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ABSTRACT

We discuss the interface design for the Sparse Basic Linear Algebra Subprograms
(BLAS), the kernels in the recent standard from the BLAS Technical Forum that are
concerned with unstructured sparse matrices. The motivation for such a standard is
to encourage portable programming while allowing for library-specific optimizations.
In particular, we show how this interface can shield one from concern over the specific
storage scheme for the sparse matrix. This design makes it easy to add further
functionality to the sparse BLAS in the future.
We illustrate the use of the Sparse BLAS with examples in the three supported
programming languages, Fortran 95, Fortran 77, and C.
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1 Introduction

In this paper, we consider the interface design of the Basic Linear Algebra
Subprograms for sparse matrices: the Sparse BLAS. This work is part of the effort of
the BLAS Technical Forum and appears as Chapter 3 in the standard specification
[1].

A matrix is termed sparse if many of its entries are zero. However, for this to be a
meaningful distinction, it is also necessary that some advantage can be taken of this
fact, either for storage or operations with the matrix, or both. Clearly band matrices
are sparse, but this proposal is concerned with sparse matrices that may have much
more irregular sparsity patterns. Although the dense BLAS [7, 8] have support for
some sparse matrices, specifically, banded and packed matrices, and LAPACK [2]
supports tridiagonal matrices, neither library provides functionality for unstructured
sparse matrices. The omission of sparse matrix support is not because sparse
matrices are uncommon, or because sparse matrix operations cannot be optimized.
In fact, the opposite is true. Sparse matrices are ubiquitous in many applications
in science, engineering and commerce. For example, the discretization of partial
differential equations by finite elements or finite differences gives rise to a sparse
matrix, as do representations of structures and networks. Also, numerous studies
have shown that careful attention to the implementation of sparse matrix operations,
for example sparse matrix-vector multiplication, can have a very significant impact,
often improving performance by an order of magnitude.

Unlike regularly structured sparse and dense matrices, whose data access
patterns are known a priori, data access patterns for unstructured sparse matrices
are known only after the matrix has been constructed. Thus, static scheduling
techniques that are the foundation for high-performance dense BLAS operations
are ineffective for unstructured sparse computations. At the same time, sparse
matrix operations, for example in the context of an iterative solution method, are
often called repeatedly with the same data access pattern. Therefore it is sensible to
spend some time computing the most efficient data access patterns for a given sparse
matrix and a common operation such as matrix-vector multiplication. Performance
improvements for sparse matrix operations typically come from reordering data
access to increase the degree of fine grain parallelism [4], or improving cache
performance [15, 16]. The Sparse BLAS standard allows complete freedom for
selecting the data access pattern because the standard does not prescribe a data
structure for storing matrix entries and uses a matrix construction process that
enables analysis of data access patterns.

Unfortunately, almost every application area has a different way of storing and
accessing the nonzero entries of the sparse matrix so that it is difficult to design
software to apply to all areas. In this paper, we will discuss in detail how the Sparse
BLAS interface addresses these problems via a generic handle-based representation.

As with the other BLAS, the Sparse BLAS are designed with more than one
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objective in mind. In this case, the main constituency are people writing and using
iterative methods for large sparse system solution or the eigenproblem.

The Sparse BLAS have been discussed for many years, even before the BLAS
Technical Forum started (see, for example, the introduction in [10]) so that they
do represent a good consensus of what is required by the community. The current
specification represents a small, accepted list of operations which may grow over
time. Indeed, we hope that a feature of the Sparse BLAS is that they lend themselves
easily to future extensions.

Computational kernels in the Sparse BLAS standard are grouped in three major
categories, similar to the other BLAS interfaces. Level 1 describes vector and scalar
operations, Level 2 describes operations involving a sparse matrix and dense vector,
and Level 3 describes operations involving a sparse matrix and a dense (typically
tall and thin) matrix.

We discuss our handle-based generic interface in Section 2 and describe the
functionality that we support in Section 3. We consider the representation of
sparse vectors in Section 4, the management of handles and sparse matrices in
Section 5, and comment on our error handling and use of the matrix property enquiry
routines in Section 6. We consider the interface to Fortran 77, C, and Fortran 95
programming languages in Section 7, giving short examples illustrating the use of
each interface, and make some concluding remarks in Section 8. Finally, we illustrate
the use of the Sparse BLAS in a more realistic application in the Appendix.

2 Handle-based generic interface

One important difference between this and the other BLAS interfaces in the standard
is the support for generic or abstract matrix representations. That is, Level 2 and
Level 3 operations take as input not the matrix entries themselves, but rather a
pointer, or a handle to a generic representation to a previously created sparse matrix
object. This allows algorithms to be coded using Sparse BLAS primitives without
requiring the underlying matrix storage format. The result is more general code that
can be run under different situations and storage optimization strategies without
modification. This means that the entry data needs to be converted and held
internally within an efficient storage representation. The internal representation,
however, is determined by the BLAS implementation and is not specified by the
standard. Library developers are then able to create highly optimized versions of
these kernels for differing computer architectures or specific application areas.

This strong reliance on referencing matrices solely by their matrix handle
represents a significant departure from earlier efforts on the sparse BLAS (for
example, [5, 10, 17]) and is quite different from our earlier drafts for a BLAS
standard for sparse matrices where some of the more common data structures were
explicitly presented. Of course, our current approach is not without its dangers.
Far more power is placed in the hands of the library developer. For example, if
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an implementation utilizes an internal global table to manage matrix handles, care
must be taken if a threadsafe implementation is required.

Managing these handles typically requires a three-step process. First, a new
BLAS sparse matrix is created and initialized with values; it can then be used in
subsequent Level 2 and Level 3 computational kernels; finally, when that matrix
is no longer needed, it can be freed to reclaim computer memory and associated
resources (see Section 5).

The Sparse BLAS standard does not impose a limit on the number of sparse
matrix handles that can exist at the same time. That number is constrained by
the available memory and other computer resources which will vary on different
platforms. It is the intent of the standard, however that, when a sparse matrix
handle is released, all resources associated with the matrix are also freed.

3 Functionality

As in the case of the dense BLAS, we have developed the Sparse BLAS to support
Level 1, 2, and 3 operations. We present in Tables 3.1, 3.2, and 3.3, the functionality
supported by the Sparse BLAS at these three levels respectively. Before we discuss
the functionality further, we first define some of the symbols used in the tables. For
the Level 1 BLAS, y represents a dense vector while x represents a vector in packed
form (as detailed in Section 4). The symbol y|x selects from the dense vector y

those components which are referenced by the integer array associated with x. r

and α are scalars. For the Level 2 BLAS, both the vectors x and y represent dense
vectors. A and T are always sparse matrices, with T being triangular; B and C are
dense matrices. The notation ZT , ZH and Z−1 refer to the transpose, Hermitian
transpose and inverse of a matrix Z, respectively.

The functionality reflects the belief in the main purposes for which the Sparse
BLAS will be used combined with a desire to keep the set of kernels as small as
possible, both to encourage their use and their support by the vendors. The Sparse
BLAS has been designed in a flexible way so that more functionality can be easily
added later.

USDOT sparse dot product r ← xT y,

r ← xHy

USAXPY sparse vector update y ← αx + y

USGA sparse gather x← y|x
USGZ sparse gather and zero x← y|x; y|x ← 0
USSC sparse scatter y|x ← x

Table 3.1: Level 1 Sparse BLAS: sparse vector operations.

The first thing to note in the tables is that not only is much less functionality
supported than in the dense case but some of the kernels are simpler than in the
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USMV sparse matrix-vector multiply y ← αAx + y

y ← αAT x + y

y ← αAHx + y

USSV sparse triangular solve x← αA−1x

x← αA−T x

x← αA−Hx

Table 3.2: Level 2 Sparse BLAS: sparse matrix-vector operations.

USMM sparse matrix-matrix multiply C ← αAB + C

C ← αATB + C

C ← αAHB + C

USSM sparse triangular solve B ← αT−1B

B ← αT−TB

B ← αT−HB

Table 3.3: Level 3 Sparse BLAS: sparse matrix-matrix operations.

dense case. For example, the kernel for matrix-vector multiplication in the dense
case, GEMV, is of the form y ← αAx + βy, where β is a scalar. The sparse verion
of this, USMV, does not have a scalar β (that is, it is assumed to have value 1.0).
The reason for this is that, in the sparse case, the scaling operation by β is an O(n)
operation for vectors and an O(n2) operation on matrices so that this operation
would often dominate the amount of work performed on the sparse data structures.
Since these operations represent scaling on dense vectors and matrices, if they are
needed in an application, they can be handled separately using appropriate routines
from the dense BLAS.

We note that all Level 2 and Level 3 operations involve the product (or inverse
product) of a sparse matrix with a dense vector or matrix. We do not support
operations on two sparse structures. One reason for this is that of complexity,
another is that of potentially mixing different representations for the two sparse
structures. These are generally deemed too complicated for low-level kernels.
For example, merely determining the fill-in for a sparse matrix - sparse matrix
multiplication requires complicated graph analysis and is beyond the scope of a low-
level computational kernel. In addition, it is often computationally more efficient
to avoid such operations. For example, when forming the product ABx, where A

and B are sparse matrices and x a dense vector, it is usually far better to compute
this as A ∗ (B ∗ x) rather than (A ∗ B) ∗ x. Furthermore, we know of vendors who
have already optimized Sparse BLAS in our current functionality, but we know of no
cases where this optimization has been extended to the case of two sparse structures.
This does not mean that such a facility is never requested. For example, algebraic
multi-level methods (see for example Tong and Tuminaro [18]) often form a coarse
operator via explicit construction of Ac = RAfP , where Af , P and R are given
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fine grid, prolongation and restriction operators, respectively. The paper of Bank
and Douglas [3] describes a kernel for use in a similar situation. Thus, there are
situations where such kernels could be useful, and indeed a sparse-sparse framework
may become an extension of this standard in the future.

As mentioned earlier, the principal constituency for this interface are those
developing and using iterative methods to solve sparse linear equations and we
believe that our kernels address most of the needs of this community. We have not
attempted to address the often more complicated kernels in sparse direct methods
because these methods use a far wider range of data structures (not just for storage
but at the innermost loop). For many years, some proponents of direct methods have
argued that the correct kernels in this case should be based on the dense BLAS [9]
and many sparse direct approaches have been designed to exploit this including
frontal [12] and multifrontal [11] techniques.

4 Sparse vector representation

Sparse vectors are represented in Level 1 operations by two separate arrays: one
with the real or complex nonzero entries, and the other an integer array holding their
respective offsets1. Thus, the vector {0.0, 4.3, 0.0, 2.1, 1.9, 0.0} can be represented in
packed form as two arrays {4.3, 2.1, 1.9} and {2, 4, 5}. We do not specify the ordering
of the entries so there are several equivalent storage representations for the same
sparse vector. The index base (that is whether one starts counting at zero or one)
is part of the semantics of the underlying representation and should be explicitly
stated. In our example, we listed the elements in increasing index order and have
used the Fortran convention of starting with an index of 1 for the first component.

The standard does not allow repeated indices in sparse vectors, thus calling a
Level 1 routine with such a representation results in undefined behavior. (Note that
repeated indices in sparse matrices are allowed, since the structures are constructed
internally by the BLAS framework. See Section 5.1.1.)

5 Sparse matrix management

The Sparse BLAS standard promotes an object-oriented approach to the
construction and use of sparse matrices. The construction process uses opaque
interfaces in the sense that, as the user inputs matrix entries, the entries are
copied to internal storage, but how the entries will be stored is not specified. In
practice, the matrix storage will depend on the nonzero structure of the matrix, the
properties that the user sets (if any), and the type of computer system being used.

1Several other representations, such as an array of C structures or a Fortran 95 derived data
type holding nonzero and index values, were examined but the separate array scheme can be easily
represented in all language bindings and is one of the most commonly used formats.
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Once created, a Sparse BLAS matrix is referenced by its handle, the equivalent
of an object instance in object-oriented programming terminology. We note that
the actual handle value will be held as an integer, for portability across language
implementations. In the remainder of this section we will discuss the three basic
phases of constructing, using, and destroying a Sparse BLAS matrix.

5.1 Matrix construction

Constructing a Sparse BLAS matrix requires three or four basic steps:

• create the matrix handle,

• set matrix properties (optional),

• insert matrix values, and then

• end insertion.

In this subsection we discuss the details of this construction.

5.1.1 Creating a matrix handle

There are Sparse BLAS matrix handles for three types of data, corresponding to
the three types of matrix entries that we support. Note that, as soon as the handle
is initialized, all subsequent references and operations on the matrix referenced by
that handle must be to the same matrix type as originally defined. The three types
of matrix are:

1. Point entry matrices.
The entries of this type of matrix are simple scalar values. The sparsity
structure describes the layout of these entries in the matrix.

2. Block entry matrices with constant block size.
Entries in these matrices are dense submatrices (blocks), each with the same
row and column dimension. Block entry matrices have three different types of
dimensions. The first is the number of block rows and columns, the second is
the number of row and columns in each block, and the third is the number of
equations and variables (standard row and column dimensions, respectively).
Of course, any one of the types of dimensions can be obtained from knowing
the other two types.

3. Block entry matrices with varying block sizes.
Entries in these matrices are also dense submatrices, but block sizes may vary
from block row to block row. In this case, both the number of blocks and their
dimensions must be specified.
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Block entry matrices occur naturally for problems where multiple degrees of
freedom are associated with a single physical location. For example, in a fluid
dynamics calculation, we may track the x, y and z direction velocities at a single mesh
point. Variable block entry matrices occur when some degrees of freedom are tracked
in one subregion and not another, for example chemical species concentration. Our
definition of block entries enforces a two-dimensional partitioning of the matrix as
illustrated in Figure 5.1 for a 4 × 4 matrix. The first matrix in this figure has no
partitioning and corresponds to a point entry matrix. In this case, each nonzero
value is stored as a separate entry. The middle version has the same values, but we
impose a 2 × 2 block partitioning. The rightmost version has a variable partition
size that creates a 3× 3 block matrix whose block entry sizes vary.

Figure 5.1: Three possible types of entries for a matrix.

When a matrix has an underlying block structure, it is often advantageous to
exploit this structure for the following reasons.

1. Integer storage and arithmetic costs are substantially reduced.
Integer storage and computational complexity is reduced by a factor equal to
the square of the average block entry dimension. For example, if the average
block entry dimension is 3×3, the integer storage and computation is reduced
by a factor of 9.

2. Computations involving dense matrices often perform well on modern
processors.
Block entries have a predictable memory access pattern that can be exploited
to increase instruction pipelining, latency hiding, and cache memory hits.
Furthermore, if the block entry dimensions are large enough, dense BLAS
kernels can be used. If the block entry dimensions are at least 10, a very large
fraction of peak performance can be obtained for Sparse BLAS computations.

3. Block entry matrices enable hybrid sparse-dense algorithms.
Block entry matrices provide an explicit hierarchy that can be exploited
by two-level algorithms. For example, block Gauss-Seidel or block Jacobi
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blas_non_unit_diag nonzero diagonal entries are stored (default)
blas_unit_diag diagonal entries are not stored and assumed to be 1.0

blas_no_repeated_indices indices are unique (default)
blas_repeated_indices nonzero values of repeated indices are summed

blas_lower_symmetric only lower half of symmetric matrix is specified by user
blas_upper_symmetric only upper half of symmetric matrix is specified by user
blas_lower_hermitian only lower half of Hermitian matrix is specified by user
blas_upper_hermitian only upper half of Hermitian matrix is specified by user

blas_lower_triangular sparse matrix is lower triangular
blas_upper_triangular sparse matrix is upper triangular

blas_zero_base indices of inserted items are 0-based (default for C)
blas_one_base indices of inserted items are 1-based (default for Fortran)

Applicable for block entries only
blas_rowmajor dense block stored in row major order (default for C)
blas_colmajor dense block stored in column major order (default for Fortran)

blas_irregular general unstructured matrix
blas_regular structured matrix
blas_block_irregular unstructured matrix best represented by blocks
blas_block_regular structured matrix best represented by blocks
blas_unassembled matrix is best represented by cliques

Table 5.4: Matrix properties.

algorithms [6] can be used such that the outer algorithm is performed using
the graph of the matrix and the inner algorithm exploits the dense block
entries.

5.1.2 Asserting matrix properties

Once a matrix handle is created, it is possible to assert certain matrix properties
that may have an impact on performance or storage, or may be required for a matrix
to be used with certain operations. Table 5.4 lists the properties that can be set for
a given matrix handle.

The pair of parameters blas_non_unit_diag, blas_unit_diag asserts whether
or not the matrix diagonal values are assumed to be one, in which case the user will
not insert them into the matrix. If a matrix is unit triangular and will be used for
triangular solves, asserting blas_unit_diag can significantly reduce both storage
and computation.

The pair blas_no_repeated_indices, blas_repeated_indices asserts
whether or not some matrix entries may be listed more than once. If
indices are repeated, all values will be summed into a single entry. Asserting
blas_no_repeated_indices can permit more efficient matrix construction.
Asserting blas_repeated_indices allows for correct assembly of matrix entries
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for finite-element computations and related methods.
The parameters blas_lower_symmetric, blas_upper_symmetric,

blas_lower_hermitian, and blas_lower_symmetric allow users to store only
the upper or lower triangle of a symmetric or Hermitian matrix and still have the
matrix considered as square rather than triangular.

Parameters blas_zero_base, and blas_one_base allow the user to declare
that indices start at zero (C-style indexing) or one (Fortran-style indexing).
blas_rowmajor and blas_colmajor indicate whether dense blocks, as might be
used in the block storage schemes, are held in row major or column major order,
respectively.

Finally, the parameters blas_irregular, blas_regular,
blas_block_irregular, blas_block_regular, and blas_unassembled allow
the user to describe possible regularity in the structure. This could be used if the
matrix were known to come from a regular grid or other structured data. These five
parameters are intended to provide optimization hints and are completely optional;
their omission should not affect program correctness.

5.1.3 Inserting matrix values

Once matrix properties (if any) have been set, we can insert values into the matrix
in a variety of ways. For a point entry matrix, insertion of matrix values is always
in terms of a single entry or a collection of entries. Entries can be inserted using the
following five methods.

1. Single entry: a single matrix entry together with its row and column index.

2. List of entries: in this case a list of values with corresponding row and column
indices is submitted for insertion.

3. List of row entries: a list of values with corresponding column indices is
submitted for insertion in a specified row.

4. List of column entries: a list of values with corresponding row indices is
submitted for insertion in a specified column.

5. Clique: a two-dimensional array of values with two integer arrays that describe
the row and column indices associated with the rows and columns of the two-
dimensional array. Such a data structure is appropriate for finite-element
computations. The example below illustrates this method.

The five different methods of inserting matrix entries may be used in any
combination. If insertion is done more than once for any matrix entry and
blas_repeated_indices is enabled, repeated values will be summed into a single
value for such an entry.
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Consider the following matrix:

A =











1.1 0 1.3 0
0 2.2 0 2.4

3.1 0 3.3 0
0 4.2 0 4.4











. (5.1)

We can pass in all entries (following a call to the handle initialization routines)
by defining a list of eight entries with the values, row indices and column indices as
follows:

values = ( 1.1 1.3 2.2 2.4 3.1 3.3 4.2 4.4 )
row indices = ( 1 1 2 2 3 3 4 4 )

column indices = ( 1 3 2 4 1 3 2 4 ).

Note that calls to the C interface would default to using 0-based indices. The
ordering of the entries is arbitrary. Also, any partial list of the above entries could be
passed, as long as all entries were eventually submitted. We can build A row-by-row
(or column-by-column) in the obvious way by submitting the entries corresponding
to each row (or column) one row (column) at a time.

As an alternative to the above insertion methods, the entries of A can be inserted
by cliques in the following way. First submit a two-dimensional array (whose major
ordering depends on the matrix properties as defined in Table 5.4) as:

values =

(

1.1 1.3
3.1 3.3

)

(5.2)

and two associated index arrays:

row indices = ( 1 3 )
column indices = ( 1 3 ).

To complete the insertion, we submit the array

values =

(

2.2 2.4
4.2 4.4

)

(5.3)

and its associated row and column scattering vectors

row indices = ( 2 4 )
column indices = ( 2 4 ).

Insertion for a block entry matrix must be performed using the block entry
insertion routine. This routine accepts a single block as a two-dimensional array of
values and a corresponding block row and block column index. The two-dimensional
array will be summed into the existing matrix. The exact definition of the two-
dimensional array depends on the language binding. Defining data structures for
lists of block entries was deemed to be too complicated and language dependent,
and also unnecessary since the block entry already passes in several matrix values
and therefore amortizes the overhead of the call.
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blas_num_rows returns the number of rows of the matrix
blas_num_cols returns the number of columns of the matrix
blas_num_nonzeros returns the number of stored entries
blas_complex matrix values are complex
blas_real matrix values are real
blas_integer matrix values are integer
blas_single_precision matrix values are single precision
blas_double_precision matrix values are double precision
blas_general neither symmetric nor Hermitian (default)
blas_symmetric sparse matrix is symmetric
blas_hermitian (complex) sparse matrix is Hermitian
blas_lower_triangular sparse matrix is lower triangular
blas_upper_triangular sparse matrix is upper triangular
blas_void_handle handle not currently in use
blas_new_handle before any items have been inserted
blas_open_handle after the first item has been inserted
blas_valid_handle after the USCR_END routine has been called

Table 5.5: Matrix properties that can be queried.

5.1.4 Ending Insertion

Once all matrix entries have been input, we signal the end of insertion by calling
a routine that will process all entries with the intent of reorganizing the storage of
the matrix and performing any preprocessing that will optimize the performance
of operations using this matrix. The exact process performed by calling the end
insertion routine is very much implementation dependent.

5.2 Using Sparse BLAS matrices

Once a Sparse BLAS matrix handle has been completely constructed (something
that can be tested by checking the property blas_valid_handle), it is possible to
use the matrix handle to perform operations. At this time the four operations shown
in Tables 3.2 and 3.3 are supported.

In addition to performing operations with a Sparse BLAS matrix, it is possible
to query its properties through its handle. Table 5.5 lists the properties that can be
obtained by calling the get properties routine.

5.3 Destroying a Sparse BLAS matrix

When a Sparse BLAS matrix is no longer needed, it may be destroyed (and all
associated storage returned to the operating system) by passing the matrix handle
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to the Sparse BLAS destructor routine.

5.4 Power method example

We present an example showing how the Sparse and dense BLAS can be used to
implement the power method for finding the dominant eigenvalue and corresponding
eigenvector of a matrix [14]. Additional examples showing how to construct and use
a Sparse BLAS matrix with each of the language interfaces (Fortran 77, C, and
Fortran 95) can be found in Section 7. The matrix used for all examples is the
following 4× 4 sparse matrix

A =











1.1 0 0 0
0 2.2 0 2.4
0 0 3.3 0

4.1 0 0 4.4











. (5.4)

Code for the power method example for each of the supported programming
languages is given in the appendix.

6 Error handling and matrix properties

The Sparse BLAS have an error return scheme consistent with the error-handling
framework described in Section 1.8 of the BLAS Standard [1]. In particular, most
housekeeping routines related to managing sparse matrix handles utilize return codes
to signify the success or failure of the operation. Furthermore, the Level 2 and Level
3 computational kernels employ a similar mechanism. Typically, these kernels return
a value of 0 (zero) if the operation completed successfully, for example

if (BLAS_duscr_insert_entry(A, 2.1, 2, 3) != 0)

/* matrix entry was not successfully included */ ;

The handle-management routines use return codes rather than aborting the
program, since these requests (such as constructing matrices, inserting elements,
setting matrix properties) usually make use of queries about available resources,
such as computer memory, and their failure needs to be recoverable.

Query routines interrogate the status or properties of a handle. These properties
are listed in Table 5.5. A few query routines return integer values, denoting the
various matrix size properties, for example

In ANSI C,

M = BLAS_usgp(A, blas_num_rows);

N = BLAS_usgp(A, blas_num_cols);

nz = BLAS_usgp(A, blas_num_nonzeros);

12



or, in Fortran 77,

CALL BLAS_USGP(A, BLAS_NUM_ROWS, M)

CALL BLAS_USGP(A, BLAS_NUM_COLS, N)

CALL BLAS_USGP(A, BLAS_NUM_NONZEROS, NZ)

or, in Fortran 95,

call usgp(a, blas_num_rows, m)

call usgp(a, blas_num_cols, n)

call usgp(a, blas_num_nonzeros, nz)

The majority of matrix properties, however, are Boolean values, such as whether a
matrix contains complex values, or whether it is symmetric or triangular. In such
cases, the values returned are either 1 (true) or 0 (false). These can be used to form
guarded statements, which can often reduce potential errors of calling Sparse BLAS
kernels with inappropriate arguments. For example, to avoid calling a triangular
solve operation on a non-triangular matrix in ANSI C, one can write,

if (BLAS_usgp(A, blas_lower_triangular))

BLAS_ussv(blas_no_transp, alpha, A, x, incx);

or, in Fortran 95,

call usgp(A,blas_lower_triangular,m)

if (m.eq.1) call ussv(A, x, istat, transt, alpha)

7 Interface issues

The Sparse BLAS supports Fortran 95, Fortran 77, and C and interfaces for the
purpose of avoiding the necessity of interlanguage calls. In addition to specific
function interfaces for each language, header files (modules for Fortran 95) of
pre-defined named constants and (where appropriate) function prototypes are also
provided. The purpose of the pre-defined named constants is to make code more
readable and portable. All constants are compatible with constants used by the
dense BLAS. In the remainder of this section, we discuss some details specific to
each language interface, and then give a simple example.

The functionality of the Sparse BLAS is nearly identical for each language
binding, except for one specific case: the Level 1 (vector) operations in C allow
the use for both 0-based and 1-based offsets. This feature is not available in the
Fortran bindings.2

2This decision was made by the BLAS Technical Forum for consistency with pre-existing Fortran
Level 1 Sparse BLAS.
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7.1 Interface issues for Fortran 95

Predefined constants for the Sparse BLAS are included in the module
blas sparse namedconstants that is included in the module blas sparse. These
include the sparse matrix properties constants defined in Tables 5.4 and 5.5. In
addition, the module blas sparse provides explicit interfaces to all routines.

The interface example below illustrates multiplying the 4 × 4 matrix from
Section 5.4 with the vector x = {1.0, 1.0, 1.0, 1.0} performing the operation y ← Ax.
In this example, the sparse matrix is input by point (rather than block) entries.

A separate implementation report [13] describes the details of a reference
implementation of the Sparse BLAS in Fortran 95.

! Fortran 95 example: sparse matrix-vector multiplication

PROGRAM F95_EX

USE blas_sparse

IMPLICIT NONE

INTEGER, PARAMETER :: nmax = 4, nnz = 6

INTEGER i, n, a, istat

INTEGER, DIMENSION(:), ALLOCATABLE::indx,jndx

DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE:: val, x, y

ALLOCATE(val(nnz),x(nmax),y(nmax),indx(nnz),jndx(nnz))

indx=(/1,2,2,3,4,4/)

jndx=(/1,2,4,3,1,4/)

val=(/1.1,2.2,2.4,3.3,4.1,4.4/)

x=1.0D0

y=0.0D0

n = nmax

!

! ----------------------------------

! Step 1: Create Sparse BLAS Handle

! ----------------------------------

!

! Note that the matrix handle is just the integer variable a

!

CALL duscr_begin(n,n,a,istat)

!

! ----------------------------------
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! Step 2: Insert entries one-by-one

! ----------------------------------

!

DO i=1, nnz

CALL uscr_insert_entry(a, val(i), indx(i), jndx(i), istat)

END DO

!

! -----------------------------------------------

! Step 3: Complete construction of sparse matrix

! -----------------------------------------------

!

CALL uscr_end(a,istat)

!

! ---------------------------------------------

! Step 4: Compute Matrix vector product y = A*x

! ---------------------------------------------

!

CALL usmv(a,x,y,istat)

!

! ------------------------------

! Step 5: Release Matrix Handle

! ------------------------------

!

CALL usds(a,istat)

!

! ------------------------

! Step 6: Output solution

! ------------------------

!

WRITE(6,’(5D16.8)’) y

END

7.2 Interface issues for Fortran 77

Although Fortran 77 is no longer a current standard, Fortran 77 compilers are still
heavily used and there are many Fortran applications that, even if compiled with a
Fortran 95 compiler, use a subset of the language that is very close to Fortran 77.
In addition, we have seen in the C interface to the legacy BLAS (Appendix B of
[1]) that a Fortran 77 library can provide the vast majority of functionality required
by a higher level interface and greatly reduce the overall amount of work required
to develop and support multiple language bindings. For these reasons we provide a
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Fortran 77 interface to the Sparse BLAS.
Naming conventions for the this interface prefix BLAS x to the root name, where

x can be one of (F, D, C, Z) representing real single-precision, real double-precision,
complex single-precision, and complex double-precision, respectively. For example,
the complex single-precision version of a sparse dot product is BLAS CUSDOT. Some
routines for supporting generic handles are not floating-point type specific and
do not require an x specifier in the prefix. The routine for retrieving handle
properties, BLAS USGP, is one such example. (These are clearly listed in the standard
documentation [1].)

Predefined constants for the Sparse BLAS are included in the header file
blas sparse namedconstants.h. These include the sparse matrix properties
constants defined in Tables 5.4 and 5.5.

The following program illustrates the use of Fortran 77 code on the 4× 4 matrix
from Section 5.4. We note that some non-standard features are present in this
example: the use of IMPLICIT NONE, the INCLUDE statement, and long identifiers for
variables and subroutine names. However, these extensions are permitted by all the
Fortran 77 compilers of which we have experience.

C Fortran 77 example: sparse matrix-vector multiplication

PROGRAM F77_EX

IMPLICIT NONE

INCLUDE "blas_namedconstants.h"

INTEGER NMAX, NNZ

PARAMETER (NMAX = 4, NNZ = 6)

INTEGER I, N, ISTAT, A

INTEGER INDX(NNZ), JNDX(NNZ)

DOUBLE PRECISION VAL(NNZ), X(NMAX), Y(NMAX)

C

C -----------------------------------------------

C Define Matrix, LHS and RHS in Coordinate format

C -----------------------------------------------

C

DATA VAL / 1.1, 2.2, 2.4, 3.3, 4.1, 4.4/

DATA INDX / 1, 2, 2, 3, 4, 4/

DATA JNDX / 1, 2, 4, 3, 1, 4/

C

DATA X / 1., 1., 1., 1./

DATA Y / 0., 0., 0., 0./

C

N = NMAX

C

C ----------------------------------
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C Step 1: Create Sparse BLAS Handle

C ----------------------------------

C

CALL BLAS_DUSCR_BEGIN( N, N, A, ISTAT)

C

C ----------------------------------

C Step 2: Insert entries one-by-one

C ----------------------------------

C

DO 10 I=1, NNZ

CALL BLAS_DUSCR_INSERT_ENTRY(A, VAL(I), INDX(I), JNDX(I), ISTAT)

10 CONTINUE

C

C -----------------------------------------------

C Step 3: Complete construction of sparse matrix

C -----------------------------------------------

C

CALL BLAS_USCR_END(A, ISTAT)

C

C ---------------------------------------------

C Step 4: Compute Matrix vector product y = A*x

C ---------------------------------------------

C

CALL BLAS_DUSMV( BLAS_NO_TRANS, 1.0, A, X, 1, Y, 1, ISTAT )

C

C ------------------------------

C Step 5: Release Matrix Handle

C ------------------------------

C

CALL BLAS_USDS(A,ISTAT)

C

C ------------------------

C Step 6: Output solution

C ------------------------

C

WRITE(6,*)(Y(I),I=1,4)

END
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7.3 Interface issues for ANSI C

Predefined constants for the Sparse BLAS are included in the header file
blas enum.h, which is included as part of blas sparse.h. These include the sparse
matrix properties constants defined in Tables 5.4 and 5.5.

In a manner similar to the Fortran 77 interface, the naming conventions in C
prefix BLAS x to the root name, where x can be one of (f, d, c, z) representing
real single-precision, real double-precision, complex single-precision, and complex
double-precision, respectively. Some routines for supporting generic handles are not
floating-point type specific and do not require an x specifier in the prefix, and these
are clearly listed in the standard documentation [1].

Level 2 and Level 3 routines that utilize matrix handles assume an index base of
0, consistent with C conventions for array indexing. This value can be overridden
by specifying blas_one_base at the time of creation of the matrix handle.

C sparse matrix handles are integers, but are typedef to blas_sparse_matrix

for clarity.
The following program illustrates the use of C code on the 4 × 4 matrix from

Section 5.4.

/* C example: sparse matrix/vector multiplication */

#include "blas_sparse.h"

int main()

{

const int n = 4;

const int nz = 6;

double val[] = { 1.1, 2.2, 2.4, 3.3, 4.1, 4.4 };

int indx[] = { 0, 1, 1, 2, 3, 3};

int jndx[] = { 0, 1, 4, 2, 0, 3};

double x[] = { 1.0, 1.0, 1.0, 1.0 };

double y[] = { 0.0, 0.0, 0.0, 0.0 };

blas_sparse_matrix A;

double alpha = 1.0;

int i;

/*------------------------------------*/

/* Step 1: Create Sparse BLAS Handle */

/*------------------------------------*/

A = BLAS_duscr_begin( n, n );
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/*------------------------------------*/

/* Step 2: insert entries one-by-one */

/*------------------------------------*/

for (i=0; i< nz; i++)

{

BLAS_duscr_insert_entry(A, val[i], indx[i], jndx[i]);

}

/*-------------------------------------------------*/

/* Step 3: Complete construction of sparse matrix */

/*-------------------------------------------------*/

BLAS_uscr_end(A);

/*------------------------------------------------*/

/* Step 4: Compute Matrix vector product y = A*x */

/*------------------------------------------------*/

BLAS_dusmv( blas_no_trans, alpha, A, x, 1, y, 1 );

/*---------------------------------*/

/* Step 5: Release Matrix Handle */

/*---------------------------------*/

BLAS_usds(A);

/*---------------------------*/

/* Step 6: Output Solution */

/*---------------------------*/

for (i=0; i<n; i++) printf("%12.4g ",y[i]);

printf("\n");

return 0;

}
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8 Conclusions

The Sparse BLAS specification allows for portable, high-performance sparse matrix
- vector kernels that can be application or hardware specific. By not specifying
the internal format of the sparse matrices, library developers and application
programmers are able to avoid the complicated issues of sparse matrix data
structures. In addition, this enables the implementor of a Sparse BLAS library
to choose whatever data structure is appropriate for efficient implementation for the
target application and machine.

This is managed through the use of a handle to the matrix rather than specifying
the specific components of the underlying data structure. We have described this
handle interface in some detail and given examples of how it can be used in practice.

Like the previous BLAS specifications, we hope that this initiative promotes the
exchange of portable numerical codes, while permitting programmers, commercial
library developers, and computer vendors to design optimized and efficient code.
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Appendix

In this appendix we present codes in Fortran 77, C, and Fortran 95 that implement
the example on the use of the Power method described in Section 5.4. All codes
have been compiled and executed. The dominant eigenvalue is 4.4.

------------------- File: power_method_driver.f --------------------------

C Fortran 77 example: Build sparse matrix and call power method

PROGRAM MAIN

IMPLICIT NONE

C Header file of prototypes and named constants

INCLUDE "blas_namedconstants.h"

INTEGER NMAX, NNZ

PARAMETER (NMAX = 4, NNZ = 6)

INTEGER I, N, ISTAT

INTEGER INDX(NNZ), JNDX(NNZ)

DOUBLE PRECISION VAL(NNZ), X(NMAX), Y(NMAX)

INTEGER A

INTEGER NITERS

DOUBLE PRECISION Q(NMAX), WORK(NMAX), LAMBDA

C

C -----------------------------------------------

C Define Matrix, LHS and RHS in Coordinate format

C -----------------------------------------------

C

DATA VAL / 1.1D0, 2.2D0, 2.4D0, 3.3D0, 4.1D0, 4.4D0/

DATA INDX / 1, 2, 2, 3, 4, 4/

DATA JNDX / 1, 2, 4, 3, 1, 4/

C

C

N = NMAX

C

C ----------------------------------

C Step 1: Create Sparse BLAS Handle

C ----------------------------------

C

CALL BLAS_DUSCR_BEGIN( N, N, A, ISTAT)

C
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C -----------------------------------

C Step 2: Insert entries all at once

C -----------------------------------

C

CALL BLAS_DUSCR_INSERT_ENTRIES(A, NNZ, VAL, INDX, JNDX, ISTAT)

C

C -----------------------------------------------

C Step 3: Complete construction of sparse matrix

C -----------------------------------------------

C

CALL BLAS_USCR_END(A, ISTAT)

C

C -----------------------------------------------

C Step 4: Call Power Method Routine

C -----------------------------------------------

C

C Q - eigenvector approximation.

C LAMBDA - eigenvalue approximation.

NITERS = 100

CALL POWER_METHOD(A, Q, LAMBDA, NITERS, WORK, ISTAT)

IF (ISTAT.NE.0) PRINT*,’Error in POWER_METHOD = ’,ISTAT

PRINT*,’Number of iterations = ’,NITERS

PRINT*,’Approximate dominant eigenvalue = ’, LAMBDA

C

C -----------------------------------------------

C Step 5: Release Matrix Handle

C -----------------------------------------------

C

CALL BLAS_USDS(A);

END

------------------- File: power_method.f ---------------------------------

C Apply power method to given matrix.
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SUBROUTINE POWER_METHOD(A, Q, LAMBDA, NITERS, Z, ISTAT)

IMPLICIT NONE

INCLUDE "blas_namedconstants.h"

INTEGER N

INTEGER A

DOUBLE PRECISION Q(*)

DOUBLE PRECISION LAMBDA

INTEGER NITERS

DOUBLE PRECISION Z(*), NORMZ

INTEGER ISTAT

INTEGER I, ITER

INTEGER BLAS_USGP

EXTERNAL BLAS_USGP

C Get row dimension of A (assume square)

N = BLAS_USGP(A, BLAS_NUM_ROWS)

C Fill Z.

C Note: We should fill Z with random numbers, but no standard

C random function is available for Fortran 77.

DO 10 I = 1, N

Z(I) = I

10 CONTINUE

DO 20 ITER = 1, NITERS

C Compute 2-norm of Z

CALL BLAS_DNORM(BLAS_TWO_NORM, N, Z, 1, NORMZ)

C Copy Z to Q

CALL BLAS_DCOPY(N, Z, 1, Q, 1)

C Normalize Q

CALL BLAS_DRSCALE(N, NORMZ, Q, 1)

C Compute new Z

CALL BLAS_DUSMV(BLAS_NO_TRANS, 1.0, A, Q, 1, Z, 1, ISTAT)

C Test error flag

IF (ISTAT.NE.0) RETURN

C New LAMBDA

CALL BLAS_DDOT(BLAS_NO_CONJ, N, 1.0, Q, 1, 0.0, Z, 1, LAMBDA)

20 CONTINUE

RETURN

END
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------------------- File: power_method_driver.c --------------------------

/* C example: Build sparse matrix and call power method */

#include "blas_sparse.h" /* Header file of prototypes and named constants */

int main()

{

const int N = 4;

const int nnz = 6;

double val[] = { 1.1, 2.2, 2.4, 3.3, 4.1, 4.4 };

int indx[] = { 0, 1, 1, 2, 3, 3};

int jndx[] = { 0, 1, 4, 2, 0, 3};

blas_sparse_matrix A;

int istat = 0;

int niters;

double * q, lambda;

/*------------------------------------*/

/* Step 1: Create Sparse BLAS Handle */

/*------------------------------------*/

A = BLAS_duscr_begin( N, N );

/*------------------------------------*/

/* Step 2: insert entries one-by-one */

/*------------------------------------*/

BLAS_duscr_insert_entries(A, nnz, val, indx, jndx);

/*-------------------------------------------------*/

/* Step 3: Complete construction of sparse matrix */

/*-------------------------------------------------*/

BLAS_uscr_end(A);

/*------------------------------------------------*/

/* Step 4: Call Power Method Routine */
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/*------------------------------------------------*/

/*.

q - eigenvector approximation (allocated by power_method).

lambda - eigenvalue approximation.

*/

niters = 100;

istat = power_method( A, q, &lambda, niters);

printf("Approximate dominant eigenvalue after %d iterations = %10.4g\n",

niters, lambda);

/*----------------------------------------------*/

/* Step 5: Release Matrix Handle, Eigenvector */

/*----------------------------------------------*/

free ((void *) q);

BLAS_usds(A);

return istat;

}

------------------- File: power_method.c ---------------------------------

/* Apply power method to given matrix. */

#include <stdlib.h> /* Needed for malloc */

#include "blas_sparse.h"/* Header file of prototypes and named constants */

#include "blas_dense.h"/* Header file of prototypes and named constants */

int power_method(blas_sparse_matrix A, double * q, double * lambda, int niters)

{

int istat = 0;

int i, n, iter;

double * z, normz;

n = BLAS_usgp(A, blas_num_rows); /* Get row dimension of A (assume square) */

q = (double *) malloc(sizeof(double)*n); /* Allocate eigenvector, work vectors */

z = (double *) malloc(sizeof(double)*n);

/* Fill z with random numbers using rand() function */
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for (i=0; i < n; i++) z[i] = ((double) rand())/ ((double) RAND_MAX);

for (iter = 0; iter < niters; iter++)

{

BLAS_dnorm(blas_two_norm, n, z, 1, &normz); /* Compute 2-norm of z */

BLAS_dcopy(n, z, 1, q, 1); /* Copy z to q */

BLAS_drscale(n, normz, q, 1); /* Normalize q */

istat = BLAS_dusmv( blas_no_trans, 1.0, A, q, 1, z, 1 ); /* Compute new z */

if (istat!=0) return(istat); /* Test error flag */

BLAS_ddot(blas_no_conj, n, 1.0, q, 1, 0.0, z, 1, lambda); /* new lambda */

}

free((void *) z); /* release work vector */

return istat;

}

------------------- File: power_method_driver.f95 --------------------------

! Fortran 95 example: Build sparse matrix and call power method

PROGRAM MAIN

! Header file of prototypes and named constants

USE blas_sparse

INTEGER, PARAMETER :: nmax = 4, nnz = 6

INTEGER i, n, istat

INTEGER, DIMENSION(:), ALLOCATABLE :: indx,jndx

DOUBLE PRECISION, DIMENSION(:), ALLOCATABLE :: val,q,work

INTEGER a,niters

DOUBLE PRECISION lambda

ALLOCATE (val(nnz),indx(nnz),jndx(nnz))

ALLOCATE (q(nmax),work(nmax))

!

! -----------------------------------

! Define matrix, in coordinate format

! -----------------------------------

!

val = (/ 1.10D0, 2.20D0, 2.40D0, 3.30D0, 4.10D0, 4.40D0/)

indx = (/ 1, 2, 2, 3, 4, 4/)
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jndx = (/ 1, 2, 4, 3, 1, 4/)

!

!

n = nmax

!

! ----------------------------------

! Step 1: Create Sparse BLAS handle

! ----------------------------------

!

CALL duscr_begin( n, n, a, istat)

!

! -----------------------------------

! Step 2: Insert entries all at once

! -----------------------------------

!

CALL uscr_insert_entries(a, val, indx, jndx, istat)

!

! -----------------------------------------------

! Step 3: Complete construction of sparse matrix

! -----------------------------------------------

!

CALL uscr_end(a, istat)

!

! -----------------------------------------------

! Step 4: Call Power Method Routine

! -----------------------------------------------

!

! q - eigenvector approximation.

! lambda - eigenvalue approximation.

niters = 100

CALL POWER_METHOD(a, q, lambda, n, niters, work, istat)

IF (istat.NE.0) THEN

WRITE(*,*) ’Error in POWER_METHOD = ’,istat

ELSE

WRITE(*,*) ’Number of iterations = ’,niters

WRITE(*,*) ’Approximate dominant eigenvalue = ’, lambda

ENDIF
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!

! -----------------------------------------------

! Step 5: Release Matrix Handle

! -----------------------------------------------

!

CALL usds(a,istat)

END PROGRAM MAIN

------------------- File: power_method.f95 ---------------------------------

! Apply power method to given matrix.

SUBROUTINE POWER_METHOD(a, q, lambda, n, niters, z, istat)

USE blas_sparse

INTEGER, INTENT(IN) :: a,n,niters

DOUBLE PRECISION, DIMENSION(:), INTENT(OUT) :: q(n),z(n)

DOUBLE PRECISION, INTENT(OUT) :: lambda

INTEGER, INTENT(OUT) :: istat

INTEGER i, iter

DOUBLE PRECISION normz, dnrm2

REAL y

EXTERNAL dnrm2

INTRINSIC RANDOM_NUMBER,DOT_PRODUCT

! Fill Z with random numbers

DO I = 1, n

CALL RANDOM_NUMBER(HARVEST=y)

z(I) = DBLE(y)

END DO

DO iter = 1, niters

! Compute 2-norm of z

normz = DNRM2(n, z, 1)

! Normalize z

CALL DSCAL(n, 1.0D0/normz, z, 1)

! Copy Z to Q

q = z

! Set z to 0

30



z = 0.0D0

! Compute new z

CALL usmv(a, q, z, istat)

! Test error flag

IF (istat.NE.0) RETURN

! New LAMBDA

LAMBDA = DOT_PRODUCT(q,z)

END DO

RETURN

END
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