The History of UMFPACK and AMD

Tim Davis, with Iain Duff and Patrick Amestoy

davis@cise.ufl.edu

University of Florida
The road to CERFACS

- May 1989, SIAM Symposium on Sparse Matrices, Gleneden Beach, Oregon

 Can some of the ideas of the clique tree and clique graph methods be used in the unsymmetric case, without resorting to forcing a symmetric structure on the matrix?

- CERFACS post-doc, Sept 1989 to Dec 1990
- Univ. of Florida, Jan 1991 to date
UMFPACK : right-looking multifrontal

- fill-in as rectangular frontal matrices
- *element lists* to reconstruct rows/cols
- pivot ordering on the fly (1990 to 1995)
- preordering + adjustment on the fly (1996 to date)
Aggressive frontal matrix assembly

- scan the row/col elements lists twice
- front e is r-by-c
- current front is k
- if e appears in c times in columns of k, then any row in e and k can be assembled from e to k
- ditto for columns
Degrees for Markowitz search (1990)

- Degree is \(\leq \sum \) external element sizes

- *external* element size: if front \(e \) is \(|L_e| \)-by-\(|U_e| \) and appears in \(t < |U_e| \) columns of front \(k \), then its external row size is
 \[|U_e \setminus U_k| = |U_e| - t \]

- Column \(j \) degree \(\leq |A_{*,j}| + |L_k| + \sum |L_e \setminus L_k| \)

- Row \(i \) degree \(\leq |A_{i,*}| + |U_k| + \sum |U_e \setminus U_k| \)
AMD: the UMFPACK degree update

- approximate minimum degree
- find a node ordering for sparse Cholesky
- right-looking symbolic factorization
- Patrick Amestoy, Tim Davis, Iain Duff (1994, St. Girons)
- starting with MA27 (Iain Duff and John Reid)
- replaced exact degrees with approximate (upper bound) degrees
AMD: the UMFPACK degree update

(a) Elimination graph

(b) Quotient graph

(c) Factors and active submatrix
UMFPACK 2007

- symbolic LU factorization, \(PAQ = LU \)
- ordering (COLAMD, AMD, ...) for \(Q \)
- column elimination tree / row-merge tree
- QR upper bound
- supercolumns

- right-looking multifrontal with partial pivoting
 - unsymmetric frontal matrices
 - unifrontal chains in the column elimination tree
 - numerical assembly / approximate degree update
 - local pivot search, find \(P \) and modify \(Q \)
Column etree with frontal matrices
UMFPACK / AMD history

- 1989: future work in PhD thesis; Sept ’89 to CERFACS
- 1990: CERFACS, UMFPACK 1.0 (with Duff)
- 1994: AMD (St. Girons, Amestoy and Duff)
- 1995: MA38 (UMFPACK 2.2) in HSL (with Duff)
- 1998: COLAMD (with Gilbert, Ng, Larimore)
- 2000: COLAMD in MATLAB 6.0
- 2001: UMFPACK 3 (in C, with Duff) using COLAMD
- 2002: UMFPACK 4 in MATLAB 6.5 ($x = A \backslash b$)
- 2004: AMD in MATLAB 7.0, UMFPACK 4.3 uses AMD
- 2006: CHOLMOD in MATLAB 7.2 (sparse Cholesky)
- 2007: MA57 in MATLAB 7.5 (sparse LDL^T)
MATLAB sparse \(x = A \backslash b \)

- if diagonal: scale
- if square and banded: tridiagonal, or LAPACK
- if upper/lower triangular: forward/backsolve
- if morally triangular: permute, triangular solve
- if symmetric:
 - real positive diagonal: Cholesky (CHOLMOD)
 - else: \(LDL^T \) with 2-by-2 pivots (MA57)
- if square (or Cholesky failed): LU (UMFPACK)
- if not square: QR (Givens-based)

Any technical questions?
Les Traductions Faibles

Une leçon française, et de logiciel :

CERFACS, Oct 2007 – p.19/33
Une leçon française, et de logiciel :

Lessen my French; I’ll eat my words.

Or in plain language to my ear,
I shall reduce each word, I fear,
from French to mangled English here,
first word-for-word then sentence clear.
Les Traductions Faibles

Nous créons bien des théories de math :
Nous créons bien des théories de math :
No cryin’ band-aids for theories of math.

Which is to say in English clear,
my theory of math has lemmas unclear;
no quick fix here; I shed a tear.
My journal paper won’t pass my peer.
Les Traductions Faibles

Nous sommes heureuses d’être à Toulouse :
Nous sommes heureuses d’être à Toulouse:

your sum’s a ruse, a debt to lose.

Your math’s a mess, your sum’s obtuse,
your lemmas are lost, you’ve nothing to lose,
but in your proof, some miracle use,
or yet another method choose.
Les Traductions Faibles

CERFACS est une place pour les logiciels math :
CERFACS est une place pour les logiciels math :
Sure, facts have their place in the logic of math.

In other words, that is to say, mathematical code with truth it can play. If your code has a bug that is here to stay, just call it a fact, or a feature, OK?
Les Traductions Faibles

Pour matrice creuse, nos codes sont vites :
Fabulous Translations

Pour matrice creuse, nos codes sont vites :

poor me, tries we cruise, no codes sound fit.

Alas I’ve cruised this road before,
my code once more has dumped it core,
My sorry attempts I’ll try once more,
to fix my code until I’m sore.
Les Traductions Faibles

Nous vous souhaitons un bon voyage :
Nous vous souhaitons un bon voyage :

Don’t sweat it now, just clear out of town.

My poems of math and matrices sparse
encited them all to shout ’til they’re hoarse.
I’d better clear out and mount up my horse,
and ride out of town; just don’t be too harsh.
In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

by Coleridge
In Toulouse, France ...

In Xanadu did Kubla Khan
A stately pleasure-dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

In Toulouse, France, does Iain Duff
Solve matrix problems high an’ tough.
Where sparse, the multifrontal, ran,
Writ down in parallel Fortran
upon a C-less Sun.
In Stanford U. did Golub, Gene,
a matrix SVD decree :
where A the matrix rank is found
through \mathbb{R}^n’s measured in tight bound
from sigma 1 to n.