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Abstract

Given the matrices A and E in C
n×n, we consider, for the family A(t) =

A+ tE, t ∈ C, questions such as i) existence and analyticity of t 7→ R(t, z) =
(A(t) − zI))−1 , and ii) limit as |t| → ∞ of σ(A(t)), the spectrum of A(t).
The answer depends on the Jordan structure of 0 ∈ σ(E), more precisely on
the existence of trivial Jordan blocks (of size 1). The results of the theory
of Homotopic Deviation are then used to analyse the convergence of Krylov
methods in finite precision.

Keywords : Sherman-Morrison formula, Jordan structure, frontier point,
critical point, limit point, Ritz value, eigenprojection, analyticity, singularity,
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1 Introduction

A and E are given matrices in C
n×n, which are coupled by the complex

parameter t to form A(t) = A+ tE. σ(A) (resp. re(A) = C − σ(A)) denotes
the spectrum (resp. resolvent set) of A. We study the two maps:

t ∈ C 7→ R(t, z) = (A(t) − zI)−1,

for z given in re(A), and
t ∈ C 7→ σ(A(t)).

∗Université Toulouse 1 and CERFACS,42 avenue G. Coriolis 31057 Toulouse Cedex 1, France.
E-mail: chatelin@cerfacs.fr

1



Such a framework is useful to perform a backward analysis for computa-
tional methods which are inexact: one has access to properties of A(t) by
means of the resolvent matrix R(0, z) = (A − zI)−1, z ∈ re(A), only. In
this context, the question of the behavior of R(t, z) and σ(A(t)) as |t| → ∞
arises naturally [6]. Such a study is also of interest for engineering when the
parameter t has a physical meaning and can be naturally unbounded [10].

Various approaches are useful, ranging from analytic/algebraic spectral
theory [1, 2, 3, 6, 10] to linear control system theory [12]. The theory surveyed
here is Homotopic Deviation [4, 5, 11] which specifically looks beyond
analyticity for |t| large. The case of interest corresponds to a singular matrix
E. The tools are elementary linear algebra based on the Sherman-Morrison
formula and on the Jordan structure of 0 ∈ σ(E), as well as the more advanced
Lidskii’s perturbation theory [17].

1.1 Presentation of the paper

The paper is organized as follows. The mathematical setting is given in the
rest of Section 1. Then Section 2 analyses the convergence rates for the two an-
alytic developments for R(t, z) around 0 and ∞. A similar analysis for σ(A(t))
is performed in Section 3. This results in a complete homotopic backward

analysis for the eigenproblem for A, in terms of t ∈ C, the homotopy pa-
rameter. The theory is used in Section 4 to explain the extreme robustness of
inexact Krylov methods to very large perturbations [5, 15].

1.2 Notation

We set
Fz = −E(A− zI)−1, z ∈ re(A)

Formally
R(t, z) = R(0, z)(I − tFz)

−1.

exists for t 6= 1
µz
, 0 6= µz ∈ σ(Fz) and is computable as

R(t, z) = R(0, z)

∞
∑

k=0

(tFz)
k for |t| <

1

ρ(Fz)
, ρ(Fz) = max |µz|.

When rank E = n, 0 /∈ σ(Fz), and the eigenvalues of Fz are denoted by
µiz, i = 1, · · · , n. Therefore R(t, z) is defined for almost all t ∈ C, t 6= ti,

with ti = 1
µiz

, i = 1, · · · , n. Consequently z is an eigenvalue of the n matrices

A(ti), i = 1, · · · , n. What happens in the limit |t| → ∞?
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We set s = 1/t, t 6= 0.

I − tFz = (sF−1
z − I)tFz,

and
(I − tFz)

−1 = −sF−1
z (I − sF−1

z )−1 → 0 as s→ 0

Therefore
lim

|t|→∞
R(t, z) = 0

Similarly

A(t) = A+ tE = t(sA+E) =
1

s
(E + sA).

An eigenvalue λ(t) of A(t) is such that

λ(t) =
ν(s)

s
with ν(s) ∈ σ(E + sA).

Clearly, by continuity,

ν(s) → ν ∈ σ(E) as s→ 0,

and ν 6= 0 implies |λ(t)| → ∞. Therefore, when E is regular and |t| → ∞,
the limit of the resolvent matrix R(t, z) (resp. the spectrum σ(A(t)) is 0
(resp. at ∞). To get a richer situation where the limit resolvent may be
nonzero, and eigenvalues may stay at finite distance, we assume that E 6= 0
is singular, or rank deficient, r = rank E, 1 ≤ r < n. We set Ĉ = C ∪ {∞};
card Ĉ = card C = c denotes the cardinal of the (complex) continuum.

1.3 E = UV H with U, V ∈ C
n×r of rank r

1 ≤ r < n, E 6= 0

Any singular matrix E 6= 0 of rank r can be written under the form

E = UV H , with U, V ∈ C
n×r of rank r, 1 ≤ r < n,

where U, V of rank r represent a basis for Im E, Im EH respectively [12]. Fz

has now rank r, so that at most r eigenvalues µiz, i = 1, · · · , r are nonzero.
They are the r eigenvalues of

Mz = −V H(A− zI)−1U ∈ C
r×r, z ∈ re(A).

By applying the Sherman-Morrison formula [12] we have that

R(t, z) = R(0, z)[In − tU(Ir − tMz)
−1V HR(0, z)] (1)
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exists for t 6= 1
µz
, 0 6= µz ∈ σ(Mz). For z ∈ re(A), R(t, z) is not defined when

t ∈ C satisfies tµz = 1, 0 6= µz ∈ σ(Mz). If Mz is regular, this is equivalent
to t ∈ σ(M−1

z ).
Therefore z ∈ re(A) is an eigenvalue of A + tE iff tµz = 1. This means

that any z in re(A) is an inexact eigenvalue for A at homotopic distance
|t|, that is z is an exact eigenvalue of the r matrices A(ti) = A + tiE with

ti = 1
µiz

∈ C, i = 1, · · · , r, when Mz is of rank r.
When r > 1, the homotopic distance is not uniquely defined.
The matrix Mz of order r < n will play the key role in the analysis of our

problem, similar to the role of the transfer matrix in linear control theory [12].

1.4 The limit of R(t, z) when |t| → ∞, for z ∈ re(A)

We suppose that |t| > 1/min |µz| for Mz of rank r.

Proposition 1.1 For 1 ≤ r < n, z given in re(A) such that rank Mz =
r, lim

|t|→∞
R(t, z) exists and is given by

R(∞, z) = R(0, z)[In + UM−1
z V HR(0, z)]

Proof. By assumption, M−1
z exists. Ir − tMz = (sM−1

z − Ir)tMz,

(Ir − tMz)
−1 = −sM−1

z (Ir − sM−1
z )−1,

−tU(Ir − tMz)
−1 = UM−1

z (Ir − sM−1
z )−1 → UM−1

z .

The rest follows from(1). Prz
= In + UM−1

z V HR(0, z) is the eigenprojection
for Fz = −UV HR(0, z) associated with the semi simple eigenvalue 0 ∈ σ(Fz)
of multiplicitiy n− r. �

When M−1
z exists, the asymptotic resolvent R(∞, z) exists and is com-

putable in closed form as R(0, z)Prz
. This shows the dual role played by

the two quantities |t1| = 1/max |µz| = 1/ρ(Mz) and |tr| = 1/min |µz| =
ρ(M−1

z ).
1) |t1| defines the largest analyticity disk for R(t, z): it rules the conver-

gence of the initial analytic development

R(t, z) = R(0, z)[In − tU
∞
∑

k=0

(tMz)
kV HR(0, z)] (2)

based on Mz and valid for |t| < |t1| (around 0).
The series expansion(2) becomes finite when Mz is nilpotent (ρ(Mz) = 0).
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2) |tr| defines the smallest value for |t| beyond which R(t, z) is analytic in
s = 1/t: it rules the convergence of the asymptotic analytic development:

R(t, z) = R(0, z)[In + UM−1
z

∑∞
k=0

(sM−1
z )kV HR(0, z)]

= R(∞, z) +R(0, z)UM−1
z

∑∞
k=1

(tMz)
−kV HR(0, z),

(3)

based on M−1
z and valid for |t| > |tr|, s = 1/t, (around ∞).

Observe that M−1
z cannot be nilpotent (because it is invertible).

1.5 Frontier of existence for R(∞, z) = lim
|t|→∞

R(t, z)

z ∈ re(A)

In general, lim
z→λ

ρ(Mz) = ∞ for λ ∈ σ(A). If λ ∈ σ(A) is such that lim
z→λ

Mz =

Mλ is defined (hence ρ(Mλ) <∞, see [3]) we say that λ is normwise-unobservable
by the deviation process (A,E) [11]. An eigenvalue λ such that lim

z→λ
σ(Mz) =

σλ exists, in particular ρ(Mz) → ρλ < ∞ is spectrally unobservable [11], in
short σ-unobservable.

Definition 1.1 The frontier points form the set F (A,E) = {z ∈ re(A); 0 ∈
σ(Mz)} of points in re(A) for which R(∞, z) does not exist. The critical
points form the set C(A,E) of frontier points such that ρ(Mz) = 0.

The inclusion C(A,E) ⊂ F (A,E)) becomes an equality when r = 1. In
general, if Mz is not rank defective for all z in re(A), F (A,E) is a finite set
of isolated points in re(A) ⊂ C. We shall see below that when 0 ∈ σ(E) is
semi-simple, then card F (A,E) ≤ (n− 1)r. [11].

An exceptional case when card F (A,E) = c or 0 is provided by the partic-

ular matrix A = λI, which entails Mz = 1
z − λ

V HU . Clearly, Mz is regular

(resp. singular) for z 6= λ when 0 is semi simple (resp. defective).
Similarly, it will be shown that C(A,E) is a finite set of at most n − 1

points, unless the map t 7→ σ(A(t)) is constant for t ∈ C, and C(A,E) =
F (A,E) = re(A). This situation requires E to be nilpotent [11].
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2 Convergence rates for the two analytic

developments for R(t, z) as functions of z ∈
re(A).

As z varies in re(A), the convergence rate for (2) (resp. (3) is described by
the map : ϕ1 : z 7→ ρ(Mz) (resp. ϕ2 : z 7→ ρ(M−1

z )).

2.1 The spectral portrait ϕ1

The map ϕ1 is the homotopic analogue of the popular normwise spectral
portrait map : z 7→ ||(A− zI)−1||, [6]. In ϕ1, the matrix (A− zI)−1 of order
n is replaced by Mz of order r < n, and || · || by ρ(·).

An important consequence is that ϕ1 can localize the critical points (ρ = 0)
when they are isolated, whereas the normwise spectral portrait cannot, see
specifically the paragraph 2.3.

The map ϕ1 : z 7→ ρ(Mz) is subharmonic with singularities at the σ-
observable eigenvalues of A (ρ = ∞) and the critical points (ρ = 0). We
assume that there exist σ-observable eigenvalues. Subharmonicity in C is the
2D-analogue of monotonicity in R. It allows to order the ε−level sets, ε > 0 by
inclusion. As z varies outside the disk {z; |z| ≤ ρ(A)}, ρ(Mz) decreases from
+∞ to 0 (ρ(Mz) → 0 as |z| → ∞). Therefore the set Γα

0 = {z ∈ C; ρ(Mz) =
α} consists of a finite number of closed curves. For α small enough, there exists
one single exterior curve around all the others which enclose local minima or
isolated critical points.

The associated domain of convergence for(2) is the unbounded region out-
side the outer curve and inside the inner curves. See Figure 1, a) on the left.
See also [7, 8].

2.2 The frontier portrait ϕ2

The map ϕ2 : z 7→ ρ(M−1
z ) = ρ2 is also subharmonic with singularities (ρ =

∞) at points in F (A,E). We assume that A 6= λI, and that F (A,E) is a non
empty finite set. When |z| increases away from F (A,E), ρ(M−1

z ) decreases to
a local minimum to increase again (ρ(M−1

z ) → ∞ as |z| → ∞). For β ≥ β? >

0, the set Γβ
∞ = {z ∈ C; ρ(M−1

z ) = β} consists of a finite number of closed
curves. And for β large enough, there exists one single exterior curve around
the others which enclose the points in F (A,E). We observe that in exact
arithmetic, it is conceivable that ρ(M−1

z ) can be 0 at σ-observable eigenvalues
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Figure 1: Analytic representations for R(t, z), α ≤ β

of A, for which Mz is not defined, hence µmin = ∞( 1
µmin

= 0) where µmin is
an eigenvalue for Mz of minimal modulus.

The associated domain of convergence for (3) is the bounded region inside
the outer curve and outside the inner ones. See Figure 1, b) on the right
and [10]. The shaded areas represent the respective analyticity domains for

R(t, z) around 0 (|t| < 1
α) and ∞ (|t| > β), with α small or β large, α ≤ β.

2.3 The critical points

When they exist, the critical points in C(A,E) ⊂ F (A,E) are singularities for
ϕ1 (at 0) and for ϕ2 (at ∞).

At an isolated critical point, there is an abrupt change in the representation
of R(t, z). The symmetry of the dual analytic representation, valid locally for
|t| small (around 0) or large (around ∞) is broken in favour of 0.

The finite representation:

R(t, z) = R(0, z)[In − tU

r−1
∑

k=0

(tMz)
kV HR(0, z)] (4)

as a polynomial in t of degree ≤ r, is valid for t everywhere in C. The limit
as |t| → ∞ is not defined.

If Mz is nilpotent for any z in re(A), σ(A) is unobservable but R(0, z) is
not defined for z ∈ σ(A).

2.4 The case r = 1

The matrix Mz of order r reduces to the scalar µz. And µzµ
−1
z = 1. Therefore

C(A,E) = F (A,E), and we can choose α = β = 1. The unique set Γ1
0 = Γ1

∞

reduces to the set Γ studied in [7].
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There are at most n − 1 critical points [4, 11] unless σ(A(t)) is invariant
under t ∈ C. In this case C(A,E) = re(A) and can be extended to C by
continuity of z 7→ ρ(Mz) = 0.

The symmetry between 0 and ∞ expressed by s = 1/t is also carried by
ρ(M−1

z ) = 1/ρ(Mz). Convergence at 0 (resp. ∞) for (2) is equivalent to
divergence at 0 (resp. ∞) for (3) for any z not critical (ρ(Mz) > 0). Such an
exact symmetry does not hold for r > 1 since any z in re(A), which is not a
frontier point, is simultaneously an eigenvalue for r matrices A(t), instead of
just one. We shall continue this analysis in Section 3, after the comparison of
the normwise versus homotopic level sets to follow.

2.5 Normwise versus homotopic level sets for

|| · ||, ϕ1, ϕ2.

A classical normwise backward analysis yields the well-known identity for
ε > 0:

RN
ε = {z ∈ re(A); ||(A−zI)−1|| ≥

1

ε
} = {z ∈ σ(A+E)∩re(A), ||E|| ≤ ε} = SN

ε ,

where the sets cannot be empty [6]. N stands for normwise.

The homotopic analogue of RN
ε is given by Rε = {z ∈ re(A); ρ(Mz) ≥

1
ε}

which can be empty for ε > 0 if all the eigenvalues of A are σ-unobservable
by (A,E). Such a situation corresponds to ρ(Mz) = 0 for any z ∈ re(A).

The analogue of SN
ε consists of the z in re(A) which are eigenvalues of

A + tE, at distance |t| ≤ ε. Because there can be r such matrices for any
given z in re(A), the homotopic distance is not uniquely defined.

For example, one can choose a distance which is a) minimal or b) maximal.
This corresponds to :

a) |t| = 1
|µmax|

: A(t) is the closest matrix having z as its eigenvalue. Then

Sa
ε = Rε [9]. This is the only possibility when r = 1.

b) |t| = 1
|µmin|

: A(t) is the farthest matrix, then Sb
ε ⊂ Rε. The maximal

distance induces the level set for ϕ2 : ρ(M−1
z ) ≤ ε [10].

3 The spectrum σ(A(t)) as |t| → ∞

Because E is singular, it is possible that some eigenvalues λ(t) of A(t) remain
at finite distance when |t| → ∞ [4].

Observing the evolution t 7→ λ(t) as t ∈ C leads to the distinction between
invariant and evolving eigenvalues for A, according to the :
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Definition 3.1 λ ∈ σ(A) is an evolving (resp. invariant) eigenvalue iff
λ(t) 6= λ for almost all t 6= 0 (resp. λ(t) = λ for all t ∈ C). We write
σ(A) = σi ∪ σe where σi (resp. σe) consists of invariant (resp. evolving)
eigenvalues.

Note that, in case of a multiple λ, one copy of λ may be invariant while
another is evolving [10].

3.1 Notation

0 ∈ σ(E) has algebraic (resp. geometric) multiplicity m (resp. g = n − r).
The general case is g < m ≤ n (0 defective). There are g ′, 0 ≤ g′ < g, trivial
Jordan blocks of size 1 associated with 0. The corresponding eigenvectors
span K ′ ⊂ Ker E when g′ ≥ 1; M = Ker Em is the invariant subspace for 0.
Let P (resp. P ′) be the spectral (resp. eigen)projection on M (resp. K ′). Π
(resp. Π′) of order m (resp. g′) represents the Galerkin approximation PAP
(resp. P ′AP ′) restricted to M (resp. K ′). The spectrum σ(Π) (resp. σ(Π′))
consists of the associated Ritz values. If 0 is semi-simple, g ′ = g = m =
n− r < n, K ′ = Ker E = M, P ′ = P and Π′ = Π.

The Galerkin approximation P ′AP ′ and its restriction Π′ to K ′ will play
an essential role for the analysis of lim σ(A(t)) as |t| → ∞.

We define in Ĉ the set σ∞(A,E) = lim
|t|→∞

σ(A(t)) = {∞, Lim }, which

represents the possible limits for λ(t) ∈ σ(A(t)) as |t| → ∞. Either |λ(t)| →
∞, or λ(t) → z ∈ Lim ⊂ C.

We set l? = card Lim , 0 ≤ l? ≤ n, where the points in Lim are counted
according to their algebraic multiplicity as eigenvalues of A(t), |t| large.

It is clear that all invariant eigenvalues in σi belong to Lim .

3.2 Backward analysis for the eigenproblem on A

For any given z ∈ C, we investigate the various ways in which z can bee seen
as an exact eigenvalue for A+ tE, t ∈ Ĉ. Therefore, we introduce the

Definition 3.2 The set Nz = {0 6= t ∈ Ĉ, z ∈ σ(A + tE)} is the nodal set
for z ∈ C.

We define kz = card Nz. We distinguish whether kz is finite or kz = c.
When kz is finite, each ti = 1

µiz
in Nz is counted according to the algebraic

multiplicity of µiz in σ(Mz).

Proposition 3.1 When z ∈ re(A), kz = r. When z = λ ∈ σ(A), kλ = c
when λ is invariant. When λ is evolving, kλ is finite.
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Proof. Clear by tµz = 1. �

Proposition 3.1 specifies the number kz of ways by which any z in C can
be seen as an inexact eigenvalue for A (that is, an exact eigenvalue for A+ tE,
with 0 6= t ∈ C or |t| = ∞). Such a number is finite when z is not an invariant
eigenvalue λ = z in σi. When this is the case, the backward analysis delivers
an ambiguous answer : kλ = c : λ is an exact eigenvalue for A+ tE for any
t ∈ C.

3.3 Properties of Lim

We suppose first that 0 ∈ σ(E) is defective : 0 ≤ g ′ < g = n− r < m ≤ n.
Lim can be partitioned into the invariant spectrum σi and Lim e = {z ∈

C, z = lim
|t|→∞

λ(t) with λ(t) 6= λ(0) = λ for almost all t}, which consists of

the limits in C of evolving eigenvalues originating from σe. Clearly σi ∩ Lime

need not be empty.

Lemma 3.2 If there exists an eigenvector u for A associated with λ such that
u ∈ Ker E, then λ is invariant in σi.

Proof. (A + tE)u = λu for any t ∈ C, since u is an eigenvector for A such
that Eu = 0. Observe that the lemma provides a sufficient condition only for
λ ∈ σi [11]. When λ is multiple, it is possible that another copy is evolving. �

We follow the study of Lim presented in [11]. It relies on the relation

A+ tE = t(E + sA) = 1
s (E + sA) for s = 1/t, and on the spectral properties

of 1
s (E + sA) when s → 0, analyzed by Lidskii’s theory [11]. The reader is

refered to [11], Section 4, for the notations used below related to E = XJX−1:

X̃ = [Z,X ′], Ỹ = [W,Y ′], Π̃ =

(

Γ R
L Π′

)

= Ỹ TBX̃, with B = X−1AX.

Under the assumption (G) that Γ has rank f , the matrix Ω = Π′−LΓ−1R
is the Schur complement of Γ in Π̃. The stronger assumption (Ĝ) on Γ is
defined in [11].

Theorem 3.3 i) When (G) holds with g′ ≥ 1, then Lim ⊃ σ(Ω)
ii) When (G) is replaced by (Ĝ), then Lim = σ(Ω).

Proof. Point i) is Proposition 4.2 in [11]. For Point ii) the reader is refered
to [11], and to [17], theorem 2.1. �

We observe that (Ĝ) reduces to (G) when the non trivial Jordan blocks
are of the same size. We shall use this observation in Section 4.
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In general, one has the

Proposition 3.4 When the critical set is discrete, then

C(A,E) ⊂ Lim ∩ re(A) ⊂ F (A,E)

with equalities when r = 1.
When the critical set is continuous, F (A,E) = C(A,E) is the continuous

set re(A), and Lim = σ(A).

Proof. See Theorem 5.5 in [11]. �

Corollary 3.5 When 0 is defective and (Ĝ) holds with g′ ≥ 1, the critical set
C(A,E) is either discrete in re(A) with at most g ′ ≤ n− r− 1 points, or it is
continuous.

Proof. Clear from g′ < g = n− r, and Theorem 3.3. �

An immediate consequence is that when g ′ = 0 (no trivial Jordan blocks)
the three sets σ(Π′), Lim and C(A,E) are empty under (Ĝ).

The situation simplifies when 0 ∈ σ(E) is semi-simple : first the conditions
(G) and (Ĝ) vanish; second, the critical and frontier sets are always discrete
with respectively at most n−r and (n−1)r points. Lim contains exactly n−r
points which are the Ritz values in σ(Π). Lim can never contain n points : r
eigenvalues necessarily escape to ∞.

Proposition 3.6 If 0 ∈ σ(E) is semi-simple, then Lim = σ(Π) and C(A,E) ⊂
Lim ∩ re(A) ⊂ F (A,E), with g′ = g = n− r = m = l? < n.

See [4, 10, 11]. A numerical example in Computational Acoustics is treated
in [10], where s = ζ is the complex impedance, and t = 1/ζ is the admittance.
The boundary condition for the acoustic wave is Neumann (resp. Dirichlet)
for ζ = ∞ (resp 0).

3.4 Convergence of the eigenvectors

By Theorem 3.3, the assumption (Ĝ) guarantees that exactly g′ eigenvalues
tend to σ(Ω), the remaining n−g′ ones diverging to ∞. If we assume moreover
that Ω has distinct simple eigenvalues, then for s small, E(s) = E + sA has
exactly g′ simple eigenvalues. The associated eigenvectors are the eigenvectors
for A(t) associated with the converging λ(t). They converge in O(s) to g ′

vectors specified in the
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Theorem 3.7 Under the three assumptions g ′ ≥ 1, (Ĝ) and Ω has simple
eigenvalues, exactly g′ simple eigenvalues λ(t) for A+ tE converge to a limit
point ξ ∈ σ(Ω) as |t| → ∞.

The corresponding eigenvectors x(t) converge in O(1/t) to ϕ ∈ Ker E with
ϕ = (I − Σ)X ′b, where Ωb = ξb, and Σ = ZΓ−1W TB.

Proof. This is a particular case (j = q) of theorem 2.2 in [17], which proves

that ϕ = [Z,X ′]

(

c
b

)

where (c b)T is a nonzero solution of

(

Γ R
L Π′ − ξIg′

)(

c
b

)

=

(

0
0

)

.

This system is equivalent to

(

Γ 0
0 Ω − ξIg′

)(

If Γ−1R
0 Ig′

) (

c
b

)

= 0,

that is

{

(Ω − ξIg′)b = 0, b 6= 0
c+ Γ−1Rb = 0

because Γ has rank f . This yields

ϕ = [Z,X ′]

(

−Γ−1Rb
b

)

= X ′b− ZΓ−1W TBX ′b

= (I − Σ)X ′b ∈ Ker E.

We observe that P ′ϕ = X ′b ∈ K ′ since Y ′TZ = 0. But ϕ does not belong to
K ′, unless R or L = 0, hence c = 0. �

The matrix Σ is a projection with rank 1 [11].
We recall [11] that I−Σ expresses the complexity introduced by the pres-

ence of non trivial Jordan blocks. Indeed, Σ = 0 when 0 ∈ σ(E) is semi-simple.
We know that Ω−ξIg′ , of order g′, is singular iff Mξ, of order r, is also sin-

gular. Under (Σ), there is a 1 to 1 correspondence between a ∈ C
r, eigenvector

for Mξ and b ∈ C
g, eigenvector for Ω = Π at ξ(g′ = g).

The vector v = Ua ∈ Im E is such that v = (B − ξI)u is the residual for
(ξ, u), u ∈ Ker E, an eigenpair for Π. From this follows the preservation of
geometric multiplicities : dim Ker (Π − ξI) = dim Ker Mξ.

What is the situation when 0 is defective? The eigenvector a forMξ defines
w = Ua ∈ Im E, such that w = (B − ξI)u with u ∈ Ker E. The eigenvector
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b for Ω defines ϕ ∈ Ker E and the residual v = (B − ξI)ϕ such that P ′v = 0.
(ξ, u) with u = X ′b is an eigenpair for P ′B(I − Σ)P ′

�K′ .
The vector v belongs to Ker P ′ of dimension n− g′, whereas w belongs to

Im E of dimension r = n−g < n−g′. The identification v = w is not possible,
unless v has no component on T , the subspace of dimension f spanned by the
invariant vectors ending the f Jordan chains of dimension > 1.

This happens to be true, according to the

Lemma 3.8 The residual vector v = (B − ξI)ϕ has no component in T .

Proof. Because ϕ ∈ Ker E = K ′ ⊕ S, it suffices to prove that W TBϕ = 0,
where W is a basis for T . W TBϕ = W TB(I − Σ)X ′b = Rb− (ΓΓ−1)Rb = 0.
Therefore v ∈ Im E. �

Corollary 3.9 When F (A,E) is finite the equality
1 = dim Ker (Ω − ξI) = dim Ker Mξ holds for ξ ∈ re(A) under the as-

sumptions of Theorem 3.7.

Proof. Clear from Lemma 3.8. There is a 1 to 1 correspondence between b
and a through v = w. �

When the eigenvalues of Ω are all simple, and when F (A,E) is finite, we
get back the preservation of geometric multiplicities which is the rule under
(Σ). In the general case, when dealing with the convergence of eigenvectors,
it seems difficult to bypass the first assumption(ξ simple), which is required
to make use of the implicit function theorem [17], p.803. The convergence of
eigenvalues is less demanding. We know that (Ĝ) can be weakened into (G)
to get σ(Ω) ⊂ Lim [11].

3.5 Limits of the backward analysis

The connection between z and t which holds when z is interpreted as an
eigenvalue of A+ tE is expressed by tµz = 1.

This relation is well defined for t and µz nonzero. The limits of the back-
ward analysis correspond to (t = 0, |µz| = ∞) or (|t| = ∞, µz = 0).

1) λ is an exact eigenvalue for A : t = 0 requires that Mλ is not defined.
This is the case for observable eigenvalues (µλ is not defined).

Normwise-unobservable eigenvalues (Mλ exists) are seen by the process as

inexact eigenvalue at a positive distance ≥ 1
ρ(Mλ)

, instead of at a distance

exactly zero.
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2) z ∈ re(A) is a critical point such that ρ(Mz) = 0, therefore |t| = ∞ is the
only possibility. An isolated critical point is an inexact eigenvalue at infinite
distance, in agreement with the representation of R(t, z) as a polynomial in
t. Such a z is the limit of λ(t) as |t| → ∞.

However, when the set of critical points is C, that is, when Mz is nilpotent for
any z in re(A), Lim = σ(A) and only the eigenvalues themselves are (trivial)
limits, not arbitrary critical points in re(A).

4 Convergence of Krylov methods in finite

precision

We approach this question by considering an iterative Krylov method as an
inner-outer iteration.

The outer loop modifies the starting vector υ1 for the construction of
the Krylov basis. The inner loop is a direct method which is an incomplete
Arnoldi decomposition of size k, k < n [13, 11]. The dynamics of this 2-level
algorithm is studied by a homotopic deviation on the matrix of order k + 1

B =

(

Hk u

0 a

)

such that Hk+1 =

(

Hk u

0 h
k+1 k

a

)

is the computed Hessenberg form of order

k + 1. The homotopy parameter is h = hk+1 k, and the deviation matrix
is E = ek+1e

T
k : B(h) = B + hE = Hk+1. E is nilpotent (E2 = 0) with

rank 1, and σ(E) = {(01)k−1, (02)}. For k fixed, 1 < k < n, we set H− =
Hk−1, H = Hk, H

+ = Hk+1 : these are the three successive Hessenberg
matrices constructed by the Arnoldi decomposition, of order k − 1, k and
k + 1. And we define u = (ũT , uk)

T , h− = h
k k−1

We assume that Hk = H is irreducible, therefore σ(H−) ∩ σ(H) = ∅ and
hk k−1 6= 0 in particular. σ(B) = σ(H) ∪ {a}.

4.1 Theoretical consequences

With the notation of Section 3, 0 ∈ σ(E) has the multiplicities g ′ = k − 1 <
g = k < m = k + 1. Therefore g′ ≥ 1 for k ≥ 2. The eigenspace K ′ is
K ′ = lin (e1, · · · , ek−1), and P ′ is the orthogonal projection on K ′, P = Ik+1.

Thus Π′ = Hk−1 = H−, and Ω = H− −
h

k k−1

uk
ũeTk−1

for uk 6= 0. The matrix

Mz reduces to the scalar µz = −eTk (B − zIk+1)
−1ek+1, for z /∈ σ(B). Finally,
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because r = 1, C(B,E) = F (B,E) in re(B). We survey the results established
in [5].

1) About critical and limit points.
Theory tells us that (Ĝ) = (G) and the generic case corresponds to uk 6= 0.

Therefore Lim = σ(Ω), and Lim ∩ re(B) = C(B,E) contains at most k − 1
critical points in re(B). Exactly two eigenvalues of H+ escape to ∞ as |h| →
∞.

2) Rational/linear representation of (H+ − zIk+1)
−1 for z /∈ σ(H+).

Given any z in re(B), we consider the resolvent R(z) = (B − zIk+1)
−1.

We define βz = (B−zIk+1)
−1ek+1 its last column, and αT

z = eTk (B−zIk+1)
−1

its kth row.
Provided that hµz 6= 1, z is not an eigenvalue for H+. One has the

following representation in h :

(H+ − zIk+1)
−1 = R(z) +

h

hµz − 1
βzα

T
z , hµz 6= 1.

The representation is rational in h for µz 6= 0, and linear for µz = 0 (z critical).
We consider now the equation :

(H+ − zIk+1)g = f,

and its solution g = g(h, z) = (H+ − zIk+1)
−1f .

We set g0(z) = R(z)f, g1(z) = (αT
z f)βz. It is clear that

g(h, z) = g0(z) +
h

hµz − 1
g1(z), for hµz 6= 1.

What happens if hµz = 1? z is an eigenvalue for H+ with associated eigen-
vector βz, colinear with g1(z).

3) Remarkable identities for αT
z and βz , z /∈ σ(H+).

The last two components of these vectors have a simple explicit expression,
respectively given by :

αT
z ek =

π−(z)
π(z)

, where π(z) = det(H − zIk) and π−(z) = det(H− − zIk−1),

αT
z ek+1 = eTk βz = −µz, and eTk+1

βz = 1
a− z

When z is critical, z ∈ σ(Ω) ∩ re(B) and µz = 0. Therefore the rank 1

matrix βzα
T
z has its kth row, and its last column equal to 0. This has the

following consequences on g1(z) = (αT
z f)βz, for z critical: the kth component

eTk g1(z) = 0, and the scalar αT
z f is independent of the last component of f

4) On the pseudo eigenpairs for Hl, l ≥ k deriving from an exact eigenpair
for H−.
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Let (ξ, p) be an exact eigenpair for H− : H−p = ξp for p ∈ C
k−1. We

consider the augmented vector ψ̂l = (pT , 0)T in C
l, l ≥ k, and define h− =

h
k k−1

, pk−1 = eTk−1
p.

The pair (ξ, ψ̂l) is a pseudo eigenpair for Hl, l ≥ k corresponding to the
residual vector (h−pk−1)ek in C

l. The pair (ξ, ψ̂l) cannot be improved by
inverse iteration using the Hessenberg form Hl, for l ≥ k + 1 (g1(ξ) = 0 for
any f colinear with ek). This explains why the true residual for ξ increases
after the iteration k+1, when ξ has been computed at iteration k−1. See [13]
for a numerical illustration. When this happens, the only solution is to restart
with an improved starting vector v1.

5) The four spectra σ(H−), σ(H), σ(H+) and σ(Ω).
Classical ”convergence” takes place when the three spectra σ(H−), σ(H)

and σ(H+) have a number of points close to each other. If, in addition, certain
eigenvalues of Ω are nearby, this gives a reason why convergence may be better
explained with |h| large rather than small.

This happens if Ω = H−, that is ũ = 0. This is almost true when

||Ω−H−|| = |h−|
||ũ||
|uk|

is small. Observe that
||ũ||
|uk|

= tan ψ, where ψ is the

acute angle between the directions spanned by ũ and ek. uk 6= 0 iff 0 ≤ ψ < π
2 .

4.2 Algorithmic consequences in finite precision

In exact arithmetic, the algorithmic analysis of the inner loop is easy under
the assumption of irreducibility : either v1 is an invariant vector for A and
the algorithm stops exactly (with h = 0) for k < n, or v1 is not invariant and
the algorithm has to be run to completion (k = n).

In finite precision, the analysis is more delicate, since the mathematical
analysis for convergence (h→ 0) is valid only when round-off can be ignored.
And it is well known that round-off cannot be ignored when ”convergence”
takes place [13, 14, 16].

”Convergence” in finite precision means ”near-reducibility”, and this can
happen with |h| large, although this seems numerically counter-infinitive at
first sight.

The algorithmic dynamics for ”convergence” entails that there exist points
in σ(H−), σ(H) and σ(H+) which are very close, in spite of the fact that an
exact coincidence is ruled out by the assumption of irreducibility for A.

The dynamics expressed in finite precision makes it possible that a value
z ∈ σ(H+) which is close to σ(Ω) corresponds to a large h : z can be nearly
critical. Therefore a complete explanation for the ”convergence” of Krylov
methods in finite precision requires to complement the classical point of view
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of exact convergence (h → 0), valid when the arithmetic can be regarded as
exact, by the novel notion of criticality (|h| → ∞) which takes care of the
effect of finite precision when they cannot be ignored.

The reader is refered to [5] to see precisely how this new notion clarifies the
finite precision behaviour of such key aspects of Krylov methods as the Arnoldi
residual, an algorithmic justification for restart and the extreme robustness to
very large perturbations [15]. The notion of criticality offers therefore a theo-
retical justification for highly successful heuristics. It also shows why |h

k+1 k
|

small can be a misleading indicator for the nearness to exact reducibility.
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