Solution methods for optimization problems


In this training course, modern methods for solving optimization problems are detailed. Newton or Quasi-Newton methods for the solution of unconstrained minimization problems are first addressed. Globalization techniques such as trust region methods or adaptive cubic regularization are then detailed. Methods for solving problems without derivatives and problem with general constraints are also outlined. Finally, the solution of nonlinear least-squares problems arising in large-scale inverse problems with application to Earth sciences are reviewed.


Target participants:
Engineers, physicists, computer scientists and numerical
analysts who wish to develop basic knowlegde to solve optimisation problems.

Prerequisites:
Basic knowledge in linear algebra, numerical analysis and geometry.

Scientific contact:
Serge GRATTON

Fee:
- Public staff: 900 €
- CERFACS shareholders/CNRS/INRIA staff: 450 €
- Students: 150 €
Dates: 17-19 June 2013

Deadline for registration: 15 days before the starting date of the training course

Duration: 3 days
(21 hours eligible for Individual Right to Training (DIF))



 Program
(Every day from 9h to 17h30)
 
The program will be adapted and completed after the analysis of participants' needs.
 


Back to main program
CNESEADSEDFMeteo FranceONERASAFRANTotal
English | French | Intranet | FTP | Site Map | Legal Information | © CERFACS 2009 | Conception: CERFACS - Oréalys