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Abstract

For solving large dense complex linear systems that arise in electromagnetic calculations,

we perform experiments using a general purpose spectral low rank update preconditioner in

the context of the GMRES method preconditioned by an approximate inverse preconditioner.

The goal of the spectral preconditioner is to improve the convergence properties by shifting

by one the smallest eigenvalues of the original preconditioned system. Numerical experiments

on parallel distributed memory computers are presented to illustrate the efficiency of this

technique on large and challenging real–life industrial problems.
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1 Introduction

In electromagnetic calculations, a classic problem is to compute the currents generated on the
surface of an object illuminated by an given incident plane wave. Such calculations, relying
on the Maxwell’s equations, are required in the simulation of many industrial processes coming
from antenna design, electromagnetic compatibility, computation of back-scattered fields, and so
on. Recently the Boundary Element Method (BEM) has been successfully used in the numerical
solution of this class of problems. The formulation considered in this paper is the EFIE (Electric
Field Integral Equation) as it is the most general and does not require any assumption about
the geometry of the object. The matrices associated with the resulting linear systems are large
dense, non–Hermitian and complex. With the advent of parallel processing, this approach has
become viable for large problems and the typical problem size in the electromagnetics industry is
continually increasing. Nevertheless, nowadays, problems with a few hundred thousand variables
can no longer be solved by direct solvers even if they are parallel and out–of–core because they
require too much memory, CPU and disk resources. Iterative solvers appear as the only viable
alternative since techniques based on multipole expansion [10, 11] have been developed to perform
fast matrix–vector products without forming all the entries of the dense matrices. In particular,
the fast multipole method (FMM) performs the matrix–vector product in O(n log n) floating–
point operations and can efficiently be implemented on parallel distributed platforms with some
out–of–core techniques in order to tackle huge industrial problems [19]. The industrial problem
we focus on in this paper is the monostatic radar cross section calculation of an object. The
procedure consists in considering a set of waves with the same wavelength but different incident
angles that illuminate the object. For each of these waves we compute the electromagnetic field
backscattered in the direction of the incident wave. This requires the solution of one linear system
per incident wave. For a complete radar cross section calculation, from a few tens up to a few
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hundred waves have to be considered. We have then to solve a sequence of linear systems having
the same coefficient matrix but different right-hand sides. The problem can be written

A(x1, . . . , xp) = (b1, . . . , bp).

In this context it is particularly important to have a numerically efficient and easily parallelizable
preconditioner. A preconditioner suitable for implementation in a multipole framework on parallel
distributed platforms has been proposed in [1, 5]; it is based on a sparse approximate inverse using
a Frobenius norm minimization with an a priori sparsity pattern selection strategy. It has been
shown [6, 8] that on medium size problems this technique gives rise to an effective preconditioner
that outperforms more classical approaches like incomplete factorizations or other general purpose
approximate inverses [3, 4, 14]. However, for large problems the preconditioner becomes sparser and
sparser when the problem size increases and eventually performs poorly. Unfortunately, making
it denser is not feasible due to memory and disk constraints [9]. In this paper, we investigate the
use of a spectral low rank update [7] that attempts to shift by one the smallest eigenvalues of the
preconditioned systems resulting in a faster convergence rate.

The paper is organized as follows. In Section 2, we recall the main features of the spectral low
rank update preconditioner and describe the real-life test problems we consider for the numerical
experiments. Then, in Section 3, we illustrate the effect of the size of the update on the convergence
rate of GMRES [18] for one right-hand side and show the gain for a complete radar cross section in
the following section. Since the spectral low rank update compensates for some possible weaknesses
of the approximate inverse, we illustrate in Section 5 that a balance has to be found between the
two components of the resulting preconditioner. In Section 6, we show that the gain induced by the
low rank update becomes larger as the size of the restart in GMRES decreases. Finally, since many
right-hand sides have to be solved, we illustrate in Section 7 the benefit of using the preconditioner
in the context of seed GMRES that is a Krylov solver designed to deal with multiple right-hand
sides. We conclude with some conclusions and comments on future work in Section 8.

2 Background and test examples

For the solution of large linear systems using fast multipole techniques on parallel distributed
memory computers, we consider an approximate inverse preconditioner based on a Frobenius norm
minimization procedure and we denote it by MFrob. Information from the underlying physical
problem is exploited to prescribe in advance the sparsity pattern of the preconditioner [1, 6]. We
note that its density in terms of number of nonzero entries per column can be adjusted through a
simple parameter. For further details on its implementation in the fast multipole code as well as its
behaviour on large problems we refer to [9, 19]. In this paper, we investigate the behaviour of the
low rank update preconditioner described in [7] that attempts to improve the convergence rate of
the Krylov solver by shifting by one the smallest eigenvalues that MFrob leaves close to the origin.
On these linear systems, GMRES has shown itself to be the most robust Krylov solver [9, 19]. We
note that other related approaches that attempt to remove the effect of the smallest eigenvalues
are available in the literature. In the context of adaptative preconditioners for restarted GMRES,
we refer the reader to [2, 12, 15].

Let us describe the spectral low rank update for the right preconditioner that we use later in
our experiments. Given the right preconditioned linear system:

AMFrobu = b with x = MFrobu,

where the matrix A is n×n complex nonsingular and MFrob is the right preconditioner, the spectral
low rank update is as follows. For the sake of simplicity, we assume that the preconditioned matrix
AMFrob is diagonalizable. That is,

AMFrob = V ΛV −1,
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with Λ the diagonal matrix formed by the eigenvalues {λi}i∈{1,n} ordered by increasing magnitude,
and V the matrix whose columns correspond to the right eigenvectors. Let us consider the k
smallest eigenvalues of AMFrob denoted by λi with i = 1, ..., k. We denote by Vk the set of the
right eigenvectors associated with these k smallest eigenvalues. In [7], it is shown that, if W is a
m by k matrix such that A0 = W HAMFrobVk has full rank, then setting

M0 = MFrobVkA−1
0 W H and MSLRU(k) = MFrob + M0,

we have that AMSLRU(k) is similar to a matrix whose eigenvalues are:

{

ηi = λi if i > k,
ηi = 1 + λi if i ≤ k.

(1)

The matrix M0 is a rank-k correction of MFrob, which ensures that the new system:

AMSLRU(k)u = b with x = MSLRU(k)u.

no longer has eigenvalues with magnitude smaller than |λk+1|. Note that we can choose other
shifts in other contexts. In our case, as most of eigenvalues are already close to one, this shift
makes sense. Furthermore, we set W = Vk in our experiments.

In [7], some promising results in the context of BEM are shown on small examples with a
few hundred unknowns; the spectral low rank update is combined with the GMRES method
preconditioned by a Frobenius norm minimizer preconditioner. In this work, we investigate the
same solver using the same combination of preconditioners but on large real industrial applications.
The test geometries are shown in Figure 1. They consist of a wing with a hole referred to as Cetaf,
an Airbus aircraft, an air intake referred to as Cobra, and finally an Almond. The Cetaf and
Almond cases are classic test problems in the computational electromagnetics community; the
other two have been kindly provided to us by EADS–CCR. Given these four geometries, the sets
of angles of interest for the monostatic radar cross section vary. In Table 1 we indicate, for each
geometry, the number of unknowns associated with each linear system, the density of MFrob, the
angular section considered (given in spherical coordinates, see Figure 2) as well as # rhs, the
number of right-hand sides to be solved for the complete monostatic calculation.

Geometry # unknowns density θ ϕ # rhs
Cetaf 5 391 3.3 % (-90) - 90 0 181
Airbus 23 676 0.94 % 90 0 - 180 181
Cobra 60 695 0.24 % 0 - 90 0 91

Almond 104 793 0.19 % 90 0 - 180 181

Table 1: Angular section of interest for each geometry; the discretization step is one degree.

The numerical experiments reported in this paper have been performed on a Compaq Alpha
(EV 68, 1.3 Gflops peak) server that is a cluster of symmetric multiprocessors. The stopping
criterion consists in reducing the original residual by 10−3 that can then be related to a norm-wise
backward error. Although this value may appear to be large, it is sufficient to obtain accurate
radar cross section results. Finally, the initial guess is set to the zero vector.

3 Efficiency of the preconditioner with respect to the rank

of the update

In Figure 3, we plot using the symbol “x” the spectrum of MFrob, the matrix preconditioned
with the Frobenius preconditioner, for the Cetaf case. As can be observed, MFrob succeeds in
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Figure 1: Various geometries used in the numerical experiments
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Figure 2: Spherical coordinates

clustering most of the eigenvalues around (1.0, 0.0). Such a distribution is highly desirable to get
fast convergence of Krylov solvers. Nevertheless the remaining eigenvalues nearest to zero can
potentially slow down the convergence. Using the symbol “o” we plot, in Figure 3, the spectrum
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of the matrix preconditioned with MSLRU(20). We observe that the 20 smallest eigenvalues of the
matrix AMFrob have been shifted close to one, in agreement with (1). Consequently, we expect
the Krylov solver to perform better with MSLRU(20) than with MFrob. In Figure 4, we plot the
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Figure 3: Spectrum of AMFrob denoted by x and AMSLRU(20) depicted with o on the Cetaf test
problem.

convergence histories obtained by varying the size of the low rank update. It can be observed that
the larger the rank, the faster the convergence of full GMRES. However, in going from 15 to 20
the gain is negligible and going beyond 20 does not give further improvements.
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Figure 4: Convergence history when varying the rank of the update on the Cetaf example.

As we mentioned earlier, we have used this technique for monostatic calculation. As many
linear systems with the same coefficient matrix but different right-hand sides have to be solved,
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some are easier to solve than others. In Figure 5, we illustrate an important feature of the low
rank update by showing the number of iterations for convergence for a difficult right–hand side
and an easy one. It can be observed that, when the number of shifted eigenvalues increases, the
number of iterations to reach convergence decreases. Furthermore, there is not much difference
between a difficult right–hand side and an easy one when the rank of the update increases. Later
in this paper, we illustrate the advantage of this feature in the context of restarted GMRES and
seed GMRES.
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Figure 5: Number of full GMRES iterations when varying k in MSLRU(k) on the Cobra test
problem.

4 Results on a complete monostatic calculation

The use of a preconditioner is often beneficial, however its usefulness depends not only on its effect
on convergence but also its construction time and the time spent in applying it at each step. In
Table 2, we give the construction time for the FMM operator, for MFrob and for MSLRU(k). In our
experiments, the eigenvalue calculation is performed in a preprocessing phase using ARPACK [16],
that represents the main part of the time required to setup MSLRU(k). In that table, we also
display the average time spent in one FMM operation, one product by MFrob, and one application
of MSLRU(k). We expect to reduce the overall number of iterations, but each new iteration is
more expensive. One application of MSLRU(k) compared with one application of MFrob introduces
around 4.k.n additional flops, where k is the chosen number of eigenvalues and n the size of the
problem. On our test examples the extra cost per iteration in elapsed time ranges from 6% (Cobra
case) to 35% (Almond case), but it remains small in comparison to the FMM application times.

In Figure 6, we show the number of full GMRES iterations for each right-hand side using either
MFrob (solid line) or MSLRU(k) (dashed line). For each geometry the value of k is given in the
caption. While without the spectral preconditioner, the numbers of iterations from one right–hand
side to another vary a lot, with the spectral preconditioner the number of iterations per right–hand
side is more similar and almost constant for some geometries. This behaviour was already observed
in Figure 5.
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Construction Times Application Times
geometry # proc. k FMM MFrob MSLRU(k) FMM MFrob MSLRU(k)

Cetaf 8 20 13 s 25 s 45 s 0.208 s 0.035 s 0.041 s
Airbus 32 20 27 s 51 s 19 m 0.830 s 0.118 s 0.147 s
Cobra 32 15 36 s 73 s 28 m 1.259 s 0.110 s 0.117 s

Almond 32 60 59 s 3 m 2 h 1.914 s 0.138 s 0.187 s

Table 2: Average elapsed time per matrix-vector product.
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Figure 6: Number of full GMRES iterations with MFrob and MSLRU(k) for the different incident
angles for each geometry.

Table 3 summarizes the cumulated numbers of matrix–vector products and the total elapsed
solution time for a complete radar cross section calculation for each geometry using full GMRES.
For all geometries except the Cetaf, 181 linear systems are solved; only 91 are considered for the
Cetaf test problem. Depending on the geometry, the overall gain ranges from a factor of 1.6 to 3 for
both CPU time and total number of GMRES iterations. It should be pointed out that this could
be improved on some examples if more eigenvalues were shifted. Our purpose in these experiments
is to illustrate the potential of MSLRU(k), and we did not try to find the best values of k for each
geometry. For example, by shifting 10 more small eigenvalues for the Cobra case, we move from a

7



MFrob MSLRU(k)

Geometry # procs. # iter times # iter times
Cetaf 8 16 391 1 h 40 m 5 349 47 m
Airbus 32 87 121 46 h 47 385 18h 40 m
Cobra 32 29 777 21 h 16 921 8h 30 m

Almond 32 34 375 25 h 30 m 21 273 14h 40 m

Table 3: Cost for a complete monostatic calculation.

factor 1.6 to a factor 3.
The extra cost for computing the eigenspace during the preprocessing phase in terms of matrix–

vector products by AMFrob as well as the corresponding elapsed time is displayed in Table 4. In
that table, we also give the number of right-hand sides in the monostatic calculation, denoted
# rhs, for which the gain introduced by MSLRU(k) compensates for the cost of computing the
preconditioner. It can be seen that the preprocessing calculation is quickly amortized when a few
right-hand sides need to be solved.

Geometry # procs. # mat-vec times # rhs
Cetaf 8 170 45 s 3
Airbus 32 1 000 19 m 6
Cobra 32 1 000 28 m 6

Almond 32 2 200 2 h 32

Table 4: Cost of the eigencomputation preprocessing phase.

In addition, we should mention that the quality of the eigenvectors in terms of backward error
does not needs to be very accurate: using eigenvectors with a backward error of less than 10−3

does not significantly improve convergence if at all.

5 Balancing the two components of the preconditioner

Although we save a significant number of iterations using MSLRU(k), we might ask whether it could
be more effective to use a better MFrob, by allowing the preconditioner to have more nonzero entries,
combined with a migration of only some smallest eigenvalues, or a worse MFrob, but combined with
a migration of many smallest eigenvalues. To deal with this, we first investigate the effect of the
quality of MFrob on the calculation time of the smallest eigenvalues of AMFrob. In that respect,
we vary the number of nonzeros per column leading to different densities of MFrob. In Figure 7,
we display the spectrum of AMFrob on the Cetaf example for various values of the density. As we
might expect, the denser MFrob is, the better the clustering around one and the fewer eigenvalues
close to zero; moreover these are better separated. A consequence for the eigensolver is that the few
well separated eigenvalues that are near zero for the largest density of the preconditioner are more
easily computed. When the density is relaxed, the eigenvalue cluster close to zero becomes wider
and the eigensolver has more difficulty in computing those near zero. Indeed, it needs extra effort
to identify the eigenvalues in a cluster. To illustrate this claim we show, in Table 5, the number
of matrix–vector products and the corresponding elapsed time required by ARPACK to find the
eigenvectors associated with the 60 smallest eigenvalues as the density increases. As expected, we
observe that the denser the preconditioner is, the easier it is for the eigensolver to find the smallest
eigenvalues.

A question that seems natural to raise is: how many eigenvalues should be shifted for these
three densities of MFrob to get convergence in the same number of full GMRES iterations ? On
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Figure 7: Spectrum of AMFrob for various density of MFrob

density # mat-vec times
0.7% 365 477 s
3.3% 240 281 s

15.7% 152 172 s

Table 5: Number of matrix–vector products and elapsed times (one processor) required to compute
the 60 smallest eigenvalues of AMFrob for the Cetaf when the density of MFrob is varied.

the Cetaf for a difficult angle and a density equal to 3.3 %, full GMRES needs 98 iterations to
converge. Using MSLRU(20) GMRES needs 31 iterations to converge. The number 31 is taken as
a reference value to compare the performance with the three densities. Table 6 shows the cost for
ARPACK to compute the corresponding number of eigenvalues for each density and the total cost
of computing the preconditioner.

To obtain the same number of full GMRES iterations, we need to shift more and more
eigenvalues as we decrease the density. On the other hand, the construction cost of MFrob with
a low density is cheaper than with a higher density. There is a trade-off to be found between a
cheap MFrob that requires shifting many eigenvalues that might be difficult to compute, and a
more expensive MFrob where only a few eigenvalues need to be shifted to get a similar convergence
behaviour. As Table 6 shows, the medium density 3.3% offers the best trade-off among the three
densities considered. The preconditioner already works well and only a few eigenvalues need to be
shifted. In each case shown in Table 6, 31 iterations of preconditioned full GMRES are needed for
convergence. The symbol “k” is the number of eigenvalues computed by ARPACK.

MFrob construction eigensolver
density times k times Total

0.7% 41 s 54 469 s 510 s
3.3% 143 s 20 161 s 304 s

15.7% 1114 s 2 64 s 1178 s

Table 6: Construction times when varying the MFrob density on the Cetaf test problem.

Let us illustrate, on another example, the advantage of using MSLRU(k) rather than increasing
the density of MFrob. We consider now the Almond test problem, that is the biggest, using two
densities for MFrob. The targeted number of iterations of full GMRES is 157 that is obtained
with a density of 0.19% and by shifting 30 eigenvalues using MSLRU(30). To get the same number
of iterations without shifting eigenvalues, we need to increase the density of MFrob to 1.76 %.
In Table 7, we show the computation cost for both preconditioners. It can be seen that the
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eigencalculation in the preprocessing phase of MSLRU(30) combined with the low cost of its MFrob

component is significantly less expensive than the denser MFrob that exhibits the same convergence
property. We compare the application times for these two approaches and the time to obtain
solution. The second approach is four times as expensive needing 1.21 s per application as opposed
to the first with 0.38 s. The use of MFrob with a density of 0.19% in the first case would have cost
0.36 s; it means that MSLRU(30) yields an extra cost of only 0.02 s per application. Moreover, it
gives a smaller solution time and a much cheaper setup time. Setup time appears to be too much
important towards solution time, but these results are obtained on just one angle. For solutions
on an angular section, we will pay this Setup time for just one time.

Setup Solution
MFrob Eigencalculation Total Application Times Total

Density Times # Eigen. Times Times MFrob MSLRU(30) Times
0.19% 6 m 30 3 h 3 h 06 m - 0.38 s 510 s
1.76% 5 h 40 m 0 - 5 h 40 m 1.21 s - 648 s

Table 7: Comparison of a denser MFrob with a sparser MSLRU(30) on 8 processors on the Almond
test example to obtain 157 iterations with full GMRES.

6 Sensitivity of the restarted GMRES

All the numerical experiments reported on so far have been obtained with full GMRES. In this
section we will investigate the effect of restarted GMRES on the efficiency of the preconditioners.
For each value of the restart, we show in Table 8 the number of GMRES iterations of MFrob

and MSLRU(k) on a easy and a hard right-hand side. The symbol “-” means that convergence
is not obtained within 5000 iterations. As can be seen, the smaller the restart is, the larger
the improvement with MSLRU(k). With MSLRU(20) on the Cetaf example, we see that GMRES
converges quickly and that GMRES(10) behaves very similarly to GMRES(∞). This observation
is no longer true for the other geometries. It might depend on the number of eigenvalues that are
computed: the choice is the best for the Cetaf example but not for the other geometries.

Easy case

Restart Cetaf Airbus Cobra Almond
MFrob MSLRU(20) MFrob MSLRU(20) MFrob MSLRU(15) MFrob MSLRU(60)

10 271 30 - 639 514 378 492 95
30 128 27 - 439 280 196 149 67
50 100 27 - 390 264 188 118 68
∞ 74 27 421 242 222 172 109 63

Difficult case

Restart Cetaf Airbus Cobra Almond
MFrob MSLRU(20) MFrob MSLRU(20) MFrob MSLRU(15) MFrob MSLRU(60)

10 669 37 - 1200 2624 481 - 1497
30 275 31 - 688 1031 232 429 163
50 197 31 - 608 760 207 334 144
∞ 98 31 490 283 367 187 232 126

Table 8: Sensitivity to the GMRES restart parameter.

The MSLRU(k) preconditioner allows us to use a smaller restart than usual; this might be a
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significant asset on very large problems where using a large restart becomes a severe bottleneck
because of the prohibitive memory requirements. There are some problems where MFrob does not
converge, for instance on the Airbus case with a restart between 10 and 50, or on the Almond
example with a restart of 10, while MSLRU(k) does converge in a reasonable number of iterations.
On that later example, as we see in Figure 8, the convergence rate of GMRES increases with the
restart whatever the chosen preconditioner. Furthermore, the slope of the convergence history for
MSLRU(k) becomes quickly comparable to that for full GMRES, while for MFrob this phenomenon
takes more time to appear. Although not reported here, the same behaviour was observed on the
other geometries.
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Figure 8: Convergence history varying the restart for a “difficult” angle of the Almond test problem.

7 Complementarity of MSLRU(k) and the seed GMRES

algorithm

As mentioned already for a complete monostatic calculation, several linear systems with the same
coefficient matrix but different right-hand sides have to be solved. In that framework, it is crucial
not only to use an efficient preconditioner but also a suitable Krylov solver. There are basically
two classes of techniques designed for this purpose. These are the seed techniques and the block
approaches [13, 17, 20]. In this section, we investigate the benefit of using MSLRU(k) in the context
of seed GMRES.

For the sake of simplicity of the notation, we describe below the method for the solution of
only two right-hand sides. The problem can be written:

{

A(x1, x2) = (b1, b2) with,
(x0

1, x
0
2) initial guesses.

The seed GMRES method starts by solving the first system Ax1 = b1 using the GMRES algorithm.
Once that is converged, it computes an orthonormal basis of the Krylov space (V 1

m+1) and the
upper-Hessenberg matrix (H̄1

m) such that AV 1
m = V 1

m+1H̄
1
m. The idea consists in updating the

initial guess x0
2, by minimizing the norm of the residual r0

2 = b2 −Ax0
2 of the second system on the

basis V 1
m+1. We search a new initial guess x̂0

2 such as:
{

x̂0
2 = x0

2 + V 1
my2

y2 = argminy||b2 − A(x0
2 + V 1

my)||2
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Using the fact that:

||b2 − A(x0
2 + V 1

my)||22 = ||r0
2 − AV 1

my||22,

= ||(In − V 1
m+1(V

1
m+1)

T )r0
2 + V 1

m+1(V
1
m+1)

T r0
2 − AV 1

my||22,

= ||(In − V 1
m+1(V

1
m+1)

T )r0
2 + V 1

m+1((V
1
m+1)

T r0
2 − H̄1

my)||22,

= ||(In − V 1
m+1(V

1
m+1)

T )r0
2 ||

2
2 + ||V 1

m+1((V
1
m+1)

T r0
2 − H̄1

my)||22,

= ||(In − V 1
m+1(V

1
m+1)

T )r0
2 ||

2
2 + ||(V 1

m+1)
T r0

2 − H̄1
my||22,

we finally should solve the least-squares problem: arg miny||(V
1
m+1)

T r0
2−H̄1

my||2, where we already

have a QR factorization of H̄1
m given by the GMRES algorithm. Once the new initial guess is

computed, we simply run a new GMRES method for the second-right hand side. When more than
two right-hand sides are considered, the same algorithm can be applied but we have to solve a
least-squares problem for each previous right-hand side after the first.

In order to illustrate the advantage of using MSLRU(k) in this context, we consider eleven right–
hand sides: φ = 15o : 1o : 25o for θ = 90o, involved in the radar cross section calculation of the
Airbus. On these right–hand sides, seed GMRES combined with MFrob behaves rather poorly.
To illustrate this, we first compare the numerical behaviour of GMRES with three strategies for
defining the initial guess: first using the zero vector, second using the solution of the previous
linear system, and finally the initial guess computed by the seed technique. In Table 9, we display
the number of iterations for each right–hand side for the three initial guess strategies. In the case
of zero as initial guess, the initial backward error ‖r0‖2/‖b‖2 = ‖b − Ax0‖2/‖b‖2 is equal to one.
In Table 9, we see that the seed GMRES method does a good job of decreasing the initial residual

MFrob preconditioner
zero guess simple strat. seed GMRES

(θ, ϕ) # iter # iter ‖r0‖2/‖b‖2 # iter ‖r0‖2/‖b‖2

(90,15) 474 474 1 474 1
(90,16) 474 443 0.284 440 0.13
(90,17) 483 435 0.298 338 0.05
(90,18) 491 442 0.311 387 0.023
(90,19) 491 438 0.325 458 0.008
(90,20) 490 438 0.338 543 0.004
(90,21) 492 436 0.352 605 0.003
(90,22) 497 418 0.365 599 0.003
(90,23) 499 424 0.379 589 0.003
(90,24) 499 431 0.392 601 0.003
(90,25) 499 406 0.406 573 0.003

# iterations 5389 4785 5607
elapsed time (s) 17400 s 15438 s 28804 s

Table 9: Number of iterations per right–hand side using three strategies for the initial guess on
the Airbus example with MFrob preconditioner on 8 processors.

norm; it is always by far the smallest. Unfortunately, starting from the seed initial guess that is
the closest (in the backward error sense) to the solution does not guarantee fast convergence. That
is, from that good initial guess, GMRES performs rather poorly. It performs only slightly better
than starting from zero and is outperformed by the approach that starts from the initial guess
provided by the simple strategy of using the solution to the previous system. In other words and
surprisingly enough, the approach that gives the smallest initial residual norm is not the method
that gives the smallest number of iterations.
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We have observed this behaviour of the seed GMRES method on some other difficult problems.
Intuitively, it seems to us that an analogy exists between this behaviour and the observed stagnation
of the classical restarted GMRES method. In the two cases, an initial guess is extracted from a
Krylov space to generate a new Krylov space. As illustrated in the previous section, one possible
remedy for the restarted GMRES method is to replace MFrob by MSLRU(k).

In Table 10, we investigate this possibility. We keep the same strategies as in Table 9 but
now use MSLRU(20) rather than MFrob. The initial guess computed by the seed GMRES method
becomes the best performing strategy. In Figure 9, for each right–hand side, φ = 15o : 1o : 25o, we
plot the convergence history of the seed GMRES method with the two preconditioners. It can be
seen that although the norm of the initial residuals are about the same for the two preconditioners,
the rate of convergence is significantly improved by MSLRU(20). The seed GMRES method provides
a small initial residual and MSLRU(k) ensures a fast rate of convergence of GMRES iterations: in
a race starting close to the finish (seed strategy) and running fast (MSLRU(k) preconditioner) this
ensures we finish first!

MSLRU(20) preconditioner
zero guess simple strat. seed GMRES

(θ, ϕ) # iter # iter ‖r0‖2/‖b‖2 # iter ‖r0‖2/‖b‖2

(90,15) 280 280 1 280 1
(90,16) 275 198 0.284 201 0.14
(90,17) 275 188 0.298 145 0.052
(90,18) 276 190 0.311 167 0.025
(90,19) 280 198 0.325 165 0.009
(90,20) 283 205 0.338 171 0.006
(90,21) 284 208 0.352 171 0.005
(90,22) 286 212 0.365 170 0.005
(90,23) 289 214 0.379 172 0.005
(90,24) 291 218 0.392 176 0.005
(90,25) 292 219 0.406 171 0.005

# iterations 3111 2330 1989
elapsed time (s) 8348 s 6252 s 5518 s

Table 10: Number of iterations per right–hand side using three strategies for the initial guess on
the Airbus example with MSLRU(20) preconditioner on 8 processors.

8 Conclusions and prospectives

In this paper, we have shown that the MSLRU(k) preconditioner based on the MFrob preconditioner
is effective for solving large linear systems arising in challenging real-life electromagnetics
applications. It is important to point out that, to be effective, the spectral low rank update
should be built on top of a good enough preconditioner that already succeeds in clustering most of
the eigenvalues close to a point far from the origin (one in our case). There are two main reasons
that motivate this observation. Firstly, if only a few eigenvalues are left close to the origin, a
small rank update will be sufficient to significantly improve the convergence. Secondly, these few
isolated eigenvalues will be easily found by an eigensolver. Of course a trade-off between the two
components of MSLRU(k) should be found as the low rank update might be unnecessary if MFrob

is very dense, or it might be too expensive to improve a poor MFrob because too many eigenvalues,
potentially difficult to compute, have to be shifted.

We observe that the convergence of GMRES using MSLRU(k) only weakly depends on the choice
of the initial guess. This is particularly useful in the seed GMRES or restarted GMRES contexts.
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Figure 9: Convergence history of seed GMRES for the right-hand sides associated with φ = 15o :
1o : 25o using MFrob (©, in dashed line) and MSLRU(20) (×, in solid line) on the Airbus test
problem.

When several right-hand sides have to be solved with the same coefficient matrix, the extra cost
of the eigencalculation preprocessing phase is quickly amortized by the reduction in the number
of iterations as the extra cost per iteration is negligible. However, the cost of the preprocessing
phase can be decreased in different ways. The first approach would consist in constructing the
preconditioner as we solve different right-hand sides by extracting the spectral information from
previous GMRES solutions. Another possibility, as the accuracy of the eigenvectors in terms of
backward error does not need to be very good, would be to still compute them in a preprocessing
phase but with a less accurate FMM. Implementing this idea for the Cobra example leads to
the plot reported in Figure 10. In that figure, it can be seen that using either a high or the
medium accuracy FMM leads to the same quality of the MSLRU(k) preconditioner, while using
a low accuracy only deteriorates the efficiency by less than 20% in terms of iteration number.
Consequently, using a low accurate FMM for the eigencalculation might also be a way of reducing
the cost for the preprocessing phase.

A question that remains open is the a priori identification of the optimal number of eigenvalues
to be shifted. We have seen that increasing this number is always beneficial, but the relative gain
tends to vanish when this number becomes large. If the eigenvalue information was extracted at
run-time, a possible strategy might be to increase the size of the rank from one right-hand side to
the next as long as an improvement is observed. Further investigations deserve to be undertaken
to study this possibility in the framework of the monostatic radar cross section calculations.
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