A column pre-ordering strategy for the unsymmetric-pattern multifrontal method

Tim Davis
davis@cise.ufl.edu

University of Florida, Stanford University, and Lawrence Berkeley National Laboratory
Outline

- symbolic LU factorization, $PA = LU$
- the column elimination tree, and supercolumns
- a multifrontal view of sparse partial pivoting
 - frontal matrices and unifrontal chains in the column elimination tree
- UMFPACK numeric factorization
- numerical assembly / degree update
- representing the Schur complement
- local pivot search
- UMFPACK preordering and analysis phase
- experimental results
Symbolic LU factorization

PA = LU, select P via partial pivoting

example upper-bound symbolic LU factorization:

initial matrix

after step 1

after step 2

after step 3

after step 4

after step 5

after step 6

after step 7
Symbolic LU factorization

- upper-bound symbolic LU factorization = a graph elimination process
- the column intersection graph
 - undirected hypergraph
 - n column nodes, each row = a hyperedge (or, a clique in a regular graph)
- at each step:
 - a new hyperedge/clique is constructed (union of all candidate pivot rows)
 - one or more prior hyperedges/cliques removed (the candidate pivot rows)
 - one column node removed
- pre-ordering: pick the column that results in the smallest new hyperedge/clique
Symbolic LU factorization

Let $\mathcal{A}_i = \text{Struct}(\mathcal{A}_{i*})$ for all i

Let $\mathcal{R}_i = \emptyset$ for all i

elimination phase:

for $k = 1$ to n do

 * find upper bound pattern of pivot row:
 $\mathcal{R}_k = (\bigcup_{k=\min \mathcal{R}_i} \mathcal{R}_i) \cup (\bigcup_{k=\min \mathcal{A}_i} \mathcal{A}_i) \setminus \{k\}$

 * find upper bound number of nonzeros in pivot column:
 $l_k = (\sum_{k=\min \mathcal{R}_i} l_i) + |\{i : k = \min \mathcal{A}_i\}| - 1$

 * regular row absorption:
 for each i such that $k = \min \mathcal{R}_i$ do $\mathcal{R}_i = \emptyset$ end for
 for each i such that $k = \min \mathcal{A}_i$ do $\mathcal{A}_i = \emptyset$ end for
 if $l_k = 0$ then $\mathcal{R}_k = \emptyset$ end if

end for
Column elimination tree

The matrix A

LU factors (with no pivoting)

Parent of node $k = \min \mathcal{R}_k$

Row-merge tree: parent of original row i is $\min \mathcal{A}_i$
Supercolumns

- a sequence of columns with identical upper-bound nonzero pattern
- identical upper-bound on corresponding pivot rows
 - $\mathcal{R}_k = \mathcal{R}_{k-1} \setminus \{k\}$
 - $l_k = l_{k-1} - 1$
- faster symbolic factorization, and column preordering
- allows for dense matrix BLAS in numerical factorization
 - BLAS $2\frac{1}{2}$ in SuperLU (repeated matrix-vector multiply)
 - BLAS 3 in UMFPACK (matrix-matrix multiply)
- columns within the supercolumn can be arbitrarily reshuffled without modifying the upper bound
A multifrontal view of the column etree

- each node in the supernodal column etree = rectangular frontal matrix
- size at most l_k-by-|$R_k|$, actual size smaller
Column etree with frontal matrices
The unsymmetric frontal matrix

- Candidate pivot columns
 - In front
 - Not in front
- Non-candidate columns
 - In front
 - Not in front

- Upper-bound on frontal matrix
- Current frontal matrix
- Remainder of A_k active submatrix (not affected by current frontal matrix)
Unifrontal chains

- If \(i + 1 \) is the parent of \(i \), then \(i \) and \(i + 1 \) are in the same chain.
- With a depth-first ordering, the number of chains equals the number of leaves of the column etree.
for each chain:
current frontal matrix is empty
for each frontal matrix in the chain:
 for each pivot column in front
 find pivot row and column
 apply pending updates to pivot column
 if too many zero entries in new frontal matrix (or new LU part)
 apply all pending updates
 if too many zero entries in new frontal matrix
 create new contribution block and place on stack
 start a new frontal matrix
 else
 extend the frontal matrix
 assemble contribution blocks into current frontal matrix
 scale pivot column
 if # pivots in current frontal matrix ≥ 32
 apply all pending updates
 apply all pending updates
 create new contribution block and place on stack
Numerical assembly / degree update
Representing the Schur complement

- a set of rectangular submatrices ("elements")
- kth element:
 - \mathcal{L}_k: list of remaining row indices
 - \mathcal{U}_k: list of remaining column indices
 - C_k: a dense rectangular matrix
- row \mathcal{R}_i: list of (e, s) pairs; i is the sth entry in \mathcal{L}_e
- column \mathcal{C}_j: a list of (e, s) pairs; i is the sth entry in \mathcal{U}_e
- analogous to the symmetric quotient graph
- integer pattern not in-place, but nearly so in practice
- unsymmetric analog of approximate minimum degree
- can search for sparse pivot columns / pivot rows
Numerical assembly / degree update

\[
\begin{align*}
\mathcal{L}_e \setminus \mathcal{L}_k &= \emptyset \\
\mathcal{U}_e \setminus \mathcal{U}_k &= \emptyset
\end{align*}
\]

\[
\begin{align*}
\mathcal{L}_e \setminus \mathcal{L}_k &= \emptyset \\
\mathcal{U}_e \setminus \mathcal{U}_k &\text{ not empty}
\end{align*}
\]

\[
\begin{align*}
\mathcal{L}_e \setminus \mathcal{L}_k &\text{ not empty} \\
\mathcal{U}_e \setminus \mathcal{U}_k &= \emptyset
\end{align*}
\]
Local pivot search

- Existing left-looking methods:
 - do not construct the Schur complement
 - cannot pick a sparse pivot row

- UMFPACK:
 - keeps an unsymmetric quotient graph
 - approximate degree update / assembly phase
 - can reshuffle columns within each supercolumn
 - can pick a sparse pivot row
 - result: less fill-in than left-looking methods
Local pivot search

- Candidate pivot columns
 - In front
 - Not in front
- Non-candidate columns
 - In front
 - Not in front

Current frontal matrix

Upper-bound on frontal matrix

Remainder of A_k active submatrix
(not affected by current frontal matrix)
Preordering and analysis phase

UMFPACK analyzes the matrix A and automatically selects one of three column pre-ordering strategies:

- unsymmetric
- symmetric
- 2-by-2
Preordering and analysis phase

Unsymmetric strategy:

- for matrices with very unsymmetric nonzero pattern
- pre-ordering and analysis: column preordering via COLAMD, reduces a “pessimistic” upper bound fill-in. column etree postordering (longer unifrontal chains).
- during numerical factorization: reshuffles columns within each supercolumn. threshold partial pivoting; selects sparse pivot rows.
- only strategy in UMFPACK v4.0 (MATLAB 6.5, \(x = A \backslash b \))
Preordering and analysis phase

Symmetric strategy:

- for matrices with zero-free diagonal and roughly symmetric nonzero pattern
- pre-ordering and analysis: symmetric pre-ordering via approximate minimum degree (AMD) on $A + A^T$, reduces an “optimistic lower-bound” on fill-in. symmetric etree postordering.
- during numerical factorization: does not reshuffle columns within each supercolumn. attempts to select diagonal entries.
- much better for finite-element matrices and circuit matrices
Preordering and analysis phase

2-by-2 strategy:

- permute the rows of A, attempt to find a zero-free while also attempting to maintain symmetry
- if a_{ii} is small, swaps rows i and j where both a_{ij} and a_{ji} are large.
- attempts to pick i and j with similar degree.
- may be “unsuccessful” (still too many zeros on diagonal, or symmetry significantly deteriorated).
- if unsuccessful, unsymmetric strategy used instead
- otherwise, uses symmetric strategy on $P_{2by2}A$.
- much better for CFD fluid/structure interaction matrices
Preordering and analysis phase

2-by-2 strategy

\[i \quad j \]
\[i \quad \bigcirc \quad \bullet \quad \bigcirc \quad j \]
\[j \quad \bullet \quad \bigcirc \quad \bigcirc \quad \bigcirc \quad \bigcirc \]

UMFPACK. June 2003 – p.32/4
Experimental results

- Dell Latitude C840, 2 GHz Pentium 4M, 1 GB memory
- Goto’s DGEMM peak performance: 3.3 Gflops
- UMFPACK v4.1 (peak: 1.7 Gflops)
- LU (peak: 0.2 Gflops)
- SuperLU (peak: 0.7 Gflops)
- MA38 (peak: 1.2 Gflops)
- MA41u (unsymmetric multifrontal method, local symmetrization. peak: 2.0 Gflops)

Note: SuperLU and MA41u have parallel versions; UMFPACK does not
Test matrices

Unsymmetric:
- Mallya: chemical process engineering
- AT&T: harmonic circuit simulation
- Graham, Vavasis: irregular finite-element
- **PSMIGR**: population migration
- Simon: 2D airfoil with unsymmetric turbulence
- Saad: Navier-Stokes, finite-element

2-by-2:
- Goodwin: fluid mechanics
- Averous: plate-fin heat exchanger
- Norris: human heart
- Bova: Charleston harbor
- **PSMIGR**: population migration

Symmetric:
- Norris: human torso, stomach
- Simon: structure problems, fluid-flow, turbulence
- Bai: airfoil
- Zhao: electromagnetics
- Wang, Ronis: crystals, semiconductors
- van Heukelum: DNA electrophoresis
Results for unsymmetric set

Median ratio of (LU, SuperLU, MA38, MA41u) / UMFPACK results (time, flop count, nz in LU, and memory), and median bytes/nz.

<table>
<thead>
<tr>
<th></th>
<th>LU</th>
<th>SuperLU</th>
<th>UMF4</th>
<th>MA38</th>
<th>MA41u</th>
</tr>
</thead>
<tbody>
<tr>
<td>time:</td>
<td>6.09</td>
<td>2.07</td>
<td>1</td>
<td>3.33</td>
<td>0.86</td>
</tr>
<tr>
<td>flop:</td>
<td>1.37</td>
<td>1.45</td>
<td>1</td>
<td>2.40</td>
<td>1.38</td>
</tr>
<tr>
<td>nz LU:</td>
<td>1.19</td>
<td>1.23</td>
<td>1</td>
<td>1.36</td>
<td>1.16</td>
</tr>
<tr>
<td>mem:</td>
<td>1.44</td>
<td>1.54</td>
<td>1</td>
<td>1.60</td>
<td>1.93</td>
</tr>
<tr>
<td>mem/nz</td>
<td>12.43</td>
<td>12.66</td>
<td>10.46</td>
<td>12.76</td>
<td>19.87</td>
</tr>
</tbody>
</table>
Results for unsymmetric set

- MATLAB LU
- SuperLU
- MA38
- MA41u
Results for 2-by-2 set

<table>
<thead>
<tr>
<th></th>
<th>LU</th>
<th>SuperLU</th>
<th>UMF4</th>
<th>MA38</th>
<th>MA41u</th>
</tr>
</thead>
<tbody>
<tr>
<td>time:</td>
<td>5.15</td>
<td>1.90</td>
<td>1</td>
<td>3.70</td>
<td>0.45</td>
</tr>
<tr>
<td>flop:</td>
<td>1.08</td>
<td>1.14</td>
<td>1</td>
<td>5.52</td>
<td>1.00</td>
</tr>
<tr>
<td>nz LU:</td>
<td>1.04</td>
<td>1.07</td>
<td>1</td>
<td>2.35</td>
<td>1.01</td>
</tr>
<tr>
<td>mem:</td>
<td>1.36</td>
<td>1.27</td>
<td>1</td>
<td>2.36</td>
<td>1.36</td>
</tr>
<tr>
<td>mem/nz</td>
<td>12.09</td>
<td>11.05</td>
<td>11.55</td>
<td>12.36</td>
<td>15.62</td>
</tr>
</tbody>
</table>
Results for 2-by-2 set

MATLAB LU

SuperLU

MA38

MA41u

UMFPACK. June 2003 – p.38/41
Results for symmetric set

<table>
<thead>
<tr>
<th></th>
<th>LU</th>
<th>SuperLU</th>
<th>UMF4</th>
<th>MA38</th>
<th>MA41u</th>
</tr>
</thead>
<tbody>
<tr>
<td>time:</td>
<td>5.02</td>
<td>2.05</td>
<td>1</td>
<td>4.71</td>
<td>0.66</td>
</tr>
<tr>
<td>flop:</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
<td>3.78</td>
<td>1.00</td>
</tr>
<tr>
<td>nz LU:</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
<td>2.17</td>
<td>1.01</td>
</tr>
<tr>
<td>mem:</td>
<td>1.17</td>
<td>1.09</td>
<td>1</td>
<td>2.41</td>
<td>1.21</td>
</tr>
<tr>
<td>mem/nz</td>
<td>12.13</td>
<td>10.46</td>
<td>10.19</td>
<td>11.88</td>
<td>11.86</td>
</tr>
</tbody>
</table>

TAUCS (multifrontal Cholesky): half the work, “20% to 50% faster than UMFPACK v4.1.”
Results for symmetric set
Summary

column pre-ordering + refinement during numerical factorization = better results for unsymmetric matrices

practical meta-algorithm (automatic strategy selection):

- unsymmetric: $A^T A$-based, “pessimistic” upper bound + refinement
- symmetric: diagonal pivoting, “optimistic” ordering
- 2-by-2: cheap matching + symmetric strategy
- worst case automatic selection: run time 30% higher, memory 20% higher than best strategy

competitive performance (not parallel yet, however)

v4.0 in MATLAB 6.5 (v4.1 faster)

MATHEMATICA, NASTRAN, FEMLAB, ARPACK, TRILINOS, ...