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Abstract. In this paper we propose a stable variant of Simpler GM-
RES by Walker and Zhou [15]. It is based on the adaptive choice of
the Krylov subspace basis at given iteration step using the intermediate
residual norm decrease criterion. The new direction vector is chosen
as in the original implementation of Simpler GMRES or it is equal the
normalized residual vector as in the GCR method. We show that such
adaptive strategy leads to a well-conditioned basis of the Krylov sub-
space and we support our theoretical results with illustrative numerical
examples.

1. Introduction

We consider the solution of a large and sparse system of linear algebraic
equations

Ax = b, (1.1)

where A ∈ R
N×N is nonsingular and b ∈ R

N is a right-hand side vector. A
popular method for solving such system is the GMRES method by Saad and
Schultz [12]. It seeks at the nth iteration step the approximate solution xn

in the affine subspace x0 + Kn(A, r0), where

Kn(A, r0) := span{r0, Ar0, . . . , A
n−1r0}

is the nth Krylov subspace generated by the matrix A and the residual
vector r0 := b − Ax0 corresponding to the initial guess x0. The GMRES
method is based on the Arnoldi process [1] generating the orthonormal basis
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2 PAVEL JIRÁNEK AND MIROSLAV ROZLOŽNÍK

Qn of the Krylov subspace Kn(A, r0) and minimizes the Euclidean norm of
the residual in r0 + AKn(A, r0), i.e.,

‖b − Axn‖ = ‖b − A(x0 + dn)‖ = min
d∈Kn(A,r0)

‖b − A(x0 + d)‖. (1.2)

If a stopping criterion is satisfied at some iteration step m, the coordinates
ym of dm in the orthogonal basis Qm are found by solving an (m + 1) × m
upper Hessenberg least squares problem and the approximate solution is
then computed as xm = x0 + dm = x0 + Vmym. The GMRES method
with the Householder or modified Gram-Schmidt Arnoldi implementation
was proved to be backward stable in [3, 9], which means that there is an
approximate solution of (1.1) which can be interpreted as an exact solution
of a system (1.1) with slightly perturbed initial data A and b. See also the
Higham’s book [6] for details of the backward error concept.

In [15] Walker and Zhou proposed another implementation of the GM-
RES method. We will describe it in a slightly more general way. Let
Zn := [z1, . . . , zn] be a basis of Kn(A, r0) such that R(Zk) = Kk(A, r0)
for all k = 1, . . . , n and, in addition, we assume that its columns are nor-
malized, i.e., ‖zk‖ = 1 for k = 1, . . . , n. Here R(·) denotes the range of the
matrix. The minimum residual property (1.2) is equivalent to the require-
ment of the residual vector rn := b − Axn being ortogonal to the subspace
AKn(A, r0):

〈rn, v〉 = 0 ∀v ∈ AKn(A, r0) = R(AZn), (1.3)

where 〈·, ·〉 stands for the standard Euclidean inner product. The residual
rn is then easily evaluated provided we have an orthonormal basis Vn :=
[v1, . . . , vn] of AKn(A, r0) = R(AZn), which can be computed by the QR
factorization of the matrix AZn:

AZn = VnUn. (1.4)

The matrix Un ∈ R
n×n is upper triangular and nonsingular if and only if the

dimension of Kn(A, r0) is equal to n. The residual rn ∈ r0 + AKn(A, r0) =
r0 + R(Vn) satisfying the property (1.3) (and (1.2)) can be then computed
as the orthogonal projection of the initial residual r0:

rn = (I−VnV T
n )r0 = (I−vnvT

n )rn−1 = rn−1−αnvn, αn := 〈rn−1, vn〉. (1.5)

The approximate solution xn corresponding to the residual rn has the form
xn = x0 + Zntn, where tn is the solution of the upper triangular system

Untn = V T
n r0 = [α1, . . . , αn]T . (1.6)

In [15] the basis Zn is chosen as [r̃0, Vn−1], i.e., the normalized initial
residual is extended by the first n−1 vectors of the orthonormal basis Vn. We
will denote here the normalized residual vectors by r̃k := rk/‖rk‖. However,
it was shown in [15, 8] that the conditioning of [r̃0, Vn−1] is in fact propor-
tional to the inverse of the relative residual norm, i.e., it grows as the residual
norm decreases. Therefore the original implementation of the Simpler GM-
RES method can suffer from numerical instability due to the ill-conditioning



ADAPTIVE VERSION OF SIMPLER GMRES 3

of the basis which moreover leads to the severe ill-conditioning of the upper
triangular factor Un in (1.4) possibly affected also by ill-conditioning of A;
see the numerical experiments in [8, 7]. On the other hand, if the minimum
residual method (nearly) stagnates the Simpler GMRES basis [r̃0, Vn−1] re-
mains well-conditioned. As it was shown in [7] the basis Zn consisting
of the normalized residuals [r̃0, . . . , r̃n−1] remains well-conditioned provided
there is a reasonable residual norm decrease at each iteration. The Simpler
GMRES method with such residual basis, called RB-SGMRES in [7], was
shown to be conditionally backward stable and it is closely related to GCR
by Eisenstat, Elman and Schultz [4]. See [7] and [11] for more details.

It was shown in [7] that the condition number of Zn can affect the max-
imum attainable accuracy of the computed approximation. In Section 2 we
propose a variant of the Simpler GMRES method (called the adaptive Sim-
pler GMRES here), which keeps the conditioning of the basis Zn on a reason-
able level by adaptive selection at each iteration a suitable direction vector
based on the intermediate residual norm decrease. Whenever the residual
norm (nearly) stagnates we use the vector vn−1 at the particular iteration
step n. Otherwise, when we observe sufficient residual norm decrease, we
set the new direction vector equal to the normalized residual vector r̃n−1.
Similar strategy is employed, e.g., in [10], where the Orthomin method [14]
is combined with Orthodir [16] for solving saddle point problems in compu-
tational fluid dynamics. Here we show that the adaptive choice of direction
vectors keeps the basis well-conditioned and that the conditioning grows in
a quasi-optimal case at most linearly with the iteration number. Finally, we
illustrate our theoretical results on numerical experiments in Section 3.

Throughout the paper, we denote by ‖·‖ the Euclidean vector norm and
the induced matrix norm, and by ‖ · ‖F the Frobenius norm. For B ∈ R

N×n

(N ≥ n) of rank n, σ1(B) ≥ σn(B) > 0 are the extremal singular values
of B and κ(B) = σ1(B)/σn(B) is the spectral condition number. By In we
denote the n × n unit matrix. If Xi ∈ R

ni×ni (i = 1, . . . ,m) are square
matrices, we denote by diag(X1, . . . ,Xm) the block diagonal matrix with
blocks X1, . . . ,Xm of the order

∑m
i=1 ni. For a vector y ∈ R

n the notation

diag(y) or diag(yT ) is used in a usual manner and defines the n×n diagonal
matrix with the components of y on the main diagonal and zeros elsewhere.

2. Adaptive Simpler GMRES

In this section we propose an adaptive variant of the Simpler GMRES
method, which computes the basis Zn in (1.4) such that its conditioning
is kept on a reasonably small level. This is achieved by adaptive switch-
ing between the bases from Simpler GMRES and RB-SGMRES using an
intermediate residual decrease criterion. If the residual norm at given step
decreases sufficiently the Krylov subspace basis is extended by the normal-
ized residual vector as in RB-SGMRES or GCR; otherwise we use the last
available vector of the orthonormal basis as in Simpler GMRES. In order to
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decide whether the residual norm is reduced sufficiently enough we introduce
the threshold parameter ν ∈ [0, 1] and choose for n > 1 either the vector
zn = r̃n−1 provided that ‖rn−1‖ ≤ ν‖rn−2‖ or zn = vn−1 in the latter case.
We sketch the algorithm of adaptive Simpler GMRES as follows:

Algorithm 2.1 (Adaptive Simpler GMRES). 1. choose x0 and the
threshold parameter ν ∈ [0, 1], compute r0 := b − Ax0

2. for n = 1, . . . ,m (until convergence) do
a. compute zn:

zn =





r̃0 if n = 1,

r̃n−1 if n > 1 and ‖rn−1‖ ≤ ν‖rn−2‖,
vn−1 otherwise,

(2.1)

b. update the QR factorization AZn = VnUn

c. compute αn := 〈rn−1, vn〉
d. update rn := rn−1 − αnvn

3. end
4. solve Umtm = [α1, . . . , αm]T

5. compute xm := x0 + Zmtm

If ν = 0 then Zn = [r̃0, Vn−1] and Algorithm 2.1 is identical to Sim-
pler GMRES [15]. The choice ν = 1 results in Zn = [r̃0, . . . , r̃n−1] which
corresponds to RB-SGMRES [7].

Theorem 2.2. Let A in (1.1) be nonsingular and n be such that the
dimension of Kn(A, r0) is equal to n. If ν ∈ [0, 1) then Zn computed in Al-
gorithm 2.1 forms a basis of Kn(A, r0) satisfying zk ∈ Kk(A, r0)\Kk−1(A, r0)
for all k = 1, . . . , n. In particular, adaptive Simpler GMRES does not break
down unless the exact solution of (1.1) is found.

Proof. We proceed by induction on n. For n = 1 the statement is
clearly satisfied by setting K0(A, r0) := {0}. Let n > 1 and Zn−1 be a basis
of Kn−1(A, r0). From (1.4) the columns of Vn−1 form an orthonormal basis
of AKn−1(A, r0). The vector vn−1 is computed from the vector Azn−1 ∈
Kn(A, r0)\Kn−1(A, r0) orthogonalizing it against the orthonormal basis Vn−2

of AKn−2(A, r0) and thus belongs to Kn(A, r0) \ Kn−1(A, r0). We consider
two cases: First let ‖rn−1‖ > ν‖rn−2‖ and hence by (2.1) zn = vn−1. The
vector vn−1 extends the basis Zn−1 of Kn−1(A, r0) to the basis of Kn(A, r0)
as follows from the discussion above. Otherwise, let ‖rn−1‖ ≤ ν‖rn−2‖.
Since ‖rn−1‖ < ‖rn−2‖ and rk ∈ r0 + AKk(A, r0) it follows that rn−1 =
rn−2 − αn−1vn−1 with αn−1 6= 0 and rn−1 ∈ Kn−1(A, r0) \ Kn−2(A, r0).
Hence Zn = [Zn−1, r̃n−1] forms a basis of Kn(A, r0). �

It is known that the residual basis can be linearly dependent if the
minimum residual method does not make any progress at given step, in
particular when 0 belongs to the field of values of the matrix A it may
happen that αn = 0 resulting in rn = rn−1. Therefore we have excluded
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the case ν = 1 from Theorem 2.2 which can lead to a breakdown of the
RB-SGMRES or GCR algorithms.

We recall the results on the maximum attainable accuracy of algorithms
based on (1.4) studied in [7], which apply also for adaptive Simpler GMRES.
We assume that the QR factorization at Step 2b of Algorithm 2.1 is con-
structed such that the upper triangular matrix Un is computed in a backward
stable way; see, e.g., [7, Equations (2.1) and (2.2)]. It is true in particu-
lar for Householder QR factorization, modified and iterated Gram-Schmidt
algorithms. Let x̂n be an approximate solution computed at iteration n of
Algorithm 2.1 in finite precision arithmetic with unit roundoff u. In addition
let cuκ(A)κ(Zn) < 1, where the constant c is a low-order polynomial in n
and N , which guarantees that AZn and Un are of full numerical rank. Then
the gap between the true residual b − Ax̂n and the updated residual rn can
be estimated as

‖b − Ax̂n − rn‖ ≤ cuκ(A)

1 − cuκ(A)κ(Zn)

n∑

k=1

‖rk−1‖
σk(Zk)

, (2.2)

while the accuracy in terms of the backward error can be bounded as

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖

≤ cuκ(Zn)

(
1 +

‖x0‖
‖x̂n‖

)
. (2.3)

The conditioning of the basis Zn plays therefore an important role in the
numerical stability of algorithms based on (1.4). In the following we analyze
the condition number of Zn produced by adaptive Simpler GMRES. First
we prove three auxiliary propositions.

Lemma 2.3. Let p and q be two integers such that 1 ≤ p < q and let

B̃p,q ∈ R
(q−p+1)×(q−p+1) be a lower Hessenberg matrix defined by

B̃p,q :=

[
ap,q−1/ρp−1 Iq−p

ρq−1/ρp−1 0

]
,

where ap,q−1 := [αp, . . . , αq−1]
T , α2

k = ρ2
k−1 − ρ2

k for k = p, . . . , q − 1, and
0 < ρq−1 ≤ ρq−2 ≤ . . . ≤ ρp−1. Then

κ(B̃p,q) = δp,q :=
ρp−1 +

√
ρ2

p−1 − ρ2
q−1

ρq−1
.

Proof. The proof uses the similar technique as in [8, Theorem 2.3]. By
direct computation we obtain

B̃T
p,qB̃p,q =

[
(ρ2

q−1 + ‖ap,q−1‖2)/ρ2
p−1 aT

p,q−1/ρp−1

ap,q−1/ρp−1 Iq−p

]

=

[
1 aT

p,q−1/ρp−1

ap,q−1/ρp−1 Iq−p

]
.

There exists an orthonormal matrix U ∈ R
(q−p)×(q−p) such that

Uap,q−1 = ‖ap,q−1‖e1 = (ρ2
p−1 − ρ2

q−1)
1
2 e1
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and hence [
1 0
0 U

]
B̃T

p,qB̃p,q

[
1 0
0 UT

]
=

[
1 βeT

1

βe1 Iq−p

]
=: G,

where β := (1 − ρ2
q−1/ρ

2
p−1)

1
2 . The eigenvalues of G are equal to the eigen-

values of its leading principal 2×2 submatrix together with 1 of multiplicity

q − p − 1. Since G is (orthogonally) similar to B̃T
p,qB̃p,q, the square roots

of its eigenvalues are at the same time equal to the singular values of B̃p,q.

The extremal singular values of B̃p,q can be evaluated as

σ2
1(B̃p,q) = 1 + β, σ2

q−p+1(B̃p,q) = 1 − β. (2.4)

Note that 0 ≤ β < 1 and 1 is neither minimal nor maximal eigenvalue of G
unless β = 0. A simple algebraic manipulation gives

κ(B̃p,q) =
ρp−1 +

√
ρ2

p−1 − ρ2
q−1

ρq−1
.

�

Lemma 2.4. Let q and m be two integers such that 1 ≤ q < m and

C̃q,m ∈ R
(m−q+1)×(m−q+1) be a lower triangular matrix

C̃q,m := diag([aT
q,m−1, ρm−1])L

−1
m−q+1diag(rq−1,m−1)

−1,

where aq,m−1 := [αq, . . . , αm−1]
T , rq−1,m−1 := [ρq−1, . . . , ρm−1]

T , α2
n =

ρ2
n−1 − ρ2

n for n = q, . . . ,m − 1, 0 < ρm−1 < ρm−2 < . . . < ρq−1. The
matrix Lm−q+1 of the order m−q+1 is lower bidiagonal with 1 on the main
diagonal and −1 on the first subdiagonal. Then

1 ≤ κ(C̃q,m) ≤ γq,m, γq,m := (m − q + 1)
1
2

(
1 +

m−1∑

n=q

ρ2
n−1 + ρ2

n

ρ2
n−1 − ρ2

n

) 1
2

.

Proof. The inverse of Lm−q+1 is a matrix with ones on the main diag-
onal and below and with zeros elsewhere. By direct computation we have

σ1(C̃q,m) = ‖C̃q,m‖ ≤ ‖C̃q,m‖F =
√

m − q + 1. The inverse of C̃q,m exists,
since αn 6= 0 for n = q, . . . ,m− 1 and ρm−1 6= 0, and it is a lower bidiagonal
matrix

C̃−1
q,m = diag(rq−1,m−1)Lm+q−1diag([aT

q,m−1, ρm−1])
−1.

The minimal singular value of C̃q,m can be estimated by [σm−q+1(C̃q,m)]−1 =

‖C̃−1
q,m‖ ≤ ‖C̃−1

q,m‖F , where

‖C̃−1
q,m‖F =

√√√√1 +

m−1∑

n=q

ρ2
n−1 + ρ2

n

ρ2
n−1 − ρ2

n

.

�
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The proof of the previous lemma was already given in [7, Theorem 3.4]
for the context of RB-SGMRES (for q = 1), which was shown to be con-
ditionally backward stable provided that the stagnation factor γ1,m is rea-
sonably small. Another bound on the conditioning of the residual basis can
be established using the Gershgorin theorem [5] (see also, e.g., [13, Theo-
rem 1.11]).

Lemma 2.5. Let the assumptions of Lemma 2.4 be satisfied and let

λn :=





ρn

ρn+1+ρn
for n = q − 1,

ρn

ρn+1+ρn
− ρn

ρn+ρn−1
for n = q, . . . ,m − 2,

ρn−1

ρn+ρn−1
for n = m − 1,

λn :=





ρn

ρn−ρn+1
for n = q − 1,

ρn

ρn−1−ρn
+ ρn

ρn−ρn+1
for n = q, . . . ,m − 2,

ρn−1

ρn−1−ρn
for n = m − 1.

Then

1 ≤ κ(C̃q,m) ≤




max
n=q−1,...,m−1

λn

min
n=q−1,...,m−1

λn




1
2

.

Proof. The matrix C̃−1
q,mC̃−T

q,m can be written in the form

C̃−1
q,mC̃−T

q,m = diag(rq−1,m−1)T diag(rq−1,m−1),

where

T =




1
α2

q
− 1

α2
q

− 1
α2

q

1
α2

q
+ 1

α2
q+1

. . .

. . .
. . .

. . .
1

α2
m−2

+ 1
α2

m−1
− 1

α2
m−1

− 1
α2

m−1

1
α2

m−1
+ 1

ρ2
m−1




.

It is straightforward to show, that the matrix C̃−1
q,mC̃−T

q,m is diagonally domi-
nant. Let ηq−1, . . . , ηm−1 and δq−1, . . . , δm−1 denote the diagonal entries and
the sum of absolute values of the off-diagonal entries in rows 1, . . . ,m−q+1.
Note that the diagonal entries are positive, while the off-diagonal ones are

negative. Since C̃−1
q,mC̃−T

q,m is symmetric, its eigenvalues are real and belong

to ∪m−1
n=q−1[ηn − δn, ηn + δn] due to the Gershgorin theorem [5]. We find that

ηn−δn = λn and ηn+δn = λn and the proof of the statement is finished. �

The bound using the Gershgorin theorem will be employed below in
order to establish the a priori estimate on the condition number of the basis
provided we have a prescribed value of the threshold parameter ν. Whenever
we want to explain the local contributions of intermediate residual norm
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decreases to the conditioning of the Krylov subspace basis, the estimate in
Lemma 2.4 is however more usefull. We exploit it in the following theorem
where we consider the case where at the steps n = 2, . . . , q of Algorithm 2.1
the vector zn is chosen as in Simpler GMRES, i.e., zn = vn−1, and zn = r̃n−1

as in RB-SGMRES for n = q +1, . . . ,m. It corresponds to adaptive Simpler
GMRES applied to a problem with some initial stagnation of the minimum
residual norm and a fast convergence afterwards.

Theorem 2.6. Let Zm = [r̃0, v1, . . . , vq−1, r̃q, . . . , r̃m−1] for some integer
q such that 1 < q < m and let 0 < ‖rm−1‖ < · · · < ‖rq−1‖. Then

Zm = [Vm−1, r̃m−1]Hm,

with H = CmBm, Bm := diag(B̃1,q, Im−q), Cm := diag(Iq−1, C̃q,m). The

vectors a1,q−1, aq,m−1, and rq−1,m−1 and the matrices B̃1,q and C̃q,m are
defined as in Lemma 2.3 and 2.4 (with p = 1), where ρn := ‖rn‖. The
condition number of Zm can then be bounded as follows:

δ1,q ≤ κ(Zm) ≤ δ1,qγq,m. (2.5)

Proof. From (1.5) we have

r̃0 = [Vq−1, r̃q−1]

[
a1,q−1/ρ0

ρq−1/ρ0

]
.

Hence [r̃0, Vq−1] = [Vq−1, r̃q−1]B̃1,q and

Zm = [Vq−1, r̃q−1, . . . , r̃m−1]Bm. (2.6)

Again using (1.5) we find that [r̃q−1, . . . , r̃m−1] = [vq, . . . , vm−1, r̃m−1]C̃q,m

and
[Vq−1, r̃q−1, . . . , r̃m−1] = [Vm−1, r̃m−1]Cm. (2.7)

Combining (2.6) and (2.7), and applying Lemma 2.3 and 2.4 concludes the
proof. �

Corollary 2.7. Let the assumptions of Theorem 2.6 be satisfied. In
addition, let ‖rn‖ ≤ ν‖rn−1‖ for n = q, . . . ,m − 1 for some ν < 1 and
‖rn‖ > ν‖rn−1‖ for n = 1, . . . , q − 1. Then

1 ≤ κ(Zm) ≤ 2
√

2

νq−1

1 + ν

1 − ν
. (2.8)

Proof. From ‖rn‖ ≤ ν‖rn−1‖ it follows:

1

(1 + ν)‖rn−1‖
≤ 1

‖rn−1‖ + ‖rn‖
≤ 1

2‖rn‖
and

1

‖rn−1‖
≤ 1

‖rn−1‖ − ‖rn‖
≤ 1

(1 − ν)‖rn−1‖
,

and therefore
1

2

1 − ν

1 + ν
≤ λn ≤ λn ≤ 1 + ν

1 − ν
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for n = q − 1, . . . ,m − 1. Then the result follows from Theorem 2.6 and
Lemma 2.5 (with ρn = ‖rn‖) and from the assumption ‖rn‖ > ν‖rn−1‖
(n = 1, . . . , q − 1), which implies that ‖rq−1‖ > νq−1‖r0‖ and 1 ≤ δ1,q ≤
2/νq−1. �

Theorem 2.6 and Corollary 2.7 show that at the iteration steps where the
residual norm (nearly) stagnates, the contribution of vectors from Simpler
GMRES to the conditioning of Zm is given approximately by the inverse
of the relative residual norm decrease during the (near) stagnation. At
steps where the residual norm is sufficiently reduced, the conditioning of
Zm in the adaptive Simpler GMRES is affected by the stagnation factor
γq,m. Considering (2.3) and (2.8) we can estimate the backward error of
adaptive Simpler GMRES as

‖b − Ax̂m − rm‖
‖A‖‖x̂m‖ ≤ cu

1

νq−1

1 + ν

1 − ν

(
1 +

‖x0‖
‖x̂m‖

)
.

Provided that the factor dependent on ν in the right-hand side of the in-
equality is not large, the adaptive variant of Simpler GMRES is backward
stable. It means that whenever the updated residual rm is small enough,
the approximate solution x̂m is an exact solution of (A + ∆A)xm = b + ∆b
with slightly perturbed data A + ∆A and b + ∆b, where ‖∆A‖ = O(u)‖A‖
and ‖∆b‖ = O(u)‖b‖.

In the inequality (2.8) of Corollary 2.7 we can find a quasi-optimal value
of ν = νopt minimizing the right-hand side of the bound (i.e., not the actual
value of κ(Zm)). It is clear that q − 1 ≤ m, so

κ(Zm) ≤ 2
√

2

νm

1 + ν

1 − ν
. (2.9)

The value of ν minimizing the right-hand side of (2.9) is given by

νopt(m) =

√
1 + m2 − 1

m
.

It can be shown that the first term [νopt(m)]−m grows with m and approaches

e ≈ 2.7183 as m → ∞. For the second term we have
1+νopt(m)
1−νopt(m)

∼ 2m with

m → ∞. Hence the quasi-optimal bound in (2.9) behaves like

κ(Zm) = O(m) for m → ∞.

The threshold parameter νopt(m) is asymptotically reaching the value 1
for growing m, where m can be associated with the maximum number of
iterations or the restart parameter. We observed in numerical experiments
that νopt(m) minimizing the right-hand side of (2.9) does not always lead
to optimal conditioning of the basis and the smaller value, say ν = 0.9, can
do better. On the other hand, we have shown that the quasi-optimal value
νopt(m) leads to at worst linearly growing κ(Zm).
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Figure 1. Multiple switching between the Simpler GMRES
basis and the residual basis in the case of the occurrence of
local stagnations in the residual norm. In the run of adaptive
Simpler GMRES, the white areas correspond to the Simpler
GMRES basis, while the gray areas correspond to the nor-
malized residual basis of RB-SGMRES.

Theorem 2.6 can be generalized to the case with multiple switching be-
tween the bases from Simpler GMRES basis and RB-SGMRES. Such situ-
ation is more realistic since it can happen that there are some intermediate
stagnations in the residual norm; see Figure 1 for the illustration and the
explanation of the notation in the corollary below.

Corollary 2.8. Let m be such that dimKm(A, r0) = m and let Zm has

the block form Zm = [Z̃1, . . . , Z̃ℓ, r̃m−1], where

Z̃j := [r̃mj−1−1, vmj−1 , . . . , vqj−1, r̃qj
, . . . , r̃mj−2] ∈ R

N×(mj−mj−1),

m0 = 1, mℓ = m, mj−1 < qj < mj and 0 < ‖rmj−1‖ < · · · < ‖rqj−1‖ for
j = 1, . . . , ℓ. Then

max
j=1,...,ℓ

δmj−1,qj
≤ κ(Zm) ≤ γ({qj ,mj}ℓ

j=1) max
j=1,...,ℓ

δmj−1,qj
, (2.10)

where

γ({qj ,mj}ℓ
j=1) :=


1 +

ℓ∑

j=1

(mj − qj)




1
2

1 +

ℓ∑

j=1

mj−1∑

i=qj

‖ri−1‖2 + ‖ri‖2

‖ri−1‖2 − ‖ri‖2




1
2

.
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Proof. As in Theorem 2.6 we use (1.5) repeatedly in order to relate Zm

(which forms the basis of Km(A, r0) due to the assumptions of the corollary)

to the orthonormal basis [Vm−1, r̃m−1]. In each Z̃j we relate the first residual
r̃mj−1−1 to r̃qj−1 using the vectors vmj−1 , . . . , vqj−1. Thus we obtain

Z̃j = [r̃mj−1−1, vmj−1 , . . . , vqj−1 | r̃qj
, . . . , r̃mj−2]

= [vmj−1 , . . . , vqj−1, r̃qj−1 | r̃qj
, . . . , r̃mj−2]diag(B̃mj−1,qj

, Imj−qj−1)

= ỸjBmj−1,qj
,

where Ỹj := [vmj−1 , . . . , vqj−1, r̃qj−1, r̃qj
, . . . , r̃mj−2], B̃mj−1,qj

is defined in

Lemma 2.3, and Bmj−1,qj
:= diag(B̃mj−1,qj

, Imj−qj−1). Hence it follows that

Zm = [Ỹ1, . . . , Ỹℓ, r̃m−1]Bm, (2.11)

with the matrix Bm defined by Bm := diag(Bm0,q1, . . . , Bmℓ−1,qℓ
, 1). We

now relate [Ỹ1, . . . , Ỹℓ, r̃m−1] to [Vm−1, r̃m−1], More precisely, we express the

columns of [Vm−1, r̃m−1] = [Ṽ1, . . . , Ṽℓ, r̃m−1] in terms of [Ỹ1, . . . , Ỹℓ, r̃m−1],

where Ṽj := [vmj−1 , . . . , vmj−1]. From (1.5) we have

[rqj−1, . . . , rmj−1]Lmj−qj+1,mj−qj
= [vqj

, . . . , vmj−1]diag(aqj ,mj−1). (2.12)

Here Lmj−qj+1,mj−qj
is defined as Lmj−qj+1,mj−q1 := [LT

mj−qj
,−emj−qj

]T ,

where emj−qj
stands for the last column of Imj−qj

. From (2.12) it follows
that

[vqj
, . . . , vmj−1] = [r̃qj−1, . . . , r̃mj−2]G̃qj ,mj

− 1

αmj−1
rmj−1e

T
mj−qj

, (2.13)

with G̃qj ,mj
defined by G̃qj ,mj

:= diag(rqj−1,mj−2)Lmj−qj
[diag(aqj ,mj−1)]

−1.
Since rmj−1 (or r̃mj−1) is not in [Y1, . . . , Yℓ, r̃m−1] (for j = 1, . . . , ℓ − 1), we
express it in terms of the residual rqj+1−1 and the vectors vmj

, . . . , vqj+1−1

as

rmj−1 = rqj+1−1 + [vmj
, . . . , vqj+1−1]amj ,qj+1−1 = Ỹj+1




amj ,qj+1−1

ρqj+1−1

0mj+1−qj+1−1




for j = 1, . . . , ℓ − 1. Here 0mj+1−qj+1−1 denotes the column zero vector of
the indicated dimension. From (2.13) we hence obtain

Ṽj = Ỹj diag(Iqj−mj−1 , G̃qj ,mj
) − 1

αmj−1
rmj−1e

T
mj−mj−1

= Ỹj diag(Iqj−mj−1 , G̃qj ,mj
) − 1

αmj−1
Ỹj+1




amj ,qj+1−1

ρqj+1−1

0mj+1−qj+1−1


 eT

mj−mj−1

= ỸjD̃j,j + Ỹj+1D̃j+1,j, j = 1, . . . , ℓ − 1,
(2.14)
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and

Ṽℓ = Ỹℓ diag(Iqℓ−mℓ−1
, G̃qℓ,mℓ

) − ρmℓ−1

αmℓ−1
r̃mℓ−1e

T
mℓ−mℓ−1

= ỸℓD̃ℓ,ℓ + r̃m−1D̃ℓ+1,ℓ.

(2.15)

Combining (2.14) and (2.15), we get

[Vm−1, r̃m−1] = [Ỹ1, . . . , Ỹℓ, r̃m−1]Dm, (2.16)

where Dm is a lower block bidiagonal matrix in the form

Dm :=




D̃1,1

D̃2,1 D̃2,2

. . .
. . .

D̃ℓ,ℓ

D̃ℓ+1,ℓ 1




.

Using (2.11) and (2.16) we get the desired relation Zm = [Vm−1, r̃m−1]D
−1
m Bm.

Since [Vm−1, r̃m−1] has orthonormal columns, it follows that

κ(Bm) ≤ κ(Zm) ≤ κ(Dm)κ(Bm). (2.17)

Due to (2.4) we have

κ(Bm) = max
j=1,...,ℓ

κ(B̃mj−1,qj
) = max

j=1,...,ℓ
δmj−1,qj

. (2.18)

To estimate the norm of Dm we find a permutation matrix Π such that

ΠDmΠT =

[
I 0

0 D̃m

]
, (2.19)

where we moved the identities from the matrices D̃j,j into the leading prin-

cipal identity of ΠDmΠT . It hence follows that ‖Dm‖ = max{1, ‖D̃m‖} ≤
max{1, ‖D̃m‖F }. Since

‖D̃m‖2
F = 1 +

ℓ∑

j=1

(‖G̃qj ,mj
‖2

F + ‖D̃j+1,j‖2
F )

= 1 +

ℓ∑

j=1

mj−1∑

i=qj

ρ2
i−1 + ρ2

i

ρ2
i−1 − ρ2

i

,

and ‖D̃m‖F ≥ 1, we can bound the norm of the matrix Dm as

‖Dm‖2 ≤ 1 +

ℓ∑

j=1

mj−1∑

i=qj

ρ2
i−1 + ρ2

i

ρ2
i−1 − ρ2

i

. (2.20)

The inverse of Dm can be computed either directly from Dm or making the

relation between [Ỹ1, . . . , Ỹℓ, r̃m−1] and [Vm−1, r̃m−1] in the opposite direc-
tion, which is more simple. Taking into account (1.5) we can express the

residuals r̃k in Ỹj (j = 1, . . . , ℓ) using r̃m−1 and the corresponding direction
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vectors vk+1, . . . , vm−1 from Vm−1. But since [Vm−1, r̃m−1] has orthonormal

columns and the residuals in Ỹj are normalized, it follows that their coor-
dinates in the basis [Vm−1, r̃m−1] have unit norms. Considering the same
permutation matrix Π as in (2.19) we can show that the columns of the

lower triangular matrix D̃−1
m contain the permuted coordinates of the resid-

uals in Ỹj (j = 1, . . . , ℓ) in the basis [Vm−1, r̃m−1], and thus they have unit
norms. Hence we obtain the bound

‖D−1
m ‖2 ≤ 1 +

ℓ∑

i=1

(mj − qj). (2.21)

Combining (2.17), (2.18), (2.20), and (2.21) concludes the proof. �

3. Numerical experiments
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relative residual (ν = 0.0)
backward error (ν = 0.0)
relative residual (GMRES)
backward error (GMRES)
relative updated residual
uκ(Zn)
uκ(Zn) lower bound
uκ(Zn) upper bound
uκ(Un)

Figure 2. Test problem with FS1836 and b = A[1, . . . , 1]T

solved by Simpler GMRES (ν = 0): relative residual norms
and normwise backward errors (bold solid and dash-dotted
lines), relative residual norms and normwise backward errors
of GMRES (solid and dash-dotted lines), relative updated
residual norms (dotted lines), condition numbers κ(Zn) and
κ(Un) multiplied by unit roundoff u (dashed lines and dots)
including the bounds on uκ(Zn) (gray dashed lines).
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relative updated residual
uκ(Zn)
uκ(Zn) lower bound
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uκ(Un)

Figure 3. Test problem with FS1836 and b = A[1, . . . , 1]T

solved by RB-SGMRES (ν = 1): relative residual norms
and normwise backward errors (bold solid and dash-dotted
lines), relative residual norms and normwise backward errors
of GMRES (solid and dash-dotted lines), relative updated
residual norms (dotted lines), condition numbers κ(Zn) and
κ(Un) multiplied by unit roundoff u (dashed lines and dots)
including the bounds on uκ(Zn) (gray dashed lines).

We illustrate our theoretical results on numerical examples selected from
Matrix Market [2] and performed in MATLABR© using double precision
arithmetic with u ≈ 10−16. Results for the adaptive Simpler GMRES and
classical implementation of GMRES applied to the system with the ma-
trix FS1836 (N = 183, ‖A‖ ≈ 1.2 · 109, κ(A) ≈ 1.7 · 1011) are illustrated on
Figures 2–7. The right-hand side vector b is equal either to A[1, . . . , 1]T (Fig-
ures 2–4) or to the left singular vector corresponding to the smallest singular
value of A (Figures 5–7). On each plot we show the relative true residual
norms (bold solid lines) and normwise backward errors (bold dash-dotted
lines) corresponding to the approximate solutions xn computed by adaptive
Simpler GMRES with three considered values of the threshold parameter:
ν = 0 (Figures 2 and 5) where adaptive Simpler GMRES is equivalent to
Simpler GMRES of Walker and Zhou [15], ν = 1 (Figures 3 and 6) leading
to RB-SGMRES [7], and ν = 0.9 (Figures 4 and 7). In each plot we also
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backward error (ν = 0.9)
relative residual (GMRES)
backward error (GMRES)
relative updated residual
uκ(Zn)
uκ(Zn) lower bound
uκ(Zn) upper bound
uκ(Un)

Figure 4. Test problem with FS1836 and b = A[1, . . . , 1]T

solved by adaptive SGMRES with ν = 0.9: relative residual
norms and normwise backward errors (bold solid and dash-
dotted lines), relative residual norms and normwise backward
errors of GMRES (solid and dash-dotted lines), relative up-
dated residual norms (dotted lines), condition numbers κ(Zn)
and κ(Un) multiplied by unit roundoff u (dashed lines and
dots) including the bounds on uκ(Zn) (gray dashed lines).

include the relative residual norms and normwise backward errors for ap-
proximate solutions computed by classical GMRES of Saad and Schultz [12]
(solid and dash-dotted lines). The relative norms of the updated residual rn

are plotted by dotted lines. The actual values of condition numbers of Zn

and Un are plotted by dashed lines and dots, respectively. The estimates
on κ(Zn) computed using (2.10) are plotted by gray dashed lines. Both
the upper and lower bounds are quite tight until the maximum attainable
accuracy is reached. The iteration steps, where the Simpler GMRES basis
is used, are indicated by circles in the figures.

It is clear from our experiments that both Simpler GMRES and RB-
SGMRES may lead to low accuracy of the computed approximate solution
due to the ill-conditioning of Zn in the case of a rapid initial convergence
with b = A[1, . . . , 1]T or long initial stagnation in the residual norm with
b equal to the left singular vector corresponding to the smallest singular
value, respectively; see Figures 2 and 6. However, as can be observed from
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backward error (ν = 0.0)
relative residual (GMRES)
backward error (GMRES)
relative updated residual
uκ(Zn)
uκ(Zn) lower bound
uκ(Zn) upper bound
uκ(Un)

Figure 5. Test problem with FS1836 and b equal to the left
singular vector corresponding to the smallest singular value
of A solved by Simpler GMRES (ν = 0): relative residual
norms and normwise backward errors (bold solid and dash-
dotted lines), relative residual norms and normwise backward
errors of GMRES (solid and dash-dotted lines), relative up-
dated residual norms (dotted lines), condition numbers κ(Zn)
and κ(Un) multiplied by unit roundoff u (dashed lines and
dots) including the bounds on uκ(Zn) (gray dashed lines).

Figures 4 and 7, the adaptive version of Simpler GMRES with the threshold
value ν = 0.9 leads to reasonably conditioned bases for both right-hand
sides.

Figure 8 shows the dependence of κ(Zm) with respect to the threshold
parameter ν for several real problems with various condition numbers and
of dimensions from 225 up to 1080. For each problem we stop the method
at the iteration step m, where the normwise backward error associated with
the approximate solution xm dropped below the level 10−14. Note that for
each problem and each value of ν varying between 0 and 1, adaptive ver-
sion of Simpler GMRES was able to reach such high accuracy and thus
the ill-conditioning of the basis does not necessarily lead to a low level of
the maximum attainable accuracy. This phenomenon can be explained us-
ing (2.2), which shows that large κ(Zk) can be damped with the small resid-
ual norm ‖rk−1‖. We were not, however, able to prove this for the normwise
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Figure 6. Test problem with FS1836 and b equal to the left
singular vector corresponding to the smallest singular value of
A solved by RB-SGMRES (ν = 1): relative residual norms
and normwise backward errors (bold solid and dash-dotted
lines), relative residual norms and normwise backward errors
of GMRES (solid and dash-dotted lines), relative updated
residual norms (dotted lines), condition numbers κ(Zn) and
κ(Un) multiplied by unit roundoff u (dashed lines and dots)
including the bounds on uκ(Zn) (gray dashed lines).

backward error in [7]. Nevertheless, as we have shown there are examples
where ill-conditioning of Zm leads to low maximum attainable accuracy of
the computed approximate solution; cf. Figures 2 and 6. It is therefore
reasonable to keep conditioning of the basis on a reasonably small level and
consequently to keep the columns of Zm linearly independent as well as the
matrix Um numerically nonsingular. It is clear from Figure 8 that, for our
examples, the value of ν close (but not equal) to 1 leads to a nearly optimal
conditioning of Zm in adaptive Simpler GMRES and, therefore, the residual
vectors should be preferred in Zm even for a moderate intermediate residual
norm decrease. The important issue however is here to preserve the linear
independence of Zm. Therefore, such adaptive switches seems to be useful
whenever the Simpler GMRES method is used.
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uκ(Zn)
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Figure 7. Test problem with FS1836 and b equal to the
left singular vector corresponding to the smallest singular
value of A solved by adaptive SGMRES with ν = 0.9: rela-
tive residual norms and normwise backward errors (bold solid
and dash-dotted lines), relative residual norms and normwise
backward errors of GMRES (solid and dash-dotted lines), rel-
ative updated residual norms (dotted lines), condition num-
bers κ(Zn) and κ(Un) multiplied by unit roundoff u (dashed
lines and dots) including the bounds on uκ(Zn) (gray dashed
lines).
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