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1 Intr oduction

Computingis a humanactivity which is muchmoreancientthanany historicalrecord
cantell, astestifiedby stoneor bonetalliesfoundin many prehistoricalsites.It is one
of thefirst skills to betaughtto smallchildren.However, everyonesensesthatthereis
moreto computingthanthemultiplicationtable...

Why do we compute?What doesit meanto compute?To what end? Our techno-
logical societywantsto computemoreandmoreefficiently. Thequestionof “how to
compute”overshadowsthatof “why compute”in high-technologycircles.

And indeedthemeaningof theactof computingseemsto vanish,while we aregradu-
ally surroundedby a digital reality, which tendsto shieldusfrom thenaturalreality. It
is therefore,morethanever, vital thatwe analysecomputationthroughthe two ques-
tions of why, aswell ashow. This canleadthe way towardsa betterunderstanding
of intensive computersimulationsin particular, andof the dynamicsof evolution in
general.
Thesetwo questionsaboutComputationhavemany differentfacetswhichareall inter-
related.We referto themundertheglobalumbrellatermof Qualitati veComputing.

2 Numbers asbuilding blocks for Computation

Natural integerssuchas1� 2� 3������� arerecordedto have emergedin Sumerin the 3rd

Millennium BC, wherescribeswereskilled in basis60. They useda positionalrep-
resentationandhada specialmark for missingdigits. However, neitherthem,nor the
Greeks,whichwerethegreatcomputerscientistsof thetimes,hadtheconceptof zero,
which is todaysoevidentto us.Why?

2.1 Thinking the unthinkable

Becausezerois notmerelyanumberlikeany other. It is, beforeall, a formidablephilo-
sophicalconcept.It takesgreatcourageto poseasan evident truth:”Thereexists the�
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nonexistence,andit is calledZero”. Aristotle took therisk, thenshiedaway from the
logical impossibility. Finally the leapwastakengraduallyby variousIndianthinkers,
from Brahmagupta(600A. D.) who conceivedof zeroto Bhaskara(1100A. D.) who
showedhow to computewith it.

Whenunleashedandtamedby computation,zeroallowed the art of Computing,ini-
tially developedin India, theMiddle EastandCentralAsia, to blossomin theWestern
world. However, Algebra,thenew Arabicartof Computingwasatfirst metwith strong
oppositionfrom theabacistswhichdid notneedzeroto computewith theirabacus.The
new written arithmetic,donewith penandpaper, eventuallywon becauseit waswith-
out rival to balancethecheckbooksof theEuropeanmerchants,while keepingtrackof
all transactions.Onceaccepted,zeroopenedthedoorto thesolutionof equations,not
only linear, but of degree2, 3 and4. Until anew challengewasmet.

2.2 Breaking the rule

If thepracticalnotion of debtandcredit helpedspreadingthe acceptanceof negative
numbers,it wasnot the casewith the new concept

� �
1 createdby Cardanoto rep-

resentoneof the two solutionsof the equationx2 	 1 
 0. Evenwith the computing
rulesenunciatedby Bombelli, thestrange

� �
1 wasmetby extremelystrongopposi-

tion, astestifiedby the adjective impossible or imaginary which wasinvariablyused
to describeit. And theresistancewasjustified:

� �
1 is not a natural,or real,number,

becauseits squareis
�

1. It is not positiveasit shouldto qualify:
� �

1 breakstherule
thatfor any realnumberx �
 0, its squarex2 is positive. And it took another300years
beforecomplex numbersbecamefully accepted.This acceptancewasbroughtabout
in two steps:first Eulerinventedthesymboli, thenseveralscientistsusedtheplaneto
give it a geometricinterpretation.Becausea complex numbera 	 ib is in effect two
dimensional,it has2 realcomponentsa andb on two di f f erent axesperpendicularto
eachother. The first, the real axis, representsthe real numberswith positive square.
And thesecond,the imaginary axis, represents“alien” numbers,the imaginarynum-
berswith negativesquare.Thereforea complex numberis a new kind of number, it is
amix of thetwo typesof numbers,therealandtheimaginarytype,whicharerequired
for thecompletesolutionof equationsencounteredin classicalalgebra.

Theexampleof theintroductionof 0 and
� �

1 showsclearlythelongmaturationpro-
cessrequired,aftertheircreation,for theuseof new conceptswhicheventuallyturnout
to beessentialfor our scientificrepresentationof theworld. But thestoryof Numbers
doesnot stopwith therealisationof thecomplex numbers,if onewantsto go beyond
classicalalgebra.

2.3 Hypercomputing: up the Dickson ladder

To make a long story short, the complex numbersopenthe door to morenew num-
bers,thehypercomplex numberswhich arevectorsof dimension2k, k � 1, on whicha
multiplication canbedefined,in conjunctionto theusualvectoraddition. They form
hypercomplex algebrasin which the multiplication is definedrecursively for k � 1,
from that at the previous level, of dimension2k  1, by the Dicksondoublingprocess.
Two familiesof suchalgebrasareimportantfor applications:

i) the family of real algebrasAk, startingfrom A0 
�� , thefield of realnumbers,
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and

ii) the family of binary algebrasBk, startingfrom B0 
�� 0� 1� , the binary algebra�
2 
 ��� 2� of computationmod2.

The two familieshave, in a sense,complementary, properties.Thereal algebras
expressEuclideangeometry, their multiplicationis not commutative for k � 2 andnot
associative for k � 3. Difficult and spectacularresultsin algebraicand differential
topology, aswell asin Lie groups,rely on the first four algebrasA0 to A3, which are
thefour division algebras:thereals � , thecomplex numbersA1 
�� , thequaternions
A2 
�� and the octonionsA3 
�� . Variousmodelsof the Universein Theoretical
Physicsusealsothesealgebras,aswell asthehexadecanionsA4.
Thebinaryalgebras,on theotherhand,do not yield a scalarproduct,their multiplica-
tion is associative andcommutative for all k � 0. B0 is theusualbinaryalgebra(mod
2), andB1 explainseasilythe

�
not logical gaterealisedby quantuminterference[4].

With anappropriatelabelingof thesequencesof 0 and1 of dimension1, 2, 4, theal-
gebrasB0, B1 andB2 arecloselyrelatedto computationmod2, 4 and8 respectively.

What makes the hypercomplex numbersso essentialin Mathematicsand Physics?
They allow to multiply! And multiplication is at the heartof any seriouscomputa-
tion, aswearetaughtby theNewcomb-Borelparadox.

2.4 The Newcomb-Borel paradox

In 1881,theastronomerSimonNewcombreportedtheexperimentalfact that thesig-
nificantdigits of a numberchosenat randomfrom physicaldataor computationwere
not uniformly distributed. He statedthat, instead,the logarithmof their mantissais
uniformly distributed.
In 1909,the mathematicianEmile Borel provedthat, if onechoosesat randoma real
numberbetween0 and1, its decimaldigitsarealmostsurelyequallydistributed.
Thesetwo truths,oneexperimentaland the secondmathematical,seemat odds[9].
Canthey bereconciled?
Yes,if we realisethatBorelandNewcombdo notseethesamenumbers...

Borel considersthestaticadditiverepresentationfor x �����
x 
�� x 	 � x�!�

where � x is theintegerpartof x, 0 "�� x�$# 1.
Newcomb,on thecontrary, looksat thedynamicfloatingpoint representationin base
β for x ����� :

x 
 β % logβ x& � 1β ' logβ x () 1

which is multiplicative. It is therepresentationactuallyusedto computein baseβ.
The law of Newcomb follows immediatelyfrom a theoremby P. Lévy (1939) [11]
aboutthesumof randomvariablesmod1: � logβ x� is uniformly distributedon � 0� 1 .
Thelaw of Newcombis ubiquitousin intensivecomputing.It hasfoundits wayto Wall
StreetandtheInternalRevenueServices(to detectfrauds).

In any result of a seriouscomputationalprocess,the first decimaldigit has3 times
morechancesto be1 than9. TheNewcomb-Borelparadoxis a welcomereminderof
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thefactthatany actualcomputationcreatesmeaning:theNewcomblaw allows to dis-
criminatebetweentheleadingdigitswhichbearmeaning,andthetrailing digitswhich
areuniformly distributed[9].
TheNewcombview (basedon * , andthefloatingpoint representation)is very differ-
entfrom Borel’s(basedon+). Theparadoxputsforwardthenaturalhierarchybetween
operationsonnumberswhichfollow from Computationin agivenbasis: * is dominant
over+ andcreatesmeaningin thechosenbasis.

2.5 The discrete,the continuousand the connected

It wasalreadyclearto thePythagoreanSchoolthatNumbershave a dualpersonality:
they canbeperceivedasdiscrete,astheintegers1,2,3,...,or continuous,asonthenum-
berline.
Thisdualcharactershowsup,in theaxiomaticpresentationof theconstructionof Num-
bersbasedon addition,in the notion of limit of a Cauchysequence.Onecreatesthe
integersby repeatedlyadding1 to theprecedingnumber, startingfrom 1 (or 0). Then
solvingax 
 b yieldsthesetof rationals+ . Therealnumbers(resp.complex numbers)
aretheclosure of therational(resp.algebraic)numbers.

Continuity is thereforea limit property, which might be viewed by someas super-
fluous.And, indeed,thefinitist programmeof Hilbert wantedto excludeany recourse
to a limit process.The 1-dimensionalversionof this programmehasbeenshattered
by Gödel,Turing and,mostof all, by Chaitin, in a way which allows Randomnessto
invadeformal Mathematics,thedomainof ultimaterigor [1]. Randomness(expressed
asprogramsize)exposesthe limit of Turing computabilitywith numberswhich are
1-dimensional.

Doesit meanthat any finitist programmeis doomedto failure, asmany have argued
in theaftermathof Gödel’s incompletenessresultfor Arithmetic?To betterunderstand
the issuesat stakes,let us look at anotherfinitist programme,theGreeksprogramme,
which wasmoreflexible thanTuring’s in a subtlebut essentialway. They allowedall
operationswhich couldbe realisedwith a ruler anda compass.This means,broadly
speakingandin modernvocabulary, that they allowed quadraticnumbers(i.e. num-
berswhicharesolutionsof equationsof degree2 with integercoefficients).Whenthey
could not producean exact rational solution, they worked with rational approxima-
tionsof irrationalnumbers.They clearlyrealisedthattheworld couldnot becaptured
with rationalnumbersonly. Theprofoundityof their programme,theGreekmiracle,
wasthat they hada working compromise,by meansof Geometryin 2 and3 dimen-
sionsandof successive approximations,betweenwhat they conceived of computing
andwhat they could actuallycompute. Time only addsto the shiningperfectionof
Archimedes’methodto approximatethetranscendentalnumberπ.

It becomesclearthat the main differencebetweenTuring andthe Greeksis in terms
of the dimensionof the numbersthey allow in their computinggame. In bothcases,
theprocedureis algorithmic.But Turing numbersare1-dimensional:they arediscrete
pointson thenumberline. WhereastheGreeksnumbersare2-dimensional,their va-
riety of quadraticnumberscannotbe representedon a line, but in a plane. And we
know thatcertainproblemsapparentlystatedon1-dimensionalnumberscanbesolved
only by acall to 2-dimensionalnumbers.Themostfamousexampleis thed’Alembert-
Gausstheoremof Algebra: any polynomialof odd degreewith real coefficientshas
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at leastonerealsolution. It cannotbeprovedwithout goingcomplex. This is thefirst
instanceof the“topologicalthorn” plantedin the“flesh” of algebra...Thephenomenon
is intimatelyconnectedwith thenotionof connectivity which is sensitive to thetopo-
logical dimension.
Remarkably, atthetimethattheAustrianlogicianGödeldiscoveredtheincompleteness
of Arithmetic (1931),the PolishlogicianTarski hadalreadyshown the completeness
of elementary2D-Geometry(1930)[12]. In otherwords,Randomnesscanexist with
1D numbersbut not with 2D numbers!It is worth commentingthatthenegative result
of Gödelattractedmuchmoreattentionthanthe positive resultof Tarski. Thegreater
generalityof Gödel’s resultovershadowedtheconstructive power of Tarski’s own re-
sult. This is still true today, despitethefact thatTarski’s resultis at the foundationof
ComputerAlgebra,oneof thesuccessstoriesof ComputerScience!

In summary, theproblemis not in thelimit (potentialversusactualinfinity). It is in the
number of dimensionsof thebuilding blocksusedfor Computation.And asDickson
showed,onceyou allow two dimensionsinsteadof one,you might aswell allow any
number2k for dimension:you constructrecursively all hypercomplex Numbers!

It is interestingto remarkthat Turing’s dimensionallimitation hasbeenbypassedin
the1980sby theemergenceof Quantum Computing, a theoryof computabilitybased
on2D-numbersto representtheprobabilityamplitudesof QuantumMechanics.Quan-
tum Computingcanbe seenas the computerageversionof the Greeksprogramme
[4].

3 Exact versusInexact Computing

3.1 What is Calculation?

Calculationis a transformationof information from the implicit to the explicit. For
example,to solveanequationf , x -.
 g, wheref andg areknown, is to find thesolution
x. The implicit solutionx becomesexplicit in the form x 
 f  1 , g - . This canseldom
be performedexactly. As an example,only polynomialequationsin onevariableof
degreelessthan5 areexplicitly solublewith radicals. So onevery quickly facesthe
needfor approximationtechniques,which is thedomainof mathematicalanalysis.
But supposeweknow how to computex 
 f  1 , g - exactly, anew andequallyimportant
questionarises. Is the exact resolutionalwayspertinentto understandingthe visible
world aroundus,a world of phenomenaperceivedwith limited accuracy?
Thefool saysyes(exactis alwaysbetterthanapproximate...),but thewiserealisesthat
in certainphenomenaof veryunstableevolution,theexactsolutionof themodelcanbe
sounstablethatit is not realisedin thephysicalworld, becauseits window of stability
is below thefloor limit necessaryfor usto seeit.

3.2 Exact and Inexact Computing

It is very importantto keepin mind that the challengeof calculationis expressedby
thetwo questions“how” and“why”, aswerecalledin theintroduction.
The answerto the questionof “how” appearseasy: it suffices in principle to usean
algorithm , a mechanicalprocedure,which after a finite numberof steps,deliversa
solution. However, it cannotbethatsimplein practice:everyonehasexperiencedthe
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frustrationcreatedby abadalgorithm!

Oneof the difficulties of the “how to designa goodalgorithm” is that the designer
shouldhave a clearview of what is the type of understandingthat is expectedfrom
runningthealgorithm. He shouldknow “why compute”. Becausetherearetwo very
differenttypesof world for which insightcanbesought:

i) a typeof world whereaccuracy is unlimited , asexemplifiedby Mathematics,or

ii) a typeof world whereaccuracy on theavailabledatais intrinsically limited , as
in thephenomenologicalworld of NaturalSciences(Physics,Biology,...).

To convenientlyrefer to the actof computingin oneof thesetwo typesof world, we
shallspeakof Exact versusInexact Computing.

3.3 The computer arithmetic

Implicitly, theoreticalmathematicalanalysisappliesto a world of type i) whereab-
stractnotionssuchasconvergenceto 0, exactarithmetic,equality, do have a meaning.
This is why certainnumericalmethodswhich areproved convergentin mathematics
fail miserablyon a computer:they ignorethe issueof algorithmicreliability required
by thelimited precisionof thecomputerarithmetic.

The basicprinciplesto addresssucha question,with a strongemphasison “why”,
aregivenin Lectureson Finite PrecisionComputation [3], wherethekey notionof
a reliablealgorithmis developed.
In a nutshell,a reliablealgorithmshieldsthe userfrom the possiblynegative conse-
quencesof thelimited precisionof thecomputerarithmetic.

Expertnumericalsoftwaredevelopersmake thenecessarilyfinite precision
of thecomputerarithmeticbecometransparentwith respectto theeffect

of thelimited accuracy availableon thedata.

MoreonreliablealgorithmsandthetoolboxPRECISEto testreliability onacomputer
canbefoundin Chapter???of thisbook[5].

If a reliable algorithm is used,then the computerarithmetic is never to be blamed
for an unexpectedbehaviour. On the contrary, it is an assetin the sensethat it can
reveala computationaldifficulty, but it cannotcreateit.
Thebadreputationof thecomputerarithmeticis thereforelargely undeserved. It may
not bethebestof all possiblearithmeticsfor ExactComputing(like for Mathematics),
but it is, for essentialreasons,without rival for InexactComputing(that is for Experi-
mentalSciences).It allowscomputersimulationsto captureaspectsof thephenomeno-
logical reality thatexactcomputationwould miss,speciallyin theareaof chaoticevo-
lution.

Despiteits powerful practical implicationsfor Scienceand Technology, this fact is
far from beingappreciated,even by softwaredevelopers. So strongis the appealof
exactcomputing,evenin a world of limits...
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3.4 Singularities in Exact and Inexact Computing

Singularityandregularity aremathematicalnotionswhich give a technicalcontentto
the idea of an abruptchange:a propertywhich waspresentdisappearssuddenlyin
certainconditions,or anew propertyemerges.Singularitiesare,in somesense,excep-
tionalwith respectto thebackgroundwhich is regular.
In many areasof classicalmathematics,singularitiescanbeforgottenbecausethey are
not generic(Sard,1942in [3]) : they form a setwhoseinterior is empty. Doesthis
extendto InexactComputing?

Not at all. Let us look at the simpleexampleof a matrix A. The singularpointsof
theresolventmapz /0, A � zI -  1 aretheeigenvaluesof A. They form thespectrumof
A, a finite setof pointsin � of zero measure.
Now let us assumethat we cannotdistinguishbetweenthe given matrix A and any
matrix of the form A 	 ∆A, for ∆A suchthat 1 ∆A 12" α, whereα denotesthe level of
uncertaintyon the data. Thereforeany z in � which is an eigenvalueof A 	 ∆A, but
not of A, will neverthelessbe interpretedasaneigenvalueof A. Thespectrumof A in
ExactComputingbecomes,in InexactComputing,the pseudospectrumof A (relative
to thelevel α), thatis

� zeigenvalueof A 	 ∆A for any ∆A suchthat 1 ∆A 12" α �!�
which is aclosedsetof positiveLebesguemeasure in � .

The classicaltheory of singularitiesdoesnot apply in Inexact Computing,because
singularitieshavea positivemeasure.
As a consequence,singularitiescannotbe ignored. Their influencecanbeenormous.
Chapter11 in [3] providesilluminatingexamplesof this phenomenon.

3.5 Homotopic deviation

Consideringa closebymatrix A34
 A 	 ∆A to analysethe propertiesof A is one of
the favourite devicesin the NumericalAnalyst’s toolbox. And it cango a long way
to give a usefuldescriptionof the local neighborhoodof A, for 1 ∆A 1 small enough
[3, 7, 8, 10]. This amountsto explain a computationon A by the local topologyin the
varietyof matricesaroundA.

If oneis to take theconsequencesof limited accuracy seriously, oneshouldnot, how-
ever, rule out the possibilityof non local effectsin which ∆A is not small in a metric
sense.In otherwords,how canweweakentheconstraintof perturbationtheory, which
is expressedby 1 ∆A 1 smallenough?

Onepossibilityis by meansof anhomotopicdeviation. In additionto A, let begivena
deviationmatrix E. We introducea complex parametert to definethehomotopicfam-
ily of matricesA , t -5
 A 	 tE, suchthatA , 0 -5
 A. The family realisesan homotopic
deviationof A, associatedwith E.
A linearproblemsuchassolvinga setof n linearequationsin n unknownsis regular
whenever thematrix of thesystemis regular, that is invertible. Associatedwith a ma-
trix A, therearetwo dual classesof problems:the regular (resp. singular)problems,
which areassociatedwith thematrix A

�
zI, for z �6� , whenever it is invertible(resp.

singular).
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Solving linear systemswith the matrix A
�

zI of full rank are all regular problems
associatedwith A, while the eigenproblemfor A is the associatedsingularproblem.
We addressthegeneralquestion:is it possibleto relatethesingular/regularproblems
posedon A , t -7
 A 	 tE to theonesposedon A with no assumptionon E? Theanswer
turnsout to beremarkablysimple.This is possibleby analysingthefactorization,

A 	 tE
�

zI 
�, I 	 tE , A � zI -  1 -�, A � zI -
wherez �8� is notaneigenvalueof A, thatis z �8�49 σ , A - . Let µz denoteaneigenvalue
of Fz 
 � E , A � zI -  1, for z

�� σ , A - . Thepoint z
�� σ , A - is aneigenvalueof A 	 tE if f

thereexistsaneigenvalueµz �
 0 of Fz suchthattµz 
 1.
Any z in � which is not an eigenvalueof A canbe interpretedasan eigenvalueof at
leastonematrix A 	 tE, aslong as0 # ρ , Fz -:# ∞. This is not possibleif ρ , Fz -5
 0,
becauseall µz 
 0, andt is not defined.
In parallelto this interpretation,any zsuchthat0 # ρ , Fz -.# ∞ canreceiveaninterpre-
tationasa regularpoint: A 	 tE

�
zI is invertiblefor any t suchthatt �
 1

µz
.

The two interpretations(z eigenvalueof A 	 tE, versusA 	 tE
�

zI invertible)hold in
parallel for any z in �49 σ , A - suchthatρ , Fz -<; 0. We introducethe

Definition 3.1 A point z �=�49 σ , A - such that ρ , E , A � zI -  1 ->
 0 is a critical point
associatedwith , A� E - . We denoteby K , A� E - thesetof critical pointsfor , A� E - , and
write Σ , A� E -:
 σ , A -@? K , A� E - .
Do critical pointsexist, thatis canK , A� E - benonempty?
We know that lim A zA B ∞ ρ , Fz -4
 0. Do thereexist pointsz at finite distancesuchthat
ρ , Fz -7
 0?
If E is rank1, suchthatE2 �
 0, theansweris yesin general.Thereexist at mostn

�
1

pointsin � suchthatF2
z 
 0, henceρ , Fz -C
 0 [6, 2].

Whatis themeaningof critical pointsfrom thepoint of view of computation?
If ζ � K , A� E - , thenζ cannotbe interpretedasaneigenvalueof A 	 tE. Thereis only
onepossibleinterpretation:A 	 tE

�
ζI is a regular (invertible)matrix for which we

know a f inite representation,valid for any t:

, I � tFζ -  1 
 I 	 tFζ and, A 	 tE
�

ζI -  1 
 , A � ζI -  1 , I 	 tFζ -7
 R, t � ζ -D�
Theanalyticitydomain(with respectto t) in � of R, t � z- , which is � t; E t E ρ , Fz -C# 1 �
for z in �49 σ , A - but not in K , A� E - , becomesall of � whenz is a critical point. The
convergencein t is not conditionalto z : z andt areindependent.This is a non local
effect which dependson thealgebraicstructureof E (rankE =1) andnot on a metric
conditionon 1 E 1 .

The above discussioncanbe summarizedby looking at the propertiesof the re-
solventmatrix R, t � z-7
�, A 	 tE

�
zI -  1 asa functionof thetwo complex parameterst

andz. Threepropertiesareof interest:existenceor nonexistence(singularity),and,if
existence,analyticityin t for agivenz.
The choiceof onepropertyinducesa specificrelationshipbetweenz and t which is
listedin Table1. In this Table,µz denotesany eigenvalueof Fz 
 � E , A � zI -  1 which
is not 0 andρz 
 ρ , Fz - .
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Singularity
=

Non Existence

Yes
i) t 
 0 andz � σ , A -
ii) t 
 1

µz
, µz �
 0 andz �F�49 Σ , A� E -

No z � K , A� E -

Existence

Yes t �
 1
µz

, µz �
 0 andz ���49 σ , A -

No t 
 0 andz � σ , A -

Analyticity

Yes
i) asymptotic: E t E�# 1

ρz
andz ���49 Σ , A� E -

ii) polynomial: t ��� andz � andz � K , A� E -

No t 
 0 andz � σ , A -
Table1: Propertiesof R, t � z- asa functionof t andz

Table1 shows clearly that the natureof the couplingbetweent andz changeswith
the point of view. The changecanbe smoothor abrupt,andthis hascomputational
consequences.The“why” rulesthe“how”.

3.6 The map ϕ : z G ρ H FzI
The mapϕ : z / ρ , Fz - will provide a usefulgraphicaltool to analysehomotopicde-
viation. Therole of ϕ comesfrom thefundamentalpropertythat it is a subharmonic
functionof z. A subharmonicfunctionis theanalogue,for a functionof two realvari-
ables,of a convex function in onerealvariable.The level curvesz / ρ , Fz - =constant
areclosedcurveswhich encloseeigenvaluesof A (maximalvalueρ 
 	 ∞) or local
minimaof ρ with values � 0. Therearetwo valuesfor which the mapϕ hasspecial
properties:thevalue∞ andthevalue0.

a) the value ρ 
 ∞: thereexist n points in � , the n eigenvaluesof A suchthat, A � zI -  1 doesnot exist, andthereforeρ , E , A � zI -  1 -7
 	 ∞ for any matrixE.
Thespectrumof A is thesetof singularpointsof z /J, A � zI -  1. It alsobelongs
to thesetof singularpointsof ϕ, becauseρ is not definedat any eigenvalue.At
suchpointsin � , thevalueof rank, A � zI - jumpsfrom n to a value " n

�
1.

b) the valueρ 
 0: we know that ρ / 0 as E z E�/ ∞. The critical pointsat finite
distancewhich satisfyρ 
 0 belongalsoto the setof singularpointsof ϕ. At
suchpoints,thereis aqualitativechangein thebehaviour of theNeumannseries.
It jumpsfrom anasymptoticrepresentation(infinity of nonzeroterms)to afinite
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z

Machine 
Precision 

z in    (A)z in K(A,E)

Figure1: Profile of thecomputedmapϕ̃ : z / ρ̃ , E , A � zI -  1 - for E of rank1

one(for example,two nonzerotermswhenrankE 
 1).

Thisshowsthatglobally thepropertiesof A 	 tE canbeaffectednotonly by theeigen-
valuesof A, but alsoby thecritical pointsof , A� E - whenthey exist. Thesingularpoints
of ϕ (whereρ takesthe value0 or 	 ∞) consistof both the eigenvaluesof A andthe
critical pointsof , A� E - .
In Exact Computing,thesesingularpoints have zeromeasureand their influenceis
almostsurelynonexistent.
Howeverthiscannotbetrueany longerin InexactComputing.And thephenomenonis
clearlyvisible if onelooksat thecomputedmapϕ̃ : z / ρ̃ , E , A � zI -  1 - . Thisamounts
to take machineprecisionψ K 10 16 asthe relative level of uncertaintyon the data,
seeFigure1. Themapsϕ andϕ̃ donotdescribethesamereality. Themapϕ expresses
theview of homotopicdeviation in ExactComputing.Whereasthecomputedmapϕ̃
expressestheview in InexactComputing.Thetwo views differ in theregion of σ , A -
in a way which is well understood,thanksto thenotionof pseudospectrum.They also
differ in theregionof K , A� E - in a waywhich hasbeenuncoveredonly recently[6].

In both cases,the effect of Inexact Computingis to replacethe set of singularities
of measure0 by asetof positivemeasure.In thecaseof σ , A - , this is usuallyviewedas
negativebecausethis decreasesthedomainwhereA 	 tE

�
zI is invertible.But, in the

caseof K , A� E - , this hasdefinitelya positive flavour: on a region of positivemeasure,
theconvergenceis better than predictedbecausethecomputationalprocessis essen-
tially finite ratherthanasymptotic.Theroleof finite precisionon thesingularpointsof
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ϕ is twofold:

i) in thepseudospectrumregionaroundσ , A - , it makestheeigenvaluesof A appear
closerthanthey arein exactarithmetic(this is a local effect),

ii) in thecritical regionaroundK , A� E - , it makestheeigenvaluesof A appearfurther
thanthey are(this is anonlocal effect). Or saiddifferently, it makesthesolution
of linear systemson the computereasierthan predictedby mathematics:the
computationis essentiallyafinite process.

For a generalE, the setK , A� E - canbe empty. But we know that if E is of rank 1,
E2 �
 0 thenK , A� E - consistsof atmostn

�
1 pointsin � .

The questionasked at the beginning of paragraph3.5 hasbeenansweredin the fol-
lowing way by homotopicdeviation: the introductionof the parametert hasallowed
to replacethemetriccondition 1 E 1 smallenoughby thealgebraicstructurecondition
E of rank1. Meanwhile,this hascomplementedthesetof n eigenvaluesσ , A - by the
setof n

�
1 critical pointsK , A� E - . In theneighborhoodof thesepointsfinite precision

createscomputational opportunities by providing betterconvergencethanpredicted:
thecomputationalprocessis finite ratherthanasymptotic.

In Figure 1, the two regions have beenrepresentedas neatly separated.This need
not be thecase.Let us look at anexamplewhereeigenvaluesof A andcritical points
of , A� E - areinterestinglyintertwined.

3.7 Illustration

We illustrate the useof the mapϕ to analysehomotopicdeviation on the following
example. We call One, n - the matrix A of order n which is the companionmatrix
associatedwith thepolynomial

pn , x -:
 n

∑
i L 0

xi 
 xn 	 pn  1 , x -)� n � 1�
Theeigenvaluesof A aretherootsof pn , z-5
 0, that is then rootsof zn� 1 
 1 distinct
from 1.
We choosethedeviation matrix E suchthatA 	 E is thecompanionmatrix associated
with xn. Thatis, wesetE 
 eeT

n , with e 
�, 1��������� 1 - T .
E is of rank 1. The critical pointsof , A� E - arethe rootsof pn  1 , z-M
 0. Therefore
the n eigenvaluesand the n

�
1 critical pointsare the roots of 1 of ordern 	 1 and

n respectively, which are different from 1. They are intertwinedon the unit circleE z EN
 1.
We set n 
 8. Figure 2 (resp. 3) displaysthe map ϕ : z / 1

�
ρ , E , A � zI -  1 - (in

logarithmicscale)in 2D (resp.in 3D). Theblackcurveis thelevel curveρ 
 1. Figure
4 (resp.5) displaysin 2D (resp.3D)asetof 11levelcurvesρ 
 constant corresponding
to thevalues� 0� 001� 0� 03� 0� 05� 0� 1� 0� 4� 0� 8� 1� 1� 2� 1� 4� 1� 8� 2 � .
Figure6 (resp.7) displaysthesamelevel curveswith thecolourusedto parameterize

thevariationof θ on � 0;2π � in 2D (resp.3D). Thecolourchartvariesfrom blueto red
for increasingvaluesof theparameterr or θ.
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Figure2: Themapϕ : z / 1
�
ρ , E , A � zI -  1 - for thematrixOne(n 
 8) in 2D
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Figure3: Themapϕ : z / 1
�
ρ , E , A � zI -  1 - for thematrixOne(n 
 8) in 3D
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Figure4: 11 level curves � 0� 001� 0� 03� 0� 05� 0� 1� 0� 4� 0� 8� 1� 1� 2� 1� 4� 1� 8� 2� for
thematrix One(n 
 8) in 2D

−2

−1

0

1

2

−2

−1

0

1

2
0

0.5

1

1.5

2

Figure5: 11 level curves � 0� 001� 0� 03� 0� 05� 0� 1� 0� 4� 0� 8� 1� 1� 2� 1� 4� 1� 8� 2� for
thematrix One(n 
 8) in 3D

13



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure6: 11 level curves � 0� 001� 0� 03� 0� 05� 0� 1� 0� 4� 0� 8� 1� 1� 2� 1� 4� 1� 8� 2� for
thematrix One(n 
 8) in 2D parameterizedby θ on � 0;2π �
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Figure7: 11 level curves � 0� 001� 0� 03� 0� 05� 0� 1� 0� 4� 0� 8� 1� 1� 2� 1� 4� 1� 8� 2� for
thematrix One(n 
 8) in 3D parameterizedby θ on � 0;2π �
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4 Numerical Software

As wealreadypointedoutin theprevioussection,thedesignanduseof goodnumerical
softwaredestinedto get insight on a particularquestionof ExperimentalSciences,is
bestanalysedwith theconceptualtoolsof InexactComputing.Mostimportantamongst
themis themethodcalledBackward error analysiswhich emergedin the1950sand
1960s,mainlyundertheinfluenceof Wilkinson. Thebasicideahastheidealbeautyof
simplicity: just considerany computedsolution(any outputof computersimulations)
astheexactsolutionof anearbyproblem.Thecuriousreadershouldalsolook atChap-
ter ???[5] which presentsa complementaryviewpoint on backwarderroranalysis:it
givesguidelineson how to realisesuchananalysisin practice.

4.1 Local error analysis

Oneof themostimportantfeaturesof backwarderroranalysisis thatit allowsto factor
out in theerrorboundthecontribution of thealgorithm(thebackwarderror) from the
contributionof theproblem(theconditionnumber).
Let us supposethat the problemto be solved is Ax 
 b. A computedsolution x̃ is
interpretedasthesolutionof anearbyproblemof thesameform, thatis

, A 	 ∆A - x̃ 
 b 	 ∆b(1)

In general,∆A and∆b arenot unique,andarenot known. However, in this simple
case,thereare formulaeto computemin,O1 ∆A 1P�@1 ∆b 12- which is the backward error
associatedwith x̃. Subtletiesof perturbations∆A, ∆b arediscussedat lengthin [3], see
alsoChapter???[5].
Thereforea localerroranalysiscanbecarriedout by meansof the1st orderbound

Forward error " Condition Number * Backward error

whenever theproblemto besolvedis regular.

This approachcanbe easilyrelatedto the homotopicdeviation presentedin the
previoussection.If wechooseto allow only perturbationonA, but notonb, thenequa-
tion (1) becomes, A 	 ∆A - x̃ 
 b, where∆A is aperturbationmatrixwhich is unknown,
we only have accessto themetricquantitymin 1 ∆A 1 . Becausethereis a conditionon1 ∆A 1 , we call ∆A a perturbationof A. And, assaidpreviously, we reserve the term
deviation for E withoutmetricconstraint.

4.2 Homotopic deviation versusnormwiseperturbation

It is interestingto comparethe homotopicdeviation theoryof section3 to the more
traditionalapproachof normwiseperturbationtheory[3]. In particular, thenormwise
point of view leadsto thenotionof normwise pseudospectrumof a matrix A of level
α ([3], chapter11) which is definedfor any α ; 0, as:

� z ��� , z is aneigenvalueof A 	 ∆A, for all ∆A suchthat 1 ∆A 14" α �
Q� z �F� ; , A � zI -  1 � 1
α � .

Themapψ : z / , A � zI -  1 definedon �49 σ , A - is alsosubharmonic.However, the
propertiesof anormexcludethepossibilityof critical points.
Let uscomparethemapsϕ andψ on thefollowing example.
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Example4.1:

We call Venicethecompanionmatrix B associatedwith thepolynomial

p , x - = , x � 1 - 3 , x � 3 - 4 , x � 7 -
= x8

�
22x7 	 198x6

�
958x5 	 2728x4

�
4674x3 	 4698x2

�
2538x 	 567�

And we considerthe rank one perturbationE 
 eeT
8 with e 
R, 1�S������� 1 - T and e8 
, 0�S������� 0� 1 - T . We setA 
 B

�
E: it is thecompanionmatrix associatedwith thepoly-

nomial q , x -�
 p , x - 	 r , x - , with r , x -�
 7

∑
i L 0

xi . The 7 zerosof r , z-T
 0 on the unit

circle arethecritical pointsof , A� E - . Figures8 and10 displayrespectively themaps
ϕ : z / ρ , E , A � zI -  1 - andψ : z / , A � zI -  1 .
Thecritical zonefor ϕ is clearlyvisible on Figures8 and9: thereis a very sharpsink.
Interestingly, themapψ onFigure10displaysalsoalocalminimumin thesameregion
of the complex plane. We know from theorythat the exact valueof this minimum is
necessarilypositive.
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Figure8: Map ϕ : z / ρ , E , A � zI -  1 - , A 
 B
�

E with B=VeniceandE is rank1

4.3 Homotopic deviation with E of rank 2 in finite precision

WhenE is a matrix of rank2, theeigenvaluesof Fz which arenot necessarilyzeroare
thatof a 2 * 2 matrix whichwe denoteMz.
Fz is nilpotentsuchthatF3

z 
 0 iff M2
z 
 0. And Mz is nilpotentif f zsatisfiesthesystem
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Figure9: Map ϕ : z / ρ , E , A � zI -  1 - , A 
 B
�

E with B=VeniceandE is rank 1 -
Zoomaroundthecritical points
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Figure10: Map ψ : z / , A � zI -  1 , A 
 B
�

E, with B 
 Venice
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of 2 polynomialequations

tr Mz 
 0 (degree" n
�

1 -
det Mz 
 0 (degree" 2n

�
2 -

Eachequationhasa setof rootswhich in generalis disjoint onefrom theother. How-
ever in finite precisionthey mightbecloseto beingsolutionsof thetwo equations.

This factis confirmedby thefollowing example.

Example4.2:

We consideragainthe matrix B calledVeniceof Example4.1. And we considerthe
rank2 deviationH 
 eeT

8
	 e1eT

6 . WesetC 
 B
�

H: C is notacompanionmatrixany-
more.Wegive in Figure11 themapϕ : z / ρ , H , C � zI -  1 - . Oneseesdistinctlyacute
sinks,which, however, arenot asmarkedasthosedisplayedon Figure9. A detailed
analysisof Venicecanbefoundin [6].

−8 −6 −4 −2 0 2 4 6 8−10

−5

0

5

10

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure11: Map ϕ : z / ρ , H , C � zI -  1 - , C 
 B
�

H, with B=VeniceandH of rank2.

5 The Lévy law of largenumbers for Computation

The law of large numberswhich assessesthe activity of measurements(datacollec-
tion andinterpretation)is givenby theLaplace-Gaussnormaldistribution: theaverage
(arithmeticmean)of a largenumberof randomvariableshasanormaldistribution.
Becausethis law is soubiquitousin ExperimentalSciences,it hasbeenassumedthat
it alsorulesComputation.And indeed,this canbethecasein very specificsituations.
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But not in general.

We alreadyindicatedthat the Newcomb-Borelparadoxmeansthat the Lévyuniform
distribution is at work in floatingpoint computation(in a givenbase)andinducesthe
dominantrole of multiplicationoveraddition.TheLévy law concernsthelimit distri-
butionof thesummod1 of N randomvariablesasN / ∞ [12].

In floatingpointcomputation,it appliesto thelogarithmsof themantissa.Anotherim-
portantdomainof applicationof theLévy law is clearlythemultiplicationof thecom-
plex numbersin thetrigonometricform of Euler: theargumentsaddmod2π, therefore
they areuniformly distributedin � 0� 2π � . This factaccountsfor someof thedifferences,
in Mathematics,betweenAnalysisin realor complex variable.

Anotherway to reflectupon thesephenomenais to realisethat therearemajor
differences,from thepointof view of Computation,betweenworkingwith numbersof
dimension1 (whicharescalars)or with numbersof higherdimension(dim ; 1).
We mentionedthis factwhendiscussingthetwo finitist programmesof Hilbert andof
theGreeks.
At that point, the topological notion of connectivity arose. Later, when presenting
homotopicdeviation, we encounteredthe algebraic notion of a nilpotentmatrix (all
theeigenvaluesarezerobut thematrix itself is nonzero),which enablesa generically
nonpolynomialcomputationto becomepolynomialat critical points.
Thesearetwo prominentaspects(TopologyandAlgebra)underwhich thedimensional
qualityof Numbersmanifestsitself mostnaturallyin Computation.
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