme
coupled with an implicit time resolution. Multigrid and local time stepping techniques are used to
converge more quickly.

One of the main requirement from designers is to obtain the same results when using the CFD
solver inside or outside the automatic optimization tool. As hysterisis phenomena are common when
dealing with transonic flows, it imposes that the same initial flow condition (uniform flow) are used
for all simulations during the optimization. So, the computational cost of CFD simulations cannot be
reduced by using a restart strategy using the flow solution corresponding to the previous shape. The
computational cost of the optimization grows linearly with the number of function evaluations.

The sensitivity of the objective function with respect to the shape variables is computed using the
discrete adjoint method14 of elsA. For an explicit presentation of the adjoint system solved the reader is
referred to Peter et al.15 and Meaux et al.5 This method enables to compute the sensitivity of a single
function with respect to ndv design variables at the cost of one linear system resolution (same size as the
RANS system). The gradient vector is thus computed using approximatively the same computational
time (factor ≈ 1.5) as one direct flow simulation. For typical aerodynamic problems considering hundreds
of design variables and a few functions (lift, drag), this is a considerable improvement over the classical
method of finite differences requiring as many flow solutions as design variables.

3. Aerodynamic function computation

The objective function chosen is the far-field pressure drag,

F = Cdff
p = Cdvp + Cdw + Cdi. (1)

The friction drag, Cdf , is excluded from the objective function as it does not significantly change
considering small amplitudes of deformation. The wetted surface is kept unchanged (almost) by the
shape deformation. The far-field code used is ffd41 16 developed by Onera. The two main advantages of
this approach are its ability to decompose pressure drag into physical components (wave drag, induced
drag, viscous pressure drag) and its accuracy through a filtering of non-physical drag (spurious drag).

The post-processing module can also compute the sensitivity of the drag with respect to the flow
variables and with respect to the mesh with an analytical formulation.

As aerodynamicians work at fixed lift rather than at fixed angle of attack, a more realistic problem
should also take into account a fixed lift coefficient as a constraint for the optimizer and include the
angle of attack as a design variable, but the present work compares two very different type of algorithms
and the comparison must not be biased by different methods of constraints handling.
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C. Gradient based optimizer, reference optimizer (DOT-BFGS)

The reference optimizer is gradient based and uses the classical quasi-Newton BFGS method (Broyden-
Fletcher-Goldfarb-Shanno) from the DOT (Design Optimization Tools)17 library. Description of one
internal step of this optimizer is given in Figure 2. As all gradient optimizers, it converges along a
descent path until no improvement is achieved during one optimizer iteration or if the gradient norm
is null. Firstly, the algorithm determines a descent direction, dk, using the evolution of the gradient
vector during the last two internal iterations. Once the direction is computed, a linear search aiming
at computing the norm of displacement giving the best improvement is performed. The linear search
is driven by a mono-dimensional polynomial interpolation and requires successive function evaluations.
This type of optimizer is intrinsically sequential as it follows a single descent path. For the optimization

Update the approximation of the Hessian matrix

Compute search direction

Build polynomial interpolation for one dimensional search

Direction
New Search

Yes

No

PSfrag replacements

Ĥk given ∇F (αk); ∇F (αk−1)

dk = −Ĥ−1
k · ∇F (αk)

F̂ (αk + x dk)

dk = dk−1

Find αk+1 solution of minx

(

F̂ (αk + x dk)
)

Figure 2. Inside the gradient based optimizer box

framework, only one set of design variables is handled by process iteration. The process population
contains only one individual (npop = 1).

In terms of quantity of information, the quasi-Newton gradient algorithm proposes the next set of
variables by using only the information about the current internal iteration. The internal iteration
contains information about the descent direction (computed using evolution of two gradient values) plus
some function evaluations (usually no more than ten). This optimization algorithm proposes a new shape
based on N = 2ndv +10 scalar informations on the unknown function. Even if the approximated Hessian
matrix, Ĥk, is more and more accurate as the number of internal iterations increases, the algorithm does
not retain all the information known about the function but focuses on the information in the vicinity
of the current shape.

D. Performance of optimization algorithms

The properties of optimization algorithms are described by two opposite notions, exploration and ex-
ploitation. The exploration denotes the ability of the optimizer to avoid being trapped by the nearest
optimum, whereas the exploitation denotes how quickly the optimizer find the nearest optimal point.
Gradient based algorithms are well known to be very efficient in exploitation and poor in exploration.

The figure of merit measuring the restitution time needed for an optimization to converge is the num-
ber of process iterations, niter . The figure of merit measuring the computational cost of an optimization
is the total number of function and gradient evaluations, neval + ngrad. These quantities both qualify
the exploitation properties of the optimizer. One has to notice that for more precision, a distinction is
made between iteration at the process level and iteration at the optimizer level. The number of internal
iterations of the optimizer does not directly intervene to assess performance and is not reported (for
DOT it corresponds to the number of gradient calculations).
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The values denoted by the superscript ref are reference values obtained by comparing the value(s) of
the objective function at a given process iteration to all previous evaluations, so as the quantity Fc−F ref

c

is positive or null. As gradient algorithms converge by following a descent path, the final ref point is
effectively the last computation, but that is not true for all optimizers.

The exploration can be measured in terms of variation of the function value during the optimization,
∑

(Fc −F ref
c ), and in terms of variation of the design variables during the optimization,

∑

||xc −xref
c ||.

In fact, as the variables are defined on very different ranges and are not scaled to measure the exploration,
the measure of variation of the objective function is more representative.

III. Response Surface based optimizer (RS Kriging and RS Cokriging)

Surrogate modeling tools are now widely available within engineering. Basically, these tools enable
to inexpensively approximate a function on a continous domain D given a database of ns samples, S.
Once built, the surrogate model can give numerous information on the true function through: graphical
plots giving trends, sensitivity of the function with respect to each variable, or the value and location of
the minimum when coupled with an optimizer.

Although it is possible to build a globally reliable response surface when considering three or four
design variables, a phenomenon described by Bellman18 as the ’curse of dimensionality’ prevents the use
of global response surfaces on high dimensional spaces. In fact, this phenomenon also discards the use of
global optimization algorithms on such problems. A previous study19 varying dimension from one to six
showed that the complexity of aerodynamic functions cannot be represented with as few as 200 function
evaluations and recommends the use of local response surfaces. Local response surface based optimizers
depart from a space filling sampling giving rough trends of the function and internally use an expensive
global optimizer to optimize one or multiple sampling refinement criteria, Cr(x), in order to iteratively
increase the surface accuracy around locations of possible optima (cf. Figure 3).

Update the Response Surface with new samples

... ...
check distance from samples

PSfrag replacements

Build F̂k(x) and Ŝk(x)

Find αk+l solution of minx Cr

(

F̂k(x), Ŝk(x)
)

Figure 3. Inside a general response surface based optimizer box

This type of optimizer supposes that an efficient surrogate model can be built in high-dimensional
search spaces (one hundred variables).

A. Building response surfaces with Kriging and Cokriging

Kriging20 (DACE formulation) was chosen to build the response surface F̂ (x) for its ability to approxi-
mate accurately non-linear functions and to guarantee a null error at samples.

1. Kriging

The Kriging method is from the statistical point of view the best linear interpolator. It is formed by a
constant term, β̂, representing a mean of the function at samples, Fs, plus a linear combination of basis
function interpolating each sample built up as a stochastic process, Z(x),

F̂ (x) = β̂ + Z(x) ≈ F (x). (2)

The basic assumption behind Kriging is that the covariance of the function is linked to the spatial
correlation and this correlation is maximum when distance between points is null and decreases with
distance,

cov[Z(si), Z(sj)] = σ̂2Rij . (3)

The correlation matrix R is dense symmetric positive definite (order N = ns) with ones along the
diagonal and results from evaluations of a Spatial Correlation Function,

Rij = SCF (si, sj) =
∏

v

scfv(|s
i
v − sj

v |). (4)
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The basis function are the directional function (scfv) linking the distance to the correlation between
two points. A cubic spline function depending of one hyperparameter driving the directional strength of
the correlation , θv , was chosen,

scfv(x) =











1 − 6(xθv)2 + 6(xθv)
3 , x < 1

2θv

2(1 − xθv)3 , 1
2θv

≤ x < 1
θv

0 , x ≥ 1
θv

(5)

In comparison to the traditional gaussian function, the cubic spline gives generally a better conditioned
correlation matrix. In fact, the gaussian function decreases exponentially with the distance but tends
toward zero without reaching it, whereas the spline function is null after a threshold value fixed by the
hyperparameter.

Contrary to the radial basis function method using a different function radius for each basis function,
the Kriging method defines this radius by direction. Thus, an appropriate comparative study (domain
scaling) of each θv values enables to assess the influence of each variable on the function.

Spatial correlation functions must respect at least two properties, be equal to one for a null distance
and decrease with distance. These properties lead Kriging models to be unstable when sample points
are clustered. If the distance between two samples is too small, their corresponding columns in the
correlation matrix will be almost the same implying an ill-conditioned matrix. Space filling sampling
methods like Latin Hypercube Sampling (LHS) are thus recommended when using Kriging.

To evaluate Kriging at an unknown location a vector of correlation r between sample points and the
unknown is computed,

ri(x) = SCF (x, si). (6)

Once the correlation matrix inverted, the Kriging, F̂ , can finally be evaluated at a new point x,

F̂ (x) = β̂ + rt(x)R−1(Fs − 1β̂). (7)

One should notice, that only two samples are needed to build a Kriging response surface, whereas a
linear polynomial interpolator requires at least ndv + 1 samples to determine polynomial coefficients. In
addition, the predicted uncertainty of the Kriging function or standard error, Ŝ(x), can be computed,

Ŝ(x) = σ̂

(

1 − rt(x)R−1r(x) +

(

1 − 1R−1r(x)
)2

1tR−11

)

1

2

≥ 0. (8)

2. Kriging fit

As Kriging models directly interpolate the samples, they are not fitted by minimizing the least square
residual error at samples as polynomial regression models. The standard error of Kriging is null at
samples and increases with distance. Kriging are fitted by minimizing their predicted errors, more
precisely by maximizing the logarithm of their likelihood estimates. This optimization problem is known
as the Maximum Likelihood Estimate (MLE) problem.

For the parameters β and σ2 analytical expressions maximizing this value are known,

β̂ = (1tR−11)−11tR−1Fs, (9)

σ̂2 =
1

ns

(Fs − 1β̂)tR−1(Fs − 1β̂). (10)

The correlation parameters (θv) are solution of the following MLE optimization problem,

MLE = maxθ

(

ln(L)
)

. (11)

It is solved using a gradient based optimization algorithm initialized by an appropriate guess as described
by Laurenceau et al.19 Each likelihood evaluation requires the computation of the determinant of the
correlation matrix,

ln(L(θ)) = −
1

2

(

ns

(

ln(σ̂2) + ln(2π) + 1
)

+ ln |R|
)

, (12)

and the resolution of the optimization problems requires up to one thousand likelihood evaluations.
During the iterative refinement process, the hyperparameters are refitted at each update of the sample

database.
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3. Sample limited indirect Cokriging, gradient enhanced Kriging

A Cokriging model21 interpolates the function and the gradient at each sample location. As Cokriging
models include more information on the true function than Kriging models, they need fewer samples to
achieve a given level of accuracy. Moreover a comparison varying the dimension of the problem and the
number of samples on an aerodynamic test case19 has proven that the vectorial information provided by
the gradient is more beneficial for high-dimensional problems.

For its flexibility, the formulation retained to build gradient enhanced Kriging is the indirect Cokriging
formulation.21 It does not change the Kriging formulation described previously because the gradient
interpolation is performed through a sample database augmentation scheme. Instead of directly using
the gradient information, it is used to add one point per direction at each sample using a first order
Taylor approximation,

F (sns+iv) = F (si) +
∂F (si)

∂xv

10−4rangev(S). (13)

After using the gradient information at each sample, the augmented database contains N = ns(ndv + 1)
samples.

The computational cost of Kriging model fit or evaluation depends mainly on the order of the corre-
lation matrix, N . On a standard Intel Pentium4 2.8GHz processor, the estimated computation time for
one correlation matrix inversion is,

tuser ≈ 3.10−9N3 seconds, (14)

and a total of several hundreds matrix inversions are done for each response surface.
The computational cost of the response surface (fit and evaluation) is considered negligible compared

to CFD function evaluations for matrix order up to N ≈ 400. However, as the computational cost of
Cokriging depends on the number of variables, it becomes unusable for high-dimensional problems. It is
then necessary to use altered augmentation schemes. Liu21 proposed a direction limited augmentation
scheme using only one augmentation point per sample, N = 2ns. Practically, this strategy implies a
loss of information. As gradients of CFD functions are computed with an adjoint method, the complete
gradient vector is computed even if only one term of the vector is needed.

This is why a sample limited augmentation scheme is preferred, as suggested by Kim et al.22 on their
aerodynamic problem depending on six variables. It consists in using the complete gradient information
but only for a fixed number of samples denoted naug . The augmented matrix order is then N =
ns +naugndv. Basically, using naug = 10 enables to abide by the rule of thumb recommending the use of
at least 10 samples per direction to have a correct response surface. Practically, it is used to adapt the
Cokriging computational cost to the number of variables.

B. Global optimization on the response surface

As stated in Figure 3, another optimization problem has to be solved inside the response surface based
optimizer box. Some sampling refinement criteria, Cr(x), must be optimized to exploit the information
contained in the response surface and find a suitable new set of design variables. As the criteria are
inexpensively evaluated, a global optimization strategy was adopted for their minimization. In order
to effectively find the global minimum even for high dimensional problems, a strategy using multiple
optimizers and multiple runs is used. This strategy proceeds in building a set, P , of possible optima of
the criterion given by various methods and finally retains only the minimum of this set.

Firstly, the set of possible optima, P , is initialized by the minimum from the sample database.
Secondly, a binary coded genetic algorithm from David Caroll a is used with a population size of 100

individuals and a maximum number of generations equal to 1000. A convergence test was implemented
to stop this algorithm when no improvement on the function is made during 10 consecutive iterations.
This algorithm is ran 100 times using different seed values. Each run enables to increment a new point
in the set of possible optima P .

Thirdly, a pseudo-random exploration is performed on 100·103 sites. The minimum of the exploration
phase is used to initialize a gradient descent (quasi-newton BFGS method). Once converged the minimum
of the gradient algorithm is incremented in the set P . This step is repeated 10 times with different seed
values for the exploration.

Finally, a last gradient descent is performed departing from the minimum point of the set of possible
optima P .

aCU Aerospace, http://www.cuaerospace.com/carroll/ga.html
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The global optimization on the response surface is necessary to assess the efficiency of the response
surface based optimizer. In fact less caution would have been possible during this internal optimization,
but as this step should be as efficient on the 6 design variables test case as on the 45 design variables test
case, robustness was privileged in detriment of convergence speed. As no bias can be attributed to this
internal optimization, any loss of performance of the response surface based optimizer when increasing
dimension can be attributed to a loss of accuracy of the response the surface.

C. Sampling refinement criteria

A variety of sampling refinement criteria exists. Some are designed to reduce the global error of the
response surface,19 and some are designed to minimize the true function modelised by the response
surface. Sasena23 compared a variety of criteria.

1. Definition

The most basic criteria exploits only information on the function,

C1(x) = F̂ (x). (15)

As stated in the Surrogate Management Framework,24, 25 optimization algorithms that refine iteratively
only at the predicted minimum (’SEARCH’ step) cannot efficiently find an optimum. A spatial explo-
ration is necessary (’POLL’ step) to ensure convergence. Using the standard error (Eqn. 8), it is possible
to compute criteria able to locate minimum of the function taking into account uncertainty of the model.

Each refinement criterion proposes its own manner to balance exploitation of low function values
with exploration of high uncertainty values. The Expected Improvement (EI)6 is the most common
when using Kriging. It is a statistical criterion maximizing the probability of improvement over the
best sample value. The maximum of the EI function indicates the predicted location of the global
minimum of the true function. It has proven to be an efficient refinement criterion on low dimensional
problems.6, 9, 26 Despite that, the EI criterion was not retained here as it tends to cluster points around
predicted minimum before exploring other locations. Moreover, it has quasi-null gradients on large parts
of the domain making it impossible to use gradient algorithms to find its maximum (Figure 4). This
criterion is then hard to maximize.

The Lower Confidence Bounding (LCB) criterion of Cox et al.27 was preferred as it tends to give
more weight to the uncertainty. The LCB directly uses a balancing coefficient b between function and
error to perform a linear combination,

LCBb(x) = F̂ (x) − bŜ(x), b ∈ R∗. (16)

The minimum of LCB indicates the expected location of the minimum of the true function. The standard
error of Kriging being always positive, the error balancing coefficient, b, can be positive or negative. The
values tested by Cox et al. are b = 2.0 and b = 2.5, using a different optimization process (single
refinement criterion) on low-dimensional analytical functions. In this work, the values chosen are b = 1.0
and b = −1.0,

C2(x) = LCB1(x) = F̂ (x) − Ŝ(x), (17)

C3(x) = LCB−1(x) = F̂ (x) + Ŝ(x). (18)

On Figure 4, the minimum of the surrogate model F indicates an already sampled location, different
from the optimum on the true function. Using the standard error (error bars), the minimum of the
LCB1 function will explore a zone of higher uncertainty whereas the EI criterion indicates a location
very close to the minimum of the Kriging function corresponding to an already sampled location.

2. Distance check

Each location indicated by the minimization of a sampling refinement criteria must be validated by
performing a distance computation with respect to already computed locations. The main purpose of
this validation is to avoid expensive CFD computations on shapes already well known. The secondary
purpose is to ensure a good conditioning of the Kriging correlation matrix. The point is rejected if its
minimal distance with respect to already computed samples fall below a fixed threshold,

xref accepted if, mini

(

∑

v

|xref
v − si

v|

rangev

)

> ndv · ε. (19)

The value of the threshold, ε, should be adapted to the level of convergence expected from the optimizer
i.e. the number of iterations authorized. The value chosen here is ε = 10−6.
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Figure 4. Expected Improvement and Lower Confidence Bounding Function on a one dimensional example
approximated using three samples

D. Kriging/Cokriging based response surface optimizer

The new Kriging/Cokriging based optimizers (Figure 5) are initialized using a space filling sampling
method for the first iteration. The refinement process begins at the second iterations after nini

s function
evaluations. It uses for the exploitation of the best function value a refinement at the predicted min-
imum of the function. In order to ensure exploration of the domain and try to converge to the global
optimum, the LCB function is used with two different error balancing coefficients. This framework runs
simultaneously up to three CFD runs (npop ≤ 3) per iteration. As the sampling refinement includes
exploratory steps, this optimizer is able to manage very coarse initial sample database (10 samples for
45 variables) at the cost of more iteration of the process. The use of large initial sampling database can
also save time as the nini

s evaluations are done simultaneously.

Update the Response Surface with new samples
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Figure 5. Inside the Kriging/Cokriging based optimizer box

Convergence is said to be reached when all three proposed refinements are close too already sampled
locations or if the function value cannot be improved during 20 iterations.

IV. Results

In the following section, a comparison between the two new Kriging and Cokriging based optimizers
and the reference gradient optimizer is made on two test cases. This comparison was not made on
analytical test functions common in the optimization community because it cannot be representative
of real CFD functions: multimodal (lots of local optima), high number of more or less independent
variables and noise. The no-free-lunch theorem for optimization by Wolpert et al.28 states that the
ultimate optimization algorithm does not exist. If an optimizer is the most competitive for a given set
of problems, it is always possible to find another set of problems to contradict this fact. Wolpert et al.
recommendations are then to use a wide variety of test problems in order to compare general-purpose
optimization algorithms, and to incorporate problem-specific knowledge into the optimizer as much as
possible. Our test cases are then directly performed within OPTaliA. Moreover, the problems are defined
as representative simplifications (no constraints, less design variables, coarse meshes) of real industrial
problems handled by Airbus designers.
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A. Airfoil drag minimization considering 6 design variables

The first test problem is about a RAE2822 airfoil at a Mach number M = 0.729, an angle of attack 2.31o.
The chord length is one meter and the Reynolds number value is Re = 7.106. The C-mesh is formed
of 73 × 458 nodes with its boundary layer refinement. The restitution time for one flow simulation is
400 seconds using two processors AMD Opteron 275 (2.2 Ghz) to perform 400 steady iterations. The
objective function considered is the far field pressure drag. Two bumps (ndv = 6) are applied to deform
the upper surface in the direction of the vertical axis. Only positive deformations are authorized and
the maximum amplitude of one bump is 5 millimeters. The domain of variation for the position of the
bumps authorizes recovering.

The complexity of the optimization problem is low as only one function and six design variables are
considered. Moreover, the ranges on variables are restrained to positive deformations in order to limit
the complexity of the objective function on the domain and thus the number of possible optima and to
limit the impact on lift.

The same initial database is used for Kriging and Cokriging response surfaces. It contains 10 samples,
nini

s = 10, including the baseline shape and nine space filling samples distributed by a Sobol method. The
sample database augmentation for the sample-limited Cokriging includes the information of 10 gradient
vectors, naug = 10, providing a quantity of information equivalent to 60 additional samples.

The starting point for the gradient algorithm corresponds to large equidistributed bumps of null
amplitudes.

On Figure 6 are represented the baseline and the optimized shapes and associated pressure coefficient
values. The pressure distribution of the baseline shape demonstrates the presence of a shock wave (drag
production) at the upper surface of the airfoil (between 50% and 60% of the chord length). This shock
wave is attenuated (suppressed) by the deformation proposed by the different optimizers. It appears
that the reference optimizer (DOT-BFGS) converged to a different optimal deformation. Whereas both
response surface optimizers find an optimal shape by distributing the two bumps at two different locations
(leading edge and location of the shock), the gradient optimizer has been trapped by the high sensivity of
the drag to deformation near the shock wave and has tried to superpose both bumps. This illustrates the
fact that even considering simple shape variables (only two bumps), functions studied in aerodynamic
shape optimization exhibit multimodal behaviour and strong trends (high gradient values) especially
when considering transonic flows. The low complexity of this problem does not prevent the gradient to
be trapped by a local optima.

In terms of final function value, both response surface optimizers largely outperform the gradient
optimizer. It appears that even the purely exploratory space filling samples (neval ≤ 10) managed to
improve the baseline shape and to outperform the gradient. Both response surfaces algorithms give very
close results in terms of shape deformation and final objective function value confirming their enhanced
global exploration capabilities. One can see from Table 1 that contrary to the RS optimizers, DOT-BFGS
does not manage to completely suppress the shock and slightly increases the viscous pressure drag by its
larger deformation near the trailing edge.
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Figure 6. Optimized shape and pressure distribution of an RAE2822 airfoil

Before totally discarding the reference optimizer, it is necessary to look at the computational cost

11 of 21



Baseline DOT-BFGS RS Kriging RS Cokriging

Cdp = F 100 84.6 (-15%) 76.7 (-23%) 76.9 (-23%)

Cdw 100 16.5 0.0 3.0

Cdvp 100 100.7 95.3 94.5

Cl 100 103.2 102.1 102.2

Table 1. Aerodynamic performance summary for RAE2822 optimizations

(total number of evaluations neval +ngrad) and restitution time (number of process iterations niter) of the
different optimizations represented on the Figure 7 and summarized in Table 2. The worst algorithm in
terms of final function value, DOT-BFGS, is also the quickest and less expensive. It seems coherent with
the fact that this method performs very few exploration of the domain in terms of variation in function
value and variables value. The additional cost of RS optimizers is attenuated by the parallelization of
the optimization process and stays acceptable in an industrial context. It is important to note that
the RS optimizers reached a plateau of convergence in as few iterations as the gradient optimizer, but
the RS optimizers managed to continue domain exploration from this reference value. The additional
gradient information used by the Cokriging RS seems not absolutely necessary, certainly due to the low
dimensionality of the problem. It effectively produces a more accurate surrogate model as can be deduced
from the lower values of exploration compared to the Kriging RS When considering the the last process
iteration of DOT-BFGS (niter = 41 on Figure 7), the function value given by the gradient optimizer is
a lot larger than function values given by both RS based optimizers. Moreover both RS optimizers have
reached a plateau of convergence. One could then say that in terms of resitution time the RS based
optimizers are better than the gradient reference.

On figures Figure 7 and Figure 10, the lines stand for ref values of the objective function and the
symbols represent the current values of the function.
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Figure 7. Optimization convergence history on the RAE2822 test case

The experience of numerous airfoil optimization with OPTaliA demonstrated that it is impossible
to increase indefinitely the number of design variables on bidimensional airfoils without having highly
correlated design variables. In fact, by using a decomposition of optimal shape deformation into a
sum of Hicks-Henne bumps, one can see that the optimum of airfoil drag minimization problems are
generally obtained through a sum of no more than five bumps. Increasing the number of bumps on a
bidimensional wing section is generally equivalent to a parameterization using less bumps with higher
ranges in amplitude of bumps. By considering only two bumps, one can guarantee that there is no
redundancy between design variables and that the complexity of the optimization problem is effectively
represented by the number of design variables. In Figure 8, a simple shape deformation obtained with 2
Hicks-Henne bumps of maximal amplitude equal to 3.0 millimeters is reconstructed using a very complex
combination of 20 Hicks-Henne recovering bumps of maximum amplitude equal to 0.5 millimeters.
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DOT-BFGS RS Kriging RS Cokriging

F ref final value 84.6 (-15%) 76.7 (-23%) 76.9 (-23%)

niter ; neval + ngrad ; nini
s 41; 41+6; 0 90; 162+0; 10 63; 121+10; 10

∑

|Fc − F ref
c | 56.2 1503 490.0

∑

|Fc − F ref
c |/niter 1.37 16.7 7.78

∑

|Fc − F ref
c |/neval 1.37 9.28 4.05

∑

||xc − xref
c ||/ndv 0.565 65.4 41.0

∑

||xc − xref
c ||/niter/ndv 1.38 10−2 72.7 10−2 65.1 10−2

∑

||xc − xref
c ||/neval/ndv 1.38 10−2 40.4 10−2 33.9 10−2

Table 2. Optimizers performance summary on the RAE2822 test case
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Figure 8. Equivalence between 2 Hicks-Henne bumps and 20 Hicks-Henne bumps of lower amplitude
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B. Wing drag minimization considering 45 design variables

In order to increase the number of design variables with as less redundancy between variables as possible
a three dimensional shape is considered, the AS28 wing in cruise condition, at Mach number M = 0.8
and angle of attack AoA = 2.2o. The wing span is b = 25 meters and the mean chord value is c = 5.4
meters, giving a Reynolds number Re = 40 · 106. The structured mesh (Figure 9) is formed of 4 blocks
containing a total of 500 · 103 nodes with its boundary layer refinement. The restitution time for one
flow simulation is 4400 seconds using two processors AMD Opteron 275 (2.2 Ghz) to perform 500 steady
iterations.

The 45 shape parameters correspond to 15 Hicks-Henne bumps on the upper surface. The vertical
bumps are distributed by group of three in five spanwise sections. At each section, the three bumps
are equidistributed and a recovering is authorized by groups of two bumps. In order to ensure a wide
diversity of possible shapes (maximum degree of freedom) with this parameterization, the linear spanwise
expansion of each sectional deformation is stopped either at the closest boundary either at the closest
deformed section. Only positive deformations are authorized and the maximum amplitude of one bump
is 50 millimeters. The complexity of this problem is thus increased by considering more independent
design variables and also by increasing the relative range of possible deformation, Amax

c
from five to ten

as represented by optimal shapes on Figures 14-17.

Figure 9. Mesh and pessure coefficient of the AS28 wing baseline shape

The RS based optimizers were intialized with only 11 samples, nini
s = 11, and the number of samples is

even inferior to the number of variables. The initial database was formed of the baseline configuration plus
10 space filling samples (Latin Hypercube Sampling method). The Cokriging sampling was augmented
by including the information of 5 gradient vectors, naug = 5, giving 225 additional scalar values. The
starting point for the gradient algorithm corresponds to large equidistributed bumps of null amplitudes.

In cruise condition a shock wave appears on the upper surface of the baseline configuration. The
Table 3 shows that most of optimizers drag reduction cames from minimization of the wave drag and
leads to shapes with very weak shocks as can be verified on pressure distribution (cf. Figures 11-13).

Figure 10 presents the convergence history of the optimizations. The gradient based algorithm keeps
the same properties as with the previous test problem. It converges using few process iterations and very
few objective function evaluations (even fewer than on the six dimensional problem). Despite its speed,
it gives the lowest improvement of the objective function.

For the RS based optimizations, the influence of the very coarse initial sampling can directly be
observed by comparing exploration values of Kriging and Cokriging optimizers (Table 4). As the Kriging
response surface is less accurate, the Kriging based optimizer performs three times more exploration and
needs more iterations to converge to its final value. The sampling refinement becomes almost similar
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Baseline DOT-BFGS RS Kriging RS Cokriging

Cdp = F 100 95.1 (-4.9%) 94.6 (-5.4%) 93.5 (-6.5%)

Cdw 100 28.3 28.3 11.2

Cdvp 100 99.2 98.3 98.7

Cdi 100 103.2 102.9 103.7

Cl 100 102.9 102.3 103.2

Table 3. Aerodynamic performance summary for AS28 wing optimizations

to a space filling refinement, but a significant improvement of the function is achieved and the Kriging
optimizer outperforms the gradient reference. Somehow, its convergence is stopped because no improve-
ment is achieved during the last 20 iterations whereas the algorithm continues its domain exploration
characterized by the large widespreading of symbols on Figure 10. The Kriging based optimizer seems
to need more iterations to robustly converge. The Cokriging based algorithms does not suffer this prob-
lem, as very few improvement is achieved during the last 50 iterations despite the continous exploration
of the domain. By looking at the tridimensional views of optimal deformation fields given by Kriging
(Figure 12) and Cokriging (Figure 13) based optimizers, it appears that both fields are very similar but
the Kriging shapes corresponds in fact to an intermediate shape explored during the Cokriging based
optimization.

The sample limited Cokriging based reached the best final objective function value at the cost of more
function evaluations compared to DOT-BFGS. Despite the additionnal computational cost, the Cokriging
based optimizer outperforms the gradient reference in terms of restitution time. When considering the
last process iteration of DOT-BFGS (niter = 26 on Figure 10), the function value given by the gradient
optimizer is larger than the function value given by the Cokriging based optimizer. However, the RS
Cokriging optimizer has not yet reached its plateau at this iteration and needs three times more iterations
to converge.
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Figure 10. Optimization convergence history

On Figure 18 are plotted approximated drag polar for the baseline configuration and the three
optimized shapes. The approximation is done using a second order polynomial method fitted with three
samples for each shape represented by symbols on the figure. This graph shows that even after changing
the angle of attack of the new shapes to obtain the same lift coefficient as with the baseline shape, the
aerodynamic performance keep the same classification, gradient and Kriging based optimization give
equivalent improvements and the Cokriging based optimal shape is best. Despite the improvement at
cruise conditions, it is not surprising to observe that the performances at low lift flight conditions are
decreased by all optimizations as it was not taken into account in the formulation of the optimization
problem. As expected, the less the drag is reduced, the less low lift performances are impacted and the
shape given by the gradient optimization is better than the shapes given by both RS based optimzations
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DOT-BFGS RS Kriging RS Cokriging

F ref final value 95.1 (-4.9%) 94.6 (-5.4%) 93.5 (-6.5%)

niter ; neval + ngrad ; nini
s 26; 26+4+0 66; 198+0; 11 88; 197+5; 11

∑

|Fc − F ref
c | 26.8 534.4 205.5

∑

|Fc − F ref
c |/niter 1.03 8.10 2.34

∑

|Fc − F ref
c |/neval 1.03 2.70 1.04

∑

||xc − xref
c ||/ndv 4.79 232.1 73.5

∑

||xc − xref
c ||/niter/ndv 0.18 3.52 0.84

∑

||xc − xref
c ||/neval/ndv 0.18 1.17 0.37

Table 4. Optimizers performance summary on the AS28 wing test case

Figure 11. Optimum given by DOT-BFGS for the AS28 wing. Left: vectorial field of deformation. Right:
pressure coefficient.
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Figure 12. Optimum given by the Kriging based optimizer for the AS28 wing. Left: vectorial field of
deformation. Right: pressure coefficient.

Figure 13. Optimum given by the Cokriging based optimizer for the AS28 wing. Left: vectorial field of
deformation. Right: pressure coefficient.
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Figure 14. Optimized shape and pressure distribution at 6% of the wing span
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Figure 15. Optimized shape and pressure distribution at 19% of the wing span
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Figure 16. Optimized shape and pressure distribution at 35% of the wing span

18 of 21



x/c

z/
c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.24

0.26

0.28

0.3

0.32

0.34

Baseline
DOT-BFGS
RS Kriging
RS Cokriging

x/c

-c
p

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Baseline
DOT-BFGS
RS Kriging
RS Cokriging

Figure 17. Optimized shape and pressure distribution at 60% of the wing span
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Figure 18. Approximated drag polars for the AS28 wing

V. Conclusion

A general framework for optimization enabling the use of various optimizers was set up. Two algo-
rithms based on response surfaces built with Kriging and Cokriging were then implemented and compared
to the quasi-Newton reference algorithm. These optimizers seem very promising as they achieve bet-
ter function improvement and are complementary to the reference gradient optimizer converging very
quickly to the nearest optimum. Best practices can be drawn from the results obtained on the two drag
reduction test problems.

For the low dimensional problem, both response surface based optimizers largely outperform the
gradient in terms of final function value, but also outperform it at equivalent computational cost and
restitution time. Despite the fact that the gradient algorithm converges to a local optimum, it needs
fewer functions evaluations to reach its final optimum. The interpolation of gradient information does
not significantly improve Cokriging based optimizer performances, that is why in conclusion the gradient
free Kriging based optimization algorithm should be preferred for low dimensional problems.

When increasing the complexity of the problem by considering 45 design variables on a wing, the
Kriging based optimizer requires twice more iterations after gradient convergence before outmatching
it. The lack of accuracy of the Kriging model makes it converge permaturously due to an excessive
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exploration of the domain. The sample limited Cokriging based optimizer does not suffer this problem
and effectively converges to a better solution than the gradient reference. The additional cost needed is
small in terms of restitution time due to the efficiency of the parallel framework, but is large in terms of
total function evaluations. The cost of the gradient optimizer being totally independent of the number
of design variables, it should be preferred for high dimensional problems when computational cost is
the major issue. The Cokriging based optimizer can converge to a more global optimum and should be
preferred when performance is the major issue.

These conclusions can be explained by considering the quantity of information, N , contained inside
each optimizer. At a given iteration, the gradient algorithm only knows a search direction given by com-
paring two gradient vectors and a few function evaluations, ∀neval NGradient ≈ 10 + 2 · ndv. Response
surfaces are a mean to cumulate all known information on the function in a sample database and the
sampling refinement process aims at having an accurate model in the vicinity of the global optimum.
For the Kriging based algorithm, the quantity of information is independent of the number of variables
∀neval NRSKriging = neval explaining its domain of applicability. The Cokriging based algorithm in-
terpolates a fixed number (naug) of gradient vectors ∀neval NRSKriging = neval + naug · ndv giving an
efficient algorithm even for high dimensional problems.

Lastly, it was assessed that the use of global optimizers imply a careful definition of the optimization
problem in order to avoid unrealistic shapes. The gradient based optimizer, departing from an already
existing shape and converging to a close local optimum, is less prone to this problem.
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