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On the round-off error analysis of the Gram-Schmidt algorithm with
reorthogonalization

Abstract. In this paper we analyse the numerical behavior of the Gram-Schmidt orthogonalization process with re-
orthogonalization. Assuming numerical nonsingularity of the matrix we prove that two steps of iterative Gram-Schmidt
process are enough for preserving the orthogonality of computed vectors close to the machine precision level. We give
a rounding error analysis of classical reorthogonalization and modified Gram-Schmidt algorithm with (exactly one)
reorthogonalization and relate our results to the approach used in the Kahan-Parlett “twice is enough” algorithm as well
as to results shown by Abdelmalek, Daniel et al, Hoffmann and others.

1. Introduction

Let A = (a1, . . . ,an) be a real m×n matrix (m ≥ n) with full column rank (rank(A) = n). In many applica-
tions it is important to compute an orthogonal basis Q = (q1, . . . ,qn) of span(A) such that A = QR, where R
is upper triangular matrix of order n. For this purpose, many orthogonalization algorithms and techniques
have been proposed and are widely used, including those based on Householder transformations or Givens
rotations (see e.g. [3,11,13,23]). In this paper we focus on the Gram-Schmidt (GS) orthogonalization pro-
cedure [22] which also produces a QR factorization of the matrix A. Several computation variants of the
Gram-Schmidt algorithm exist - each formulation leading to a different numerical behavior of the associated
scheme.

One of the first methods for successive orthogonalization of the columns of A is the classical Gram-
Schmidt algorithm (CGS) [3]. It is well known, and confirmed by extensive numerical experiments, that
this technique may produce a set of vectors which is far from orthogonal and sometimes the orthogonality
can be completely lost [2,18]. Rearrangement of the CGS scheme leads to the modified Gram-Schmidt
algorithm (MGS) (see e.g. [3,23]) with much better numerical properties [18,24]. Björck [2] showed that for
a numerically nonsingular matrix A the loss of orthogonality in MGS occurs in a predictable way and it can
be bounded by a term proportional to the condition number κ(A) times the machine precision ε. Therefore,
the loss of orthogonality of computed vectors is close to machine precision level only for well-conditioned
matrices, while for ill-conditioned matrices it can be much larger. The results on MGS were reinforced
and extended by Paige and Björck [4] who showed that despite the loss of orthogonality in Q the computed
upper triangular factor R in MGS is numerically as good as the computed R from the Householder or Givens
QR factorization [3,13]. This result also indicates that the possible loss of orthogonality in Q does not
necessarily imply that the orthogonalization techniques like Householder or Givens QR orthogonalization,
which deliver almost orthogonal set of vectors are superior to MGS when applied for some problems.
E.g. it was shown by Björck (see e.g. [3,13]) that the MGS method can be used to solve least squares
problems and that the algorithm is backward-stable. Another example of this type is the GMRES method
when used together with the MGS Arnoldi implementation. Surprisingly, it was shown in [12] that the
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linear independence of the computed (Arnoldi) basis vectors, not their orthogonality, is important for the
convergence of GMRES and that the MGS GMRES performs as well as GMRES with the Householder
implementation of the Arnoldi process [12]. On the other hand, in some other applications it is important
to produce vectors Q so that their orthogonality is kept close to the machine precision. An example of such
problem can be the eigenvalue problem solved by the Arnoldi method, where the orthogonality is essential
to get an accurate projection onto the space spanned by the computed vectors [21].

The problem of computing Q accurately is sometimes called as the orthogonal basis problem [3]. Then
it is necessary to iterate GS process twice or several times. Depending on the number of iteration steps,
the name of the resulting scheme changes. GS with reorthogonalization (GS2) is used for the two-step
algorithms (i.e. the algorithms where the orthogonalization of a current vector against previously computed
set is performed exactly twice), while the algorithms with more steps are called iterative GS (GSI). First
experiments with iterative versions of GS were performed by Rice [18] who, in order to get sufficiently
orthogonal vectors, reports experiments from 3 up-to 6 iteration steps for CGSI, while he needed just 2
iterations for MGSI when applied on rank-deficient problems. A first rounding error analysis for the CGS2
algorithm was given by Abdelmalek [1] who considered exactly two iteration steps. For showing that the
scheme produces sufficiently orthogonal set of vectors he needed an assumption on diagonal elements of
the computed upper triangular factors at each orthogonalization step.

In some other algorithms, one can find a selective reorthogonalization criterion. The reorthogonal-
ization is not systematic, the decision whether to reorthogonalize or not is made upon a criterion which
describes the quality of the computed basis. In these algorithms, the maximal number of loops can also be
fixed to 2, 3 or either ∞; ∞ means that GS is iterated until the criterion is satisfied. This suggests that the
criterion has to be reliable, a bad criterion could be satisfied in a case where reorthogonalization might be
necessary. The most commonly used criterion for checking the “a priori” quality of the computed basis is
certainly the one introduced by Rutishauser [20]. This criterion is dependent of a single parameter σ. We
call the resulting algorithms CGSI(σ) or MGSI(σ) and we only focus here on such selective reorthogo-
nalization algorithms. Rutishauser [20] showed an example of two vectors where one reorthogonalization
step was enough for full orthogonality and recommended some choices of the parameter σ. Daniel, Gragg,
Kaufman and Stewart [6] presented a rounding error analysis of the CGSI(σ) algorithm essentially showing
that under certain technical assumptions either the iterative algorithm converges (theoretically in an infinite
number of steps but in practice rapidly) to a sufficient level of orthogonality or the termination criterion
they use may continually fail to be satisfied. The latter essentially implies the case of rank-deficient (sin-
gular) problem. Daniel et al. also illustrated experimentally on rank-deficient problems that the iterative
Gram-Schmidt algorithm may need more than two iteration steps when the condition number of the ma-
trix A exceeds 1/ε. Theoretical analysis of the situation with two vectors, attributed to Kahan, was given
by Parlett in his book [16]. He analysed the so called “twice is enough” algorithm. Parlett showed for the
case of two vectors that two steps are enough for obtaining the orthogonality level prescribed by σ (Cf.
Section 2). CGSI(σ) and MGSI(σ) algorithms were further thoroughly analysed by Hoffmann [14] who,
taking into account experimental results, conjectured a bound on the orthogonality of the computed vectors
by CGSI(σ) in terms of the parameter σ chosen in the criterion (as Kahan and Parlett for 2 vectors). From
his extensive experiments he concluded that a third iteration never occurred for both CGSI(σ) and MGSI(σ)
algorithms but theoretical proof of this fact remained still an open question. We note that the problems he
used in experiments were all (numerically) nonsingular.

A slightly different variant of MGS2 has recently been analysed in [10]. This variant (called as TMGS)
corresponds to the MGS2 scheme with the exception in the opposite order of two loops. In MGS2, for each
vector, we orthogonalize this vector against the previous set of vectors then immediately reorthogonalize
the obtained vector against the (same) previous set of vectors. In TMGS, we orthogonalize all the vectors
with MGS then reorthogonalize the obtained set a second time with MGS. Using the results of Björck [2] it
was shown in [10] that for numerically nonsingular matrices the second application of the MGS orthogonal-
ization scheme onto resulting set of vectors in the first application of MGS leads to very accurate orthogonal
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basis. When the matrix A is not known in advance (e.g. in the context of Krylov subspace methods), restart-
ing the MGS algorithm from the “scratch” requires to keep all vectors computed in both two loops. This is
not the case with GS2. As a consequence, we see that the memory cost of TMGS is around twice as much
as the memory cost of GS2. This is one of the reason to prefer GS2.

Similarly to Rice [18] or Abdelmalek [1], in this paper we analyse the GS2 algorithm, where each
orthogonalization step is performed exactly twice. The orthogonal matrix Q is constructed successively
column-by-columnso that for each j = 1, . . . ,n we have Q j = (q1, . . .q j) and span(q1, . . . ,q j) = span(a1, . . . ,
a j). For the description we use the following notation. We start with the matrix A j = (a1, . . . ,a j) and for

i = 1,2 we generate successively the vectors A(i)
j = (a(i)

1 , . . . ,a(i)
j ) such that

a(1)
j = (I −Q j−1QT

j−1)a j, (1.1)

a(2)
j = (I−Q j−1QT

j−1)a
(1)
j . (1.2)

The new vector q j is then just a result of normalization of the vector a(2)
j and it is given as q j = a(2)

j /‖a(2)
j ‖. If

the elements of the triangular factor R j = (r1, . . . ,r j) are wanted too, then for each j = 1, . . . ,n we start with

the initial column r(1)
j = QT

j−1a j and by using r(2)
j = r(1)

j +QT
j−1a(1)

j we end up with r j = ((r(2)
j )T ,‖a(2)

j ‖)T .
The organization of the paper is as follows. In Section 2 we recall Kahan’s analysis for two vectors

and discuss the relation of the behavior of the “twice is enough” algorithm to the linear independence of
the initial vectors. In particular we show that the Case III in the algorithm corresponds to the rank-deficient
problem. Section 3 is devoted to our main result on the CGS2 method. Assuming numerically nonsingular
matrix A we show that two iterations are enough to achieve the orthogonality of computed vectors on the
level of small multiple of the machine precision. The main key here is to show that the norm of the vector
resulting from the first projection step (1.1) cannot be infinitely small, indeed it is linked to the minimal
singular value of the matrix A. Based on this observation and using the results of Hoffmann [14] we conclude
our analysis with the bound on the loss of orthogonality for the computed vectors. The implications of
the main result and related questions are discussed in Section 4. We discuss several issues, including the
difference between the CGS and the MGS variants, the applicability of our analysis and its relation to other
works and approaches.

Throughout the paper, ‖X‖ denotes the 2-norm, σmin(X) the minimal singular value and ‖X‖F the
Frobenius norm of the matrix X ; ‖x‖ denotes the Euclidean norm of a vector x. The condition number
of X is denoted by κ(X). For distinction, we denote quantities computed in finite precision arithmetic
using an upper-bar. We assume that usual rules of a well designed floating-point arithmetic hold, and use
the notation f l(·) for the computed result of some expression. As it was already mentioned before, the
machine precision is denoted by ε. Constant factors ξ j, j = 1,2, . . . are introduced in several places. They
are constants, independent of the problem parameters like m, n or κ(A) and the machine precision ε, but
they do depend on the details of computer arithmetic.

2. Twice-is-enough algorithm of Kahan and Parlett

A complete analysis of the situation with two vectors was given by Parlett [16, pp. 105-109] who described
the “twice is enough” algorithm and presented the analysis due to W. Kahan. Their algorithm is not GS2,
there is a selective reorthogonalization criterion. This point does not represent any difficulty and the results
of Kahan and Parlett can be translated also for the case of GS2 with two vectors.

We consider two given vectors a1 and a2, where the second vector a2 is orthogonalize against the
normalized first vector q1 = a1/‖a1‖ in two steps

a(1)
2 = (I −q1qT

1 )a2, (2.1)

a(2)
2 = (I −q1qT

1 )a(1)
2 . (2.2)
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The result of (2.2) is then normalized as q2 = a(2)
2 /‖a(2)

2 ‖. It is clear that in exact arithmetic it follows that

a(2)
2 = a(1)

2 . However, in finite precision arithmetic, one computes only approximations to (2.1) and (2.2),

which we denote as ā(1)
2 = f l((I −q1qT

1 )a2) and ā(2)
2 = f l((I −q1qT

1 ) ā(1)
2 ) and which satisfy

ā(1)
2 = (I−q1qT

1 )a2 +η(1)
2 , ‖η(1)

2 ‖ ≤ φ(m,n)ε‖a2‖ (2.3)

ā(2)
2 = (I−q1qT

1 ) ā(1)
2 +η(2)

2 , ‖η(2)
2 ‖ ≤ φ(m,n)ε‖ ā(1)

2 ‖, (2.4)

where φ(m,n) is a low degree polynomial in m and n. This polynomial is universally used throughout paper
and it is specified in Section 3. Of course, in this Section, we have n = 2. Furthermore, the normalization of
vectors is not performed exactly in finite precision arithmetic. Since these errors do not bring any additional
problems in our analysis, so throughout this paper, for the sake of simplicity and brevity, we assume that all

vectors are exactly normalized and we do not distinguish between vectors f l( ā(2)
j /‖ ā(2)

j ‖) and ā(2)
j /‖ ā(2)

j ‖
and everywhere we use the notation q j = ā(2)

j /‖ ā(2)
j ‖ for j = 1, . . . ,n.

The “twice is enough” algorithm due to Kahan and Parlett can be summarized as follows:
“twice is enough” algorithm of Kahan and Parlett:
q1 = a1/‖a1‖
ā(1)
2 = f l(a2 − (a2,q1)q1)

if ‖a2‖
‖ā

(1)
2 ‖

≤ σ then

Case I: q2 = ā(1)
2 /‖ ā(1)

2 ‖
else

ā(2)
2 = f l( ā(1)

2 − ( ā(1)
2 ,q1)q1)

if
‖ā

(1)
2 ‖

‖ā
(2)
2 ‖

≤ σ then

Case II: q2 = ā(2)
2 /‖ ā(2)

2 ‖
else

Case III: ā(3)
2 = 0 and q2 = 0

end if
end if

The parameter σ is a fixed real number chosen in the interval 1/(0.83−ε)≤ σ≤ 0.83/ε which describes the
criterion on reorthogonalization. On the one hand, it is clear that larger σ implies that reorthogonalization
will be rarer. On the other hand, it was shown in [16] that it determines the quality of orthogonality of
computed vectors. Indeed, the vector q2 computed by the “twice is enough” algorithm satisfies the relation

|qT
1 q2| ≤ σφ(m,n)ε. (2.5)

The bound on orthogonality is thus for larger values of σ less good. We note that the bound (2.5) is valid
for all three Cases (Case I-III) of the algorithm. For Case II, the equation (2.5) can be easily transferred
to GS2, since the scheme is numerically equivalent to (2.3) - (2.4). In GS2, there is no criterion. The
result (2.5) holds for all σ; the best value to choose σ is certainly the smallest one, therefore we can take
σ = 1/(0.83− ε).

Moreover, Kahan and Parlett have shown that for all three cases we have

ā(i)2 = (I −q1qT
1 )a2 +δ(i)

2 , ‖δ(i)
2 ‖ ≤ (1+1/σ)φ(m,n)ε‖a2‖, i = 1,2,3. (2.6)

We conclude that if Case III happens in “twice is enough” algorithm, ā(3)
2 = 0 implies δ(3)

2 = −a2 +
(aT

1 a2)/(aT
1 a1)a1 and therefore

σmin(A) ≤
∥

∥

∥

∥

∥

(a1 a2 )

(

(aT
1 a2)

(aT
1 a1)

−1

)
∥

∥

∥

∥

∥

≤ ‖δ(3)
2 ‖ ≤ (1+1/σ)φ(m,n)ε‖a2‖. (2.7)
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Since ‖a2‖ ≤ ‖A‖ and 1/σ ≤ 0.83− ε it is clear that 1.83φ(m,n)εκ(A)≥ 1. This inequality clearly implies
that the Case III occurs only in the numerically rank deficient case, when the vectors a1 and a2 are (almost)
linearly dependent. In other words, if we assume

φ(m,n)εκ(A) < 1

then Case III never happens and Kahan and Parlett’s results can be interpreted as

‖I−QT Q‖ ≤ σφ(m,n)ε. (2.8)

In our paper we generalize this result for n column vectors of the matrix A. We will show that under
assumption of numerical nonsingularity of the matrix A = (a1, . . . ,an) which can be written in the form

ζ(m,n)εκ(A) < 1, (2.9)

the orthogonality of vectors Q = (q1, . . . ,qn) computed by the CGS2 algorithm can be bounded as

‖I−QT Q‖ ≤ α(m,n)ε, (2.10)

where ζ(m,n) and α(m,n) are some sufficiently chosen low degree polynomials in m and n. Indeed we
show that two iterations steps are enough for ensuring the orthogonality on the level of a small multiple of
machine precision, when we apply the CGS (or MGS) process on a set of numerically nonsingular vectors.

3. Numerical nonsingularity and orthogonality of computed vectors

We first recall well known results obtained by Daniel et al. [6] (see also [3]) who analysed the elementary

projections (1.1) and (1.2) and gave the formulae for the computed projections ā(1)
j and ā(2)

j in the form

ā(1)
j = (I −Q j−1QT

j−1)a j +η(1)
j , ‖η(1)

j ‖ ≤ φ(m,n)ε‖a j‖, (3.1)

ā(2)
j = (I −Q j−1QT

j−1) ā(1)
j +η(2)

j , ‖η(2)
j ‖ ≤ φ(m,n)ε‖ ā(1)

j ‖, (3.2)

where φ(m,n) = ξ1mn. We point out that the bounds (3.1) and (3.2) could be refined for every j in terms of
polynomials in m and j ( j ≤ n ≤ m) but like for the case of two vectors (see Section 2) we use for all local
errors a general bound with polynomial φ(m,n) only in terms of m and n.

In the following we will use an incremental approach similar to the approach used by Hoffmann [14].
We assume that at step j−1

‖I−QT
j−1Q j−1‖ ≤ α j−1(m,n)ε, (3.3)

with
α j−1(m,n) =

√

2( j−1)ω(m,n) and ω(m,n) = 2
√

nφ(m,n). (3.4)

Our goal is to show that the vector q j = ā(2)
j /‖ ā(2)

j ‖ computed at the j-th step of the CGS2 algorithm
satisfies the bound

‖QT
j−1q j‖ ≤ ω(m,n)ε. (3.5)

The idea is that if (3.5) is verified then we can apply Theorem 3 of Hoffmann [14, p. 343] showing that the
loss of orthogonality of vectors Q j can be at the step j bounded as

‖I−QT
j Q j‖ ≤ 1

2

(

α j−1(m,n)+
√

α j−1(m,n)2 +4ω(m,n)2

)

ε

≤
√

2 jω(m,n)ε = α j(m,n)ε, (3.6)
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which proves the induction statement at step j.
First of all, it is easy to see that for j = 1 the statement of (3.6) holds with α0(m,n) = 0. The proof

is divided into two parts: in the first part we analyse the orthogonality of the vector ā(1)
j with respect to

the column space of the matrix Q j−1 and give a bound for ω(1)
j =

‖QT
j−1ā

(1)
j ‖

‖ā
(1)
j ‖

. Based on that we give in

the second part of the proof a bound for the quotient ω(2)
j =

‖QT
j−1ā

(2)
j ‖

‖ā
(2)
j ‖

. In our analysis we will make sure

that ‖ ā(1)
j ‖ 6= 0 and ‖ ā(2)

j ‖ 6= 0 for every step j = 1, . . . ,n. Important role in the analysis will be played by

the factors σ(1)
j =

‖a j‖
‖ā

(1)
j ‖

and σ(2)
j =

‖a
(1)
j ‖

‖ā
(2)
j ‖

which appear also in the “twice is enough” algorithm of Kahan

and Parlett where their magnitude determines decision on further reorthogonalization. Here we show that,

assuming numerical nonsingularity of initial column vectors in the form (2.9), the factor σ(1)
j cannot be

infinitely large and using this fact we prove that σ(2)
j must be necessarily very close to 1. This is the main

reason why two iterations of the CGS process are enough for preserving the orthogonality of computed
vectors on the level close to the machine precision.

Multiplication of the expression (3.1) from left by QT
j−1 leads to the identity

QT
j−1 ā(1)

j = (I−QT
j−1Q j−1)Q

T
j−1a j +QT

j−1η(1)
j .

Dividing its norm by the norm of the computed vector ā(1)
j we obtain the inequality

‖QT
j−1 ā(1)

j ‖
‖ ā(1)

j ‖
≤ ‖I−QT

j−1Q j−1‖
‖QT

j−1a j‖
‖ ā(1)

j ‖
+

‖QT
j−1η(1)

j ‖
‖a j‖

‖a j‖
‖ ā(1)

j ‖
.

The quotient ω(1)
j can be then bounded as

ω(1)
j ≤



‖I−QT
j−1Q j−1‖+

‖η(1)
j ‖

‖a j‖



‖Q j−1‖σ(1)
j . (3.7)

Since the columns of the matrix Q j−1 are exactly normalized its norm can be bounded by ‖Q j−1‖≤
√

j−1
for every j = 1, . . . ,n. Therefore for the term ‖Q j−1‖, wherever it appears, we will use the bound

√
n.

Considering the induction assumption (3.3) and the bound (3.1), the inequality (3.7) can be using the fact
that φ(m,n) ≤ ω(m,n) further rewritten as

ω(1)
j ≤

[

√

2( j−1)ω(m,n)+φ(m,n)
]√

nεσ(1)
j ≤ 2nω(m,n)εσ(1)

j . (3.8)

The inequality (3.8) is easy to interpret. It is well known and described in many papers that if σ(1)
j is large

then we can observe a severe loss of orthogonality after first orthogonalization step (1.1) in the algorithm.
As it was already pointed out in previous Section, its actual value forms a criterion for further reorthogonal-
ization in several algorithms. Our approach is different. Instead of using a criterion on reorthogonalization
and an uncertain number of iterations we perform exactly two iterations, give an explicit upper bound for

the factor σ(1)
j and use this bound for showing that the second iteration step is already enough for preserving

the orthogonality on the level close to machine precision.
From the rounding error analysis of the CGS process (see e.g. Daniel et al. [6]) it follows that the

vectors Q j−1, the upper triangular matrix R̄ j−1 and the vector ā(1)
j computed after j steps of the CGS2
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algorithm satisfy

A j−1 +E j−1 = Q j−1R̄ j−1, ‖E j−1‖F ≤ ψ(m,n)ε‖A j−1‖F , (3.9)

a j +δ(1)
j − ā(1)

j = Q j−1 r̄(1)
j , ‖δ(1)

j ‖ ≤ ψ(m,n)ε‖a j‖, (3.10)

where ψ(m,n) = ξ2n
3
2 . Summarizing (3.9) and (3.10) we can write these relations in a matrix form and

obtain the formula
A j +∆ j = Q j−1R̄ j−1, j, (3.11)

where R̄ j−1, j is a ( j−1)× j matrix with [R̄ j−1, r̄(1)
j ] and the perturbation matrix is defined as ∆ j = [E j−1,δ

(1)
j −

ā(1)
j ]. We remark that the matrix Q j−1R̄ j−1, j is ( j−1)-rank matrix. Therefore the matrix A j +∆ j is singular,

whereas we have assumed that the matrix A j is (numerically) nonsingular. The distance to singularity for a
matrix A j can be related to its minimal singular value. Theorem on relative distance to singularity can be
found in many books (e.g. [13, p. 123] or [11, p. 73]). Although the textbooks usually assume the case of
square matrix, the statement is valid also for rectangular matrices. Indeed, in our case the minimal singular
value of A j can be then bounded by the norm of the perturbation matrix ∆ j that is to say σmin(A j) ≤ ‖∆ j‖
and so using the bounds (3.9) and (3.10) on norms of the matrix E j−1 and the vector δ(1)

j we can write

σmin(A j) ≤ ‖∆ j‖ ≤
√

‖E j−1‖2
F +‖δ(1)

j ‖2 +‖ ā(1)
j ‖2 ≤

√

nψ2(m,n)ε2‖A‖2 +‖ ā(1)
j ‖2.

Since σmin(A) ≤ σmin(A j) and assuming

√
nψ(m,n)εκ(A) < 1, (3.12)

we can give a lower bound for the norm of the vector ā(1)
j as follows

‖ ā(1)
j ‖ ≥ σmin(A)

√

1−nψ2(m,n)ε2κ2(A). (3.13)

The bound (3.13) shows that under assumption on numerical nonsingularity (3.12) the norm ‖ ā(1)
j ‖ cannot

be arbitrarily small and it is essentially bounded by the minimal singular value of A. We note that the

result (3.13) corresponds well to the bound on ‖a(1)
j ‖ in exact arithmetic, ‖a(1)

j ‖ ≥ σmin(A). Trivially, using

‖a j‖ ≤ ‖A‖, the ratio ‖a j‖/‖a(1)
j ‖ can be bounded from above by the condition number of the matrix A,

which is certainly an interesting observation. The desired bound on the factor σ(1)
j can be then obtained

from (3.13) considering that

σ(1)
j =

‖a j‖
‖ ā(1)

j ‖
≤ κ(A)
√

1−nψ2(m,n)ε2κ2(A)
. (3.14)

Consequently, the quotient ω(1)
j which describes orthogonality between the vector ā(1)

j computed in the first
iteration step and the column vectors in Q j−1 can be combining (3.8) and (3.14) bounded by

ω(1)
j ≤ 2nω(m,n)εκ(A)

√

1−nψ2(m,n)ε2κ2(A)
. (3.15)

In the second part of the proof we proceed similarly as in the first part. Using the derived bound (3.15)

we study the orthogonality of the vector ā(2)
j computed in the second iteration step with respect to the
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column vectors Q j−1 and give a bound for the quotient ω(2)
j . From (3.2) it follows that

QT
j−1 ā(2)

j = (I−QT
j−1Q j−1)Q

T
j−1 ā(1)

j +QT
j−1η(2)

j ,

‖QT
j−1 ā(2)

j ‖
‖ ā(2)

j ‖
≤



‖I−QT
j−1Q j−1‖

‖QT
j−1 ā(1)

j ‖
‖ ā(1)

j ‖
+

‖QT
j−1η(2)

j ‖
‖ ā(1)

j ‖





‖ ā(1)
j ‖

‖ ā(2)
j ‖

,

which can be using (3.2) and (3.3) further rewritten to the following simpler form

ω(2)
j ≤



‖I−QT
j−1Q j−1‖ω(1)

j +‖Q j−1‖
‖η(2)

j ‖
‖ ā(1)

j ‖



σ(2)
j ,

ω(2)
j ≤

[√
2nω(m,n)ω(1)

j +
√

nφ(m,n)
]

εσ(2)
j . (3.16)

The factor σ(2)
j =

‖ā
(1)
j ‖

‖ā
(2)
j ‖

can be using the relation for the local error in the second iteration step (3.2) esti-

mated as follows

‖ ā(2)
j ‖

‖ ā(1)
j ‖

≥
‖ ā(1)

j ‖
‖ ā(1)

j ‖
−‖Q j−1‖

‖QT
j−1 ā(1)

j ‖
‖ ā(1)

j ‖
−

‖η(2)
j ‖

‖ ā(1)
j ‖

≥ 1−‖Q j−1‖ω(1)
j −

‖η(2)
j ‖

‖ ā(1)
j ‖

.

Considering the bound for the local error in the second step (3.2), the bound on ω(1)
j from (3.15) and under

assumption
3n3/2ω(m,n)εκ(A)

√

1−nψ2(m,n)ε2κ2(A)
< 1, (3.17)

we obtain the final bound for the factor σ(2)
j as follows

σ(2)
j ≤

[

1− 3n3/2ω(m,n)εκ(A)
√

1−nψ2(m,n)ε2κ2(A)

]−1

. (3.18)

The upper bound (3.18) shows that if we strenghten a bit assumption (3.17), the factor σ(2)
j becomes very

close to 1, which essentially means that ‖ ā(2)
j ‖ is not significantly smaller than ‖ ā(1)

j ‖. Due to (3.16) this im-

plies that there cannot be a severe loss of orthogonality of the vector ā(2)
j with respect to the column vectors

in Q j−1 and thus the second iteration step is already enough for preserving the orthogonality of computed

vectors. We note that in exact arithmetic we have a(2)
j = a(1)

j giving thus ‖a(1)
j ‖/‖a(2)

j ‖ = 1. We also note
here that the approach used in this paper is very similar to the approach used in [1]. The important differ-

ence to results of Abdelmalek is, that his analysis is based on the criterion ( j −2)2‖QT
j−1 ā(1)

j ‖/‖ ā(2)
j ‖ ≤ 1

and this criterion is expected to hold in most practical cases. Indeed, this criterion can be rewritten as

( j−2)2ω(1)
j σ(2)

j ≤ 1 and it is clearly seen from (3.15) and (3.18) that it is met under certain assumption on
numerical nonsingularity of A. Consequently, using (3.8), (3.16) and (3.18) we obtain the final form for the

bound on the quotient ω(2)
j

ω(2)
j ≤

[

2
√

2n3/2ω2(m,n)ε2κ(A)
√

1−nψ2(m,n)ε2κ2(A)
+
√

nφ(m,n)ε

][

1− 3n3/2ω(m,n)εκ(A)
√

1−nψ2(m,n)ε2κ2(A)

]−1

. (3.19)
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Now we must fix a polynomial ζ(m,n) so that the right-hand side of (3.19) can be bounded by ω(m,n)ε in
order to have (3.5). E.g., if we set ζ(m,n) = 25max(

√
nψ(m,n),n2φ(m,n)) and assume

ζ(m,n)εκ(A) < 1, (3.20)

then (3.12) and (3.17) are true and this proves (3.5) which implies (3.6).
If the induction assumption is true at step j−1, under assumption (3.20), the statement is true at step

j. Then it follows for the last step j = n that

‖I−QT Q‖ ≤ 2
√

2nφ(m,n)ε. (3.21)

We note that the form of polynomials ω(m,n) and ζ(m,n) can be optimized with respect to their degree in
n. Indeed, throughout the paper we have used the bounds ‖Q j−1‖ ≤

√
j−1 which can be improved using

the assumption (3.3).

4. Concluding notes and remarks

In this paper we have shown that the orthogonality of vectors Q computed by the CGS2 algorithm is of
order of a small multiple of machine precision. Indeed, we have shown that exactly two iteration-steps are
already enough when full precision is wanted in the orthogonal basis problem and when the algorithm is
applied to (numerically) nonsingular initial set of column vectors. Our results fulfill the theoretical gap in
understanding the GS2 process and extend the results of Kahan and Parlett [16] from 2 to n vectors or the
results of Abdelmalek [1].

We have seen that the computed basis Q and the computed upper triangular factor R̄ satisfy the relation

A+E = QR̄, ‖E‖ ≤
√

nψ(m,n)ε‖A‖. (4.1)

Furthermore, considering our main result (3.21), and using the polar decomposition of the matrix Q (see
e.g. [13, p. 389]) one can show that there exists an exactly orthogonal matrix Q̂ with Q̂T Q̂ = I such that
the computed matrix R̄ is an upper triangular factor in the QR factorization of a perturbed matrix A + Ê
satisfying

A+ Ê = Q̂R̄, ‖Ê‖ ≤ ϕ(m,n)ε‖A‖, (4.2)

where ϕ(m,n) stands for some low degree polynomial in dimensions m and n. Clearly, this result shows that
the CGS2 algorithmn has similar numerical properties as Householder or Givens orthogonalizations [11,
13]. The operation count for the CGS with reorthogonalization (CGS2) algorithm is 2mn2 flops, this is
comparable to the operation count for the Householder orthogonalization process which requires 2(mn2 −
n3/3) flops.

Our results are conformal with the practical use of reorthogonalization criterion in the Kahan-Parlett
and related algorithms, that we have denoted CGSI(σ). All these algorithms use the criterion introduced by

Rutishauser [20]: for a fixed threshold σ, if the criterion σ(1)
j ≤ σ is satisfied after the first orthogonalization

loop, then no reorthogonalization is performed. Many experiments (see e.g. Hoffmann [14]) proved that in
the most practical case this criterion enables to keep the orthogonality while saving useless reorthogonaliza-
tion steps. Experiments of Daniel et al. and others [6,7] who observed more iterations of the GS algorithm
for rank-deficient problems indicate that this criterion is also suitable to ill-conditioned problems. This gives
rise to theoretical question on the quality of the CGSI(σ) algorithm and the validity of this criterion for n > 2
vectors. One answer that we can draw from our paper is that if in the CGSI(σ) algorithm we use σ ≥ κ(A),
then, due to 3.14), no reorthogonalization is performed and the scheme reduces to CGS. In addition, it is

clear that due to (3.18) the criterion σ(2)
j ≤ σ will be satisfied in the second step of CGSI(σ) (if it occurs)

for every σ (sufficiently) larger than 1, this means that, at most, two CGS-loops are performed.
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Another question that is not adressed in this paper is when A is numerically singular, then CGS2 is
clearly unable to perform well. The application of column pivoting in the GS algorithm has been considered
by Golub and Businger (see e.g. [11]) and by Chan [5] (see also Dax [7]) who proposed versions of the GS
algorithm which can handle the rank-deficient problems and estimate the numerical rank of the matrix A.

In our paper we have considered the CGS2 method and not the corresponding MGS2 algorithm which
can be also used to solve the orthogonal basis problem. The same result (3.21) can be shown also for
MGS version of the algorithm. Indeed the results similar to (3.1), (3.2) and (3.9), (3.10) can be shown also
for MGS process and these are the only parts of the proof, which depend on the implementation of the
orthogonalization process.

From a practical point of view it is clear that the CGS2 algorithm is a better candidate than MGS2
algorithm for parallel implementation and this aspect could not be overlooked in certain computing envi-
ronments. We point out once again that the orthogonal basis problem is of the primary interest in this paper.
The situation could be completely different in many applications, where the orthogonality of computed
vectors does not play a crucial role and where the one-step MGS algorithm is a successful and practically
used technique. As examples we have already mentioned the solution of the least squares problems using
MGS [3] or the MGS-GMRES method [12]. However a new trend is emerging nowadays, several experi-
ments are reporting that even if performing twice as many operations as MGS, CGS2 may be faster in some
cases because it takes advantage of BLAS 2 or parallel facilities (e.g. in a GMRES context [8], in a GCR
context [9], in an eigenvalue context [15]). This gives a superiority of CGS2 over MGS even when MGS is
performing well.
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