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Abstract. This paper discusses how to control the accuracy of inexact
matrix-vector products in restarted GMRES. We will show that the GM-
RES iterations can be performed with relatively low accuracy. Further-
more, we will study how to compute the residual at restart and propose
suitable strategies to control the accuracy of the matrix-vector products
in this computation.

1 Introduction

Iterative Krylov subspace solvers are widely used for solving large systems of lin-
ear equations. In recent years Krylov subspace methods have been used more and
more for solving linear systems and eigenvalue problems in applications with full
coefficient matrix where the matrix-vector products can be approximated rea-
sonably effectively with some (iteration) method. Examples include simulations
in quantum chromodynamics [9], electromagnetic applications [5], the solution
of generalized eigenvalue problems [6], and of Schur complement systems [3, 8].
Relaxation strategies for controlling the accuracy of inexact matrix-vector prod-
ucts within Krylov methods have attracted considerable attention in the past
years, see [1-3,8,10,11]. These strategies allow the error in the matrix-vector
product to grow as the Krylov method converges, without affecting the final
accuracy too much. Relaxation strategies have been proposed for a range of
different Krylov methods, and have shown to be surprisingly effective for the
applications mentioned above.

In this paper we will discuss techniques for controlling the error in the matrix-
vector product in the context of restarted GMRES. We will argue that the GM-
RES iterations at the inner level can be performed with relatively low accuracy
for the matrix-vector products, since only a residual reduction has to be achieved.
Moreover, this low accuracy can be further reduced by applying a relaxation
strategy. At restart, a suitable strategy to control the error in the matrix-vector



product for the computation of the residual depends on the method by which
the residual is updated. We will discuss two different methods and propose cor-
responding strategies to control the accuracy of the matrix-vector products in
this computation. We will illustrate our ideas with two different types of Schur
complement systems.

2 Restarted GMRES with inexact matrix-vector products

2.1 Preliminaries

The central problem is to find a vector x’ that approximately satisfies the equa-
tion
Ax =b such that |b— Ax|s <e, (1)

for some user specified, predefined value of €. For ease of presentation we will
assume that the problem is scaled such that ||b|| = 1. We will solve the above
problem with the restarted GMRES-method but assume that the matrix A is
not explicitly available. Instead, vectors of the form Av are replaced with an
approximation A,(v) that has a precision 7:

An(v) = Av + £ with [|f]l2 < nl|Afl2[[v]- (2)

2.2 Outline of the algorithm

In restarted GMRES, in every (restart) step a correction to the current approxi-
mation is computed by at most m iterations of the GMRES method. Restarting
the method is very attractive if inexact matrix-vector products are used, since
in the inner loop (the actual GMRES iterations) only a residual reduction has
to be achieved that can be much smaller than the final norm of the residual
[lb — Ax'||]2 < € we aim for. As a consequence, lower tolerances can be used in
the inner loop for the inexact matrix-vector products [11].

In Figure 1 we have summarized the general structure of the restarted GM-
RES method. The GMRES iterations are terminated after m steps, or if a resid-
ual reduction of €;,,er has been achieved. In the j + 1-th GMRES iteration of
the k-th step of the method we have to prescribe the tolerance 7; ; for the pre-
cision of the matrix-vector product. Since we allow at most a residual reduction
of €jnner between two restarts, we can apply the relaxation strategy that was
proposed in [2] to further reduce the cost of the inexact matrix-vector products.
Translated in our setting, this strategy reads

Nk = meinnew (3)

P gl
Here ||r;|l2 is the norm of the residual computed in the j + 1-th GMRES
iteration of the k-th step. Notice that the limitation on the residual reduction
between restarts to €;,ner 1S convenient in our context since it allows us to tune
the accuracy of the matrix-vector multiplications within the GMRES steps using
(3). In the next sections we focus on the computation of the residual at restart.



a. START:

kZO,XOZO,I‘o:b

b. Do m steps of the GMRES method to solve Az, = rg
(inexact matrix-vector products with A, ).
Terminate early if a relative precision €;nner is achieved.

c. Compute update, restart or stop:
Update solution: Xx4+1 = Xi + Zg
Update residual: rx41 (inexact matrix-vector product with A, ).
Test: If ||rp4+1]|| <e STOP else k =k +1 GOTO b.

Fig. 1. Restarted GMRES with inexact matrix-vector products

2.3 Restarting: directly computed residuals

At every restart we need to compute the residual corresponding to the newly
formed iterate xjy1. The usual way to compute it is directly from

Tptr1 = b — ‘Aﬂk (Xk:+1)- (4)

The question is how to determine a suitable strategy for choosing the precisions
7. As was noted in [2] the usual strategy, where the precision is chosen high at
the first restart and then decreased at subsequent restarts, does not work in this
case. A suitable strategy for choosing 7, can be derived by exploiting that after
the GMRES iterations we have for the true residual norm

b — Axpi1ll2 = [|b— A(xy +21)l2 )
<lex — Azgll2 + [[rg — (b — Axg)]|2-

The first term in the last expression results from the error that remains after the
last GMRES iterations. The second term is the result of the error that we have
made in the computation of the residual vector by (4) in the previous restart.
Using this expression we find that

b — Axpiills < |lri — Azg|lz + mr—1||A|l2]|xk]]2-

This bound suggests to choose nr_1 = ||rx — Azg||2 for the tolerances. This
choice assures us that the second term is of the same order as the first term:

b — Axtkrilla < (1 + [|Allaflxxll2) e — Az .

As soon as ||ry, — Az ||2 drops below the precision € we expect to have a solution
that has a backward error of at most 2e.

Unfortunately, ||rg+1 — AZgt1]|2 is not known in advance, but has to be
estimated. Hereto we make two realistic assumptions. The first assumption is



that the residual reduction in iteration k + 1 is at most €;pner, which implies
that
einneT”rk - Azk”Q < ”rk—i-l - Azk+1||2-

Secondly, we assume that the residual norm as computed by the inexact GMRES
process is approximately equal to the true residual norm. This means that at
the end of the k-th cycle of GMRES iterations we have that

llemkllz ~ llre — Azgl2-

With these assumptions it is easy to see that a suitable choice for 7y, is given by
Mk = €inner||tm,k||2.- The analysis of this choice gives rise to complicated formulas
which we do not give here.

Notice that the accuracy with which the residual is computed at restarts is
increased when the process comes closer to the solution. An advantage of the use
of (4) is that the precision € does not have to be decided a priori. Furthermore,
there is no accumulation of errors (so the number of restarts does not appear
in the expression for the final residual). For this reason, computation of the
residuals at restart using (4) can be necessary in some applications. See e.g.
[7] where the authors discuss the approximate solution of infinite dimensional
systems.

Some problems require the solution of a linear system of equations for each
computation of a matrix-vector products. This is the case, for example, for the
Schur complement problems that we consider in Section 3. We notice that, if the
restarted GMRES method converges, we have that x; ~ xx41. We can exploit
this by using the solution of the system that has to be solved for the computation
of the matrix-vector product in step k as starting vector for the system that has
to be solved in step k + 1. If, in addition, the GMRES method is restarted in
every iteration, then the resulting method is related to the much used Uzawa
iteration method, see [4]. Restarting less frequently can be interpreted as an
accelerated Uzawa type method.

2.4 Restarting: recursively updated residuals

As an alternative for the computation of the residual by means of (4), we can
compute the residual at restart by exploiting that X541 = X + Zx:

i1 =Tk — A, (2k). (6)
In this case we find with rg = b and xz; = Z?:o z;, that

k

ekt — (b — Axip)ll2 < |All2 D msllz; 2 (M)
7=0

Furthermore, with the estimate ||z;||> < [|A=Y2(||rjll2 + [|r; — Az;]|2), we find

k
lIrksa — (b = Axep)ll2 < 20| AlI[AT 12 mjllrlla. (8)
=0



Here, we have assumed that |[r; — Az;||2 < ||r;||2 which can be shown to be
true (up to a small factor). Given the relation (5) we want to achieve that the
size of ||[rg4+1 — (b — AXp41)||2 is of the order of ||rgy1 — AZgy1]2, as in the
previous section. Therefore we choose the tolerance 7, equal to €/||rg||2. This is
the relazation strategy proposed in [2].

We have seen that when the residuals at restart are computed recursively
using (6), the precision of the matrix-vector products is decreased during the
process, as opposed to the previous section. The advantage here is that no a
priori knowledge is required about the expected residual reduction between two
restarts. A disadvantage is that at termination, when |[rg41]2 < €, the upper
bound on the norm of the true residual contains the number of restarts and
furthermore depends on the condition number of the matrix A instead of on
the norm of the computed solution. This means that one must be cautious for
situations where the norm of the solution is much smaller than the inverse of
the smallest singular value of the matrix.

3 Numerical experiments

3.1 Description of the test problem

As a model problem we consider the following set of partial differential equations
on the unit square (2:
2 31/1 2 2 .
V- oo —aVie=f, VY+(=0 inf2 9)
plus boundary conditions ¢ = % =0 on I', the edge of the domain.
The above model problem is a simplified version of the example from oceanog-
raphy that we considered in [11]. Discretisation yields the following block system

() ()= (o) @

The size of the test problem we use in our experiments is 16642. From (10) we
can eliminate either (, which yields the upper Schur complement system

(K + oLM~'LH)y = f, (11)
or v, which yields the lower Schur complement system
(M + oL¥K'L)¢ = LFK'f. (12)

These two systems have very different numerical characteristics. The upper Schur
complement is a fourth order bi-harmonic operator which becomes rapidly ill
conditioned if the mesh size is decreased. The lower Schur complement has the
characteristics of a second order operator and hence is, for fine enough mesh
size, better conditioned than the biharmonic operator. To illustrate this, the
MATLAB-routine condest gives 500 for the condition number of the lower Schur
complement, and a condition number of 106 for the upper Schur complement.
Systems with M, on the other hand, are easier to solve (since the mass matrix is
a discretised unit operator) than systems with the convection-diffusion operator.



3.2 Solution methods

For each multiplication with one of the Schur complements a linear system has
to be solved, with the matrix K for the upper Schur complement, and with
the matrix M for the lower Schur complement. In our experiments we solve
these systems with preconditioned Bi-CGstab, with as preconditioner ILU of K
resp. of M), using a drop tolerance of 1072. These systems are solved up to a
precision (residual reduction) 7. Note that this does not mean that the matrix-
vector multiplication with the Schur complements is performed with accuracy 7
(see also [8]), in theory an extra constant has to be taken into account.

The parameter « is taken rather small in the experiments: o = 1073, For
this reason we have applied ILU with drop tolerance 10~2 of M (of K) as right
preconditioner for the lower (resp. upper) Schur complement systems.

We consider four different methods to control the accuracy of the matrix-
vector products:

— The systems to evaluate the matrix-vector products with the Schur comple-
ment are all solved to fixed accuracy e = 1078,

— Within GMRES the system are solved with reduced accuracy €;pper = 1075.
At restart the accuracy e = 1078 is used.

— Within GMRES, relaxation is applied by
nk = 1073 (|lrg|l2/lIrj,kll2)- The residuals at restart are computed directly
from xj1, using precision 7y = max(1072 - [|r,,, x[|2, 107%).

— The above relaxation strategy is used within GMRES. The residuals at
restart are computed recursively using precision 7 = 1078/||rg]|2-

3.3 The upper Schur complement

Table 1 shows the numerical results for the upper Schur complement. The first
column gives the method to control the accuracy. The second column gives the
number of Bi-CGstab iterations. Bi-CGstab allows for two tests of the residual
norm and hence may terminate halfway an iteration, which explains the fractions
of two. The number of Bi-CGstab iterations gives a measure for the work in the
inexact matrix-vector products. The third column gives the number of GMRES-
iterations. In our experiments we restart (at least) every 20 iterations. The fourth
column gives the number of restarts. The true residual norm at the end of the
iterative process, which is computed using an exact matrix-vector product, is
given in the fifth column. In practice the true residual norm is not available;
one has at its disposal only ||ry||2 that is computed using inexact matrix-vector
products. This value is given in the sixth column. Note that this value is used in
the convergence test. The results tabulated in Table 1 show that the most im-
portant saving is obtained by using a lower accuracy for the GMRES iterations.
No extra saving is obtained by applying the error-control strategy for directly
computed residuals. The savings that are achieved in the initial iterations are
lost in the extra few (costly) iterations that are needed due to the extra per-
turbations that are introduced in the process. The relaxation strategy at restart



Method Iterations |Iterations|Restarts|||b — Axgl||2| ||lrk||2
Bi-CGstab| GMRES
Full precision 4462.5 1700 85 3.3-107% [8.9-107°
Low accuracy GMRES| 2317.5 2060 103 | 3.3-107® (8.9.-107°
Directly computed 2345 2120 106 | 3.3-107% [9.1-107°
residuals at restart
Recursively computed | 1903.5 1800 90 2.1-107% [9.0-10°°
residuals at restart
Table 1. Solution of the upper Schur system: four different ways to control the accuracy

of the matrix-vector products and their effect on the efficiency and on the final accuracy.

with recursively updated residuals, on the other hand, yields a small but signif-
icant extra saving in computational cost. Note that on average the tolerances
used in the matrix-vector product are lower than for the strategy with directly
computed residuals. Moreover, the number of restarts (and GMRES iterations)
is less for this example. An important disadvantage of this strategy, however, is
that the true residual norm stagnates at around 10~%. This can be explained by
the fact the Schur complement is ill conditioned, and relatively many restarts are
required to solve the system. Note that both the condition number of the Schur
complement and the number of restarts negatively influence the bound (8). If
residuals are calculated directly, however, the true residual norm decreases close
to the target 1072,

3.4 The lower Schur complement

The numerical results for the experiments with the lower Schur complement
are tabulated in Table 2. The number of GMRES iterations and restarts are

Method Iterations |Iterations|Restarts|||b — Axgl||2| [|re|l2
Bi-CGstab| GMRES
Full precision 2955 160 8 1.0-107% [9.9-107°
Low accuracy GMRES| 489.5 180 9 7.2-107° [5.7-107°
Directly computed 464.5 200 10 1.2-107° |4.7-107°
residuals at restart
Recursively computed 372 200 10 2.3-1078 |44-107°
residuals at restart
Table 2. Solution of the lower Schur system: four different ways to control the accuracy

of the matrix-vector products and their effect on the efficiency and on the final accuracy.

considerably less than for the upper Schur complement system. This is because
this system is better conditioned. This fact is also reflected in the accuracy
that is achieved using recursively updated residuals plus relaxation: the norm of
the true residual stagnates around the target value 10~%. The savings that are
obtained for this example are very significant.



4 Conclusions

A considerable saving in computational cost can be obtained for restarted GM-
RES with inexact matrix-vector products by using a low accuracy for the GMRES-
iterations, in combination with a high accuracy to compute the residuals at
restart. The accuracy of the matrix-vector products at restart can be reduced
by a strategy that depends on the way the residual is calculated. If the residual is
calculated directly form the latest iterate then the precision of the matrix-vector
product has to be increased as the method comes closer to the solution, whereas
if the residuals are calculated recursively a relaxation strategy can be applied.
This latter strategy, however, has the disadvantage that the achieved accuracy
may be well above the target accuracy for ill-conditioned problems that require
many restarts.
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