FLEXIBLE GMRES WITH DEFLATED RESTARTING
L. GIRAUD*, S. GRATTONT, X. PINELf, AND X. VASSEUR}

CERFACS TECHNICAL REPORT TR/PA/09/111

Abstract. In many situations, it has been observed that significant convergence improvements can be achieved
in preconditioned Krylov subspace methods by enriching them with some spectral information. On the other hand
effective preconditioning strategies are often designed where the preconditioner varies from one step to the next so
that a flexible Krylov solver is required. Tn this paper, we present a new numerical technique for non-symmetric
problems that combines these two features. We illustrate the numerical behavior of the new solver both on a set of
small academic test examples as well as on large industrial simulation arising in wave propagation simulations.
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1. Introduction. The solution of large linear systems is a basic kernel in many large scale
simulations and preconditioned Krylov subspace methods are among the most popular linear
solvers. For non-symmetric problems the GMRES [25] method is often chosen because of its
robustness [18, 19] and because the Euclidean norm of the system residual is non-increasing along
the iterations. In order to make the GMRES method affordable from a memory and floating point
operation-count point of view, a restarting or a truncation [26] process has to be implemented. In
the classical restarted GMRES approach, the initial guess at restart is chosen to be the best (for the
residual norm) known iterate, enforcing thereby the non-increase of the residual norm even when a
restart is performed. In such a situation the restart is performed with only one vector. In addition,
it has been observed that reusing part of the current Krylov space (and not only one vector) for the
construction of iterates in the next cycle of GMRES might significantly improve the convergence.
In many approaches, some estimate of the invariant subspace is searched in the Krylov subspace
and reused in the next restart either by augmenting the space [3, 14, 23|, by deflating over the
subspace [16] or by ensuring some orthogonality properties with respect to that space [20]. One of
the most recent work in this field based on a deflation approach is GMRES-DR [16]. This method
reduces to GMRES, when no deflation is applied, but may provide a much faster convergence than
GMRES for well chosen deflation spaces as described in [16].

The methods mentioned above suppose that the preconditioner is a given matrix M that is
not allowed to change along the iterations. However, there are situations where this is not true
anymore, as e.g. in domain decomposition methods, when approximate solvers are considered for
the interior problems (see references in [29, Sect. 4.4] or in [31, Sect. 4.3]). This approach is notably
used when the size of the local subproblems is so large that obtaining an approximate solution using
an iterative method is computationally more interesting than using a direct method. If the domain
decomposition preconditioner is based on the use of approximate solvers, its application is not a
linear operation in general, and flexible methods, such as the Flexible GMRES method (see the
FGMRES method in [22]), are designed to handle this situation.

In this paper, we present a new approach that combines flexible iterations and a restarting
strategy that exploits some spectral information. The paper is organized as follows: in Section 2,
we briefly present Flexible GMRES [22] and GMRES with deflated restarting [16]. In Section 3 we
describe the minimum residual norm subspace method that allows deflated restarting and flexible
preconditioning. Section 4 is devoted to numerical experiments where both academic and real life
problems are considered to illustrate the numerical features of the new solver.

2. Problem setting. For the sake of generality we describe in this paper approaches for
complex-valued linear systems, although everything also specializes to real arithmetic calculation.
Let A € C™*™ be a square nonsingular n X n non-symmetric complex matrix, and b € C™ be a
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vector, that both define the linear system
Az =b. (2.1)

Among the possible subspace methods to solve the linear system (2.1) we consider the variants
that search for an approximation associated with a minimum residual norm property such as in
GMRES. In this section we briefly present two existing minimum residual norm subspace methods
that allow either variable preconditioning or deflated restarting respectively. Both methods will
play an important role in the novel subspace method that allows flexible preconditioning and
deflated restarting simultaneously. First we introduce some notations and definitions used through
the paper.

2.1. Notations and definitions.

2.1.1. Notations. We denote |.| the Euclidean norm, I, € C**¥ the identity matrix of
dimension k and 0;x; € C™J the zero rectangular matrix with i rows and j columns. T denotes
the transpose operation, whereas ¥ represents the Hermitian transpose operation. Given a vector
d € CF with components d;, D = diag(dy,--- ,dy) is the diagonal matrix D € C*** such that
Di; = d;. Given a matrix ) we denote g; its j — th column. Finally e, € C™ denotes the
m-th Cartesian basis vector of C™. Regarding the algorithmic part (Algorithms 1-6), we adopt
Matlab-like notations in the presentation. For instance Q(i,j) denotes the g;; entry of matrix Q
and Q(1: m,1: j) refers to the submatrix made of the first m rows and first j columns of Q.

2.1.2. Definitions. Definition 2.1 introduces the fundamental relation that will characterize
the class of methods that allow flexible preconditioning and/or deflated restarting.

DEFINITION 2.1. Flexible Arnoldi relation. The subspace methods investigated in this paper
will satisfy the following relation named later on flexible Arnoldi relation:

AZy = Vi Hy

where Zy € C™*¢, Vo € CUHD) such that VZIHVHI =1Iy 1 and Hy € CUADXE " These methods
will compute an approximation of the solution in a (-dimensional affine space xg + Z;ye where
ye € CL. In certain cases, Hy will be an upper Hessenberg matriz.

Finally we recall the definition of a harmonic Ritz pair [17, 28] since this notion plays an im-
portant role when considering deflated restarting.

DEFINITION 2.2. Harmonic Ritz pair. Consider a subspace U of C". Given a matriz B €
Cr*m, AeC andy €U, (N y) is a harmonic Ritz pair of B with respect to U if and only if

By—Ay L BU
or equivalently, for the canonical scalar product,
Yw € range(BU) w' (By — \y) = 0.

We call y a harmonic Ritz vector associated with the harmonic Ritz value \.

2.2. Flexible GMRES. In many large-scale scientific and industrial applications one might
not be able to consider a fixed preconditioner at each step of the subspace method. This happens for
instance when block preconditioners, including domain decomposition techniques, are considered
where the blocks are too large to be handled by a direct solver. In such a situation, an iterative
solver has to be implemented to solve linear systems involving these blocks. Consequently the
preconditioner varies from one step to the next and flexible Krylov solvers have been developed to
manage this issue [22, 33].

In [22] Saad has proposed a minimum residual norm subspace method based on the GMRES
approach that allows variable preconditioning. We denote M; the nonsingular matrix that repre-
sents the preconditioner at step j of the method. Algorithm 1 depicts the FGMRES(m) method
where the approximation subspace is not allowed to be larger than a prescribed dimension noted



m in the rest of the paper. Starting from an initial guess zg, it is based on the flexible Arnoldi
relation with Z,, € C**™, V,, .1 € C»*(™*+1D and the upper Hessenberg matrix H,, € Cm+1)xm

AZyy = Vi1 Hyy with VLV = Ty (2.2)

An approximate solution z,, € C" is then found by minimizing the residual norm ||b— A(zo+ Z,,y)||
over the space xg + range(Z,,), the corresponding residual being r,,, = b — Az, € C" with r,, €
range(V;,+1). An optimality property similar to the one that defines GMRES is thus obtained. We
note however that no general convergence results are available since the subspace of approximants
range(Z,,) is no longer a standard Krylov subspace. We refer the reader to [22, 24] for the analysis
of the breakdown in FGMRES. Finally, we note that the additional storage cost of FGMRES(m)
over GMRES(m) only concerns the extra memory required to store Z,,; i.e., m additional vectors
of length n.

Algorithm 1 Flexible GMRES(m)

1: Initialization: Choose m > 0, tol > 0, g € C". Let ro = b — Axzq, 8 = |[7oll, ¢ = [B,01xm]”
where ¢ € C™*1 v = 1o /.
Loop
2. Computation of Viui1, Zm and H,, (see Algorithm 2): Apply m steps of the Arnoldi
method with flexible preconditioning (z; = Mjflvj,l < j < m) to obtain V11 €

Crx(mt1) 7 e C"*™ and the upper Hessenberg matrix H,, € C"+tD)*™ gych that:

AZyy = Vi1 Hyy with VLV = Ty

3: Minimum norm solution: Compute the minimum norm solution z,, € C" in the affine
space xg + range(Z,,); that is, x,,, = o + Z,y* where y* = argmin ||c — Hp,y||-
B ye(C'm
4: Check the convergence criterion: If ||c — Hp,y*||/]|b|| < tol, exit
5. Settings: Set o = Ty, ro = b — Azo, 8= ||roll, ¢ = [3,01xm]T, v1 = 70/
End of loop

Algorithm 2 Flexible GMRES(m): computation of Vj,, 41, Z,,, and H,,

1: for j =1,m do
2 Zj = M{lvj

3 w = AZj
4 for:=1,j do

5 hi’j = vai

6: w=w — h@jvi

7 end for

8  hit1; = [lwl, vjit1 = w/hit1,
9: end for

10

: Define Z,, = (21, , Zm)s Vint1 = [v1, ,0m1)s Hp = {hij}i<i<m+1,1<j<m

2.3. GMRES with deflated restarting. Krylov subspace methods with standard restart-
ing implement a scheme where the maximal dimension of the approximation subspace is fixed (m
here). The method is restarted in order to control both the memory requirements and the compu-
tational cost of the orthogonalization scheme of the method. In the case of GMRES(m) it means
in practice that the orthonormal basis built is thrown away. Since some information is discarded
at the restart, the convergence is expected to be slower compared to full GMRES.

Nevertheless more sophisticated procedures have been proposed to enhance convergence prop-
erties of restarted Krylov subspace methods. Basically these methods fall in the category of aug-
mented or deflated methods and we refer the reader to [27, Sections 8 and 9| for a review and
detailed references. In this paper we focus on GMRES with deflated restarting, one of those meth-
ods, referred to as GMRES-DR [16]. This method aims at using spectral information at a restart



mainly to improve the convergence of restarted GMRES. We consider a fixed right preconditioning
matrix noted M and suppose that an Arnoldi relation of type AM~'V,, = V,,+1H,, holds. We
note that H,, € C*tD*™ has the following form

_ Hm
Hm N |:hm+1,m€g;:|

where H,, € C™*™ is supposed to be nonsingular. A subspace of dimension k (with k < m)
spanned by harmonic Ritz vectors (and not only the approximate solution with minimum residual
norm) is retained in the restarting scheme. We denote Y;, = V,,,G}, these harmonic Ritz vectors
where Vi = [y1,...,yx] € C"** and G = [g1, ..., gx] € C™**. As originally proposed by Morgan
[16], the vectors g; and associated Ritz values A; (with 1 < j < k) are obtained as solutions of the
following eigenvalue problem

(Him + |hm+1,m|2Hn_z emeT )95 — Aj95 = 0. (2.3)

Next, the QR factorization of the following (m + 1) x (k + 1) matrix

G G = . X
Holflj vH s ro] = Holflj c— Hpy } with 7o = Vipg1(c — Hny™)

is performed where ¢ € C™*! and y* € C™. This allows to compute new matrices Viey e Crx(k+1)
and HPev € C*+1Dxk guch that

AM ™ 1Vnew _ Vk new,
newH yrnew
Vk Vk+1 - IkJrlv
new

vange([Yi, ro]) = range(Vey)

where H°? is a (k + 1) x k rectangular matrix. GMRES-DR then carries out m — k Arnoldi steps
with ﬁxed preconditioning and starting vector vk"w to eventually build V,,,11 and H,,. At the
end of the GMRES cycle with deflated restarting we have a final relation similar to the Arnoldi
relation (2.2) with V,,41 € C"*(m+D and A, € Cm+)xm

AM™YW,, = Vi1 Hyy, with VE Vi = L

where H,, is no longer upper Hessenberg after the first cycle. An approximate solution z,, € C"
is then found by minimizing the residual norm ||b — A(zg + M ~1V,,y)|| over the space zo +
M ~range(V;,), the corresponding residual being r,, = b— Az, € C" with r,,, € range(V,,11). An
optimality property is thus also obtained.

We refer the reader to [16, 21] for further comments on the algorithm and computational details.
This approach has been proved efficient on many academic examples [16]. We note that GMRES
with deflated restarting is equivalent to GMRES with eigenvectors [14] and to implicitly restarted
GMRES [15]. Details of the method are given in Algorithms 3 and 4 respectively. GMRES-
DR(m, k) does require only m — k matrix vector products and preconditioning operations per cycle
while GMRES(m) needs m. Finally we note that Krylov subspace methods with deflated restarting
have been exclusively developed in the case of a fixed preconditioner. In Section 3 we extend the
GMRES-DR method to the case of variable preconditioning.



Algorithm 8 Right-preconditioned GMRES with deflated restarting: GMRES-DR(m, k)

1:

Initialization: Choose m > 0, k > 0, tol > 0, g € C". Let 1o = b — Axo; B = ||roll,
c = [ﬂ,01><m]T S Cm+1’ v = To/ﬁ.

. Computation of V11 and H,,: Apply m steps of the Arnoldi procedure with right precondi-

tioning to obtain Vj,4.1 € C**(™*1) and the upper Hessenberg matrix H,, € C(m+1)x™ guch
that:

AM™'V,, = Vipy1 Hy, with VI Vi = L.

Loop
3: Minimum norm solution: Compute the minimum norm solution z,, € C™ in the affine

space xo + M ~'range(V;,); that is, ,, = o + M ~1V,,y* where y* = argmin ||c — H,y/|-
yeCm
Set zg = x,, and 79 = b — Axy.

4: Check the convergence criterion: If ||c — H,,y*||/||b]| < tol, exit
5. Computation of V'Y’ and H*": see Algorithm 4. At the end of this step the following
relations hold:

AMTIVPe = Ve Hpe? with VPPV = g and ro € range(Vy).

6: Arnoldi procedure: Set Vi1 = V'Y, Hy. = HP and apply (m — k) steps of the Arnoldi

procedure with right preconditioning and starting vector vg41 to build Vi, 11 € Crx(m+1)
and H,, € Cm+1xm gych that:

AM ™'V, = Vipy1 Hy, with VI Vi = L.

7. Setting: Set ¢ = V,,I;IHTO.
End of loop

Algorithm 4 GMRES-DR(m, k): computation of V" and Hpew

1:
2:
3:

Input: A, Vy,yq such that AM =V, = V,,,41 H,, and c— H,,y* such that ro = Vi, 41 (c— Hpy*).
Settings: Define hy,y1.m = H,,(m+1,m), H, € C™™ as H,, = H,,(1:m,1:m).

Compute k harmonic Ritz vectors: Compute k independent eigenvectors g; of the matrix
Hpp + [hms1mPHy B emel . Set Gy = [g1,...,9x] € Ccmxk,

Augmentation of Gy,: Define Gy € CmtDx(k+1) 54

G _
G = HO k ] ’C_Hmy*] '
1xk

Orthonormalization of the columns of Gj41: Perform a QR-factorization of Giy1 as Ggq1 =
PkJrleJrl. Define P, € (Cka as P, = PkJrl(l m,1: k)_. ~

Settings and final relation: Set Vkﬁff’ = Vint1 P41 and HJ®" = P,g_lePk. At the end of this
step the following relations are satisfied:

AM ™YW, Py = Vi1 Posa PR H P ice., AMTYVIY = Vi Hpew

where HJ'*" is generally a dense matrix.

3. Flexible GMRES with deflated restarting. In this section we present the new sub-

space method that allows deflated restarting and variable preconditioning simultaneously. We
suppose that a flexible Arnoldi relation holds (AZ,, = V,,4+1H,,) and analyze one cycle of this
method.

3.1. Analysis of a cycle. We discuss now the two main points related to the extension of

GMRES-DR in a flexible setting: what is the harmonic Ritz information recovered at restart and is
it still possible as in GMRES-DR to restart at low computational cost the flexible Arnoldi relation?



Both questions will be answered in this section.

3.1.1. Harmonic Ritz formulation. Proposition 1 presents the harmonic Ritz formulation
used in the flexible variant of GMRES with deflated restarting.

ProprosiTION 1. Flexible GMRES with deflated restarting relies on the computation of k
harmonic Ritz vectors Yy, = V,,Gr with Yi, € C**F and Gy, € C™*¥ where each harmonic Ritz
pair (A\j, Ving;) satisfies

(Hm + |hm+1,m|2H7;Heme?n)gj - Ajgj =0.

Y}, correspond to harmonic Ritz vectors of AZ,, V.2 with respect to range(V,,).
Proof. The proposed eigenvalue problem - which is the same as in GMRES with deflated
restarting (see relation (2.3)) - can be also written in a compact form as

HEH,.g; —&Hﬁ( goj ) =0. (3.1)

Since Vj;,+1 has orthonormal columns the following relations hold for the two terms of Equation (3.1)
HYH,y, = (AZn)"(AZp),
) ( v ) = H Vol Vi ( v ) = (AZu)" Ving;.
Consequently the eigenvalue problem (3.1) becomes
Vw € range(AZ,,)  w (AZyg; — \j Vingj) =0, (3.2)
or equivalently since V.2V, = I,
Yw € range(AZmVn?Vm) wt (AZmV,,I;IVmgj — X Vingj) =0.

Thus following Definition 2.2, Y}, correspond to harmonic Ritz vectors of AZ,, V2 with respect to
range(V;,,). When a fixed preconditioning is used, it is straightforward to deduce that GMRES-DR
relies on harmonic Ritz vectors of AM~1V2 with respect to range(V;,). Due to relation (3.2) we
also note that the harmonic residual vectors AZmeHVmgj —Xj Ving; € range(V;,41) are orthogonal
to a subspace of dimension m spanned by the columns of AZ,,.
O

In Lemma 3.1 we detail a useful relation satisfied by the harmonic Ritz vectors.

LemmA 3.1.

In Flexible GMRES with deflated restarting, the harmonic Ritz vectors are given by Yy, = V;,, Gy,
with corresponding harmonic Ritz values \,. Gj, € C™*F satisfies the following relation.:

G diag(A1, -+, Ax)
AZp Gl = Vi . P T 3.3
F 1 |:|:01><k] p :| |: A1xk (8:3)
where p,, € C™Y s such that ro = Vipi1pm = Vins1(c— Hpy*) and aixp, = [ag, - -+, ax] € CH¥F.

Proof. The harmonic residual vectors AZmVnI;IVmgi — A Ving; and the residual vector ry all
reside in a subspace of dimension m + 1 (spanned by the columns of V,,1) and are orthogonal to
the same subspace of dimension m (spanned by the columns of AZ,, subspace of range(V,,,4+1)), so
they must be collinear. Consequently there exist k coefficients noted a; € C with 1 <4 < k such
that

Vie{l, -k} AZngi — AiVingi = oiro = @i Vipg1pm- (3.4)
Setting a1k = [, - -+ , ] € CH¥¥ | the collinearity expression (3.4) can be written in matrix form
AZmGk = Vm+1 |:|: Gk :| apm:| |: dlag(/\h o ,Ak)
O1xk Aixk



3.1.2. Flexible Arnoldi relation. Let us further denote by Gy = PiI'; the Q R-factorization
of G}, where P, € C™** has orthonormal columns and T';, € C*** is a nonsingular upper triangular
matrix. We denote Gy4q € CmHDX(E+D) the following matrix that appears in Lemma 3.1:

Grsr = H G ] ,pm} . (3.5)

lek

Proposition 2 shows that a flexible Arnoldi relation can be recovered at low computational
cost when restarting with some harmonic information; i.e., without involving any matrix-vector
product with A as in [5].

PROPOSITION 2.

At each restart of Flexible GMRES with deflated restarting, the flexible Arnoldi relation

AZper = Vs Hpe
holds with
ZpY = Zy Py,
Vi = Vi1 Prga,
and
17 = P Hy Py
Proof.
After orthogonalization of the vector p,, against the columns of [ OiCk ] we obtain the unit

norm vector pyy1 € C™*! that satisfies

P P 1"
_ _ . _ k k
Pr+1 = Pkt1/[[Pra|l with  pri1 = pm — { 01k } { 01k } P

Py

H
] pm respectively. Thus
O1xk

We note a = ||prr1]| and ugx1 € CF the following quantity uyx1 = {

P Py - Ukx1
m 01><k ) +1 a .

Consequently the QR factorization of Giy1 = Pyy1l'k41 can be written as

Gy, o | = Py o 'y ugx:
O1xk]|’ m O1xk|’ + O1xk a ’

From relation (3.3) of Lemma 3.1 we deduce

diag(Ar, -, A _
AZ Py = Vipi1 Pos1Tin { ing( all ) k) }I‘kl. (3.6)
X

Using the flexible Arnoldi relation AZ,, = V,,,1H,, and P,filPkH = [j4+1 we obtain

_ diag(A1, -+, A _
P,filePk:FkH[ &l o ) ]rkl.

If we denote Z;}°Y = Z,, P, Vil = Vint1 Pt and

diag(A1, -+, k)

Hnew — Fk-{—l
k A1xk

} r.'=prt 0,P.,



Equation (3.6) can be written in the following flexible Arnoldi relation
AZI/::leU) _ V]:l:?ll) new.

O

Next, setting Zx = 27, Viy1 = V7" and H, = I:I,?e“’ respectively flexible GMRES with
deflated restarting then carries out (m — k) flexible Arnoldi steps with flexible preconditioning and
starting vector vi41 leading to

A Zm — Vm+1 -Hma

where Z,, € C"*™ V,, 1 € C**(m+1D) and H,, € Cm+hxm

3.2. Algorithm and computational aspects. Details of flexible GMRES with deflated
restarting are depicted in Algorithms 5 and 6 respectively. We will call this algorithm FGMRES-
DR(m, k) and compare this method with both FGMRES(m) and GMRES-DR(m, k) from a com-
putational and storage point of view.

Algorithm 5 Flexible GMRES with deflated restarting: FGMRES-DR(m, k)

1: Ingtialization: Choose m > 0, k > 0, tol > 0, zp € C"*. Let ro = b — Axg; B = |70l
c=[3,01xm|T € C™HL vy = 1o/

2: Computation of Vi1, Zm and H,,: Apply m steps of the Arnoldi procedure with flezible
preconditioning to obtain V,,41 € (C”X(m“) Zm € C™™ and the upper Hessenberg matrix
H,, € C(m*TDxm guch that:

AZm = m+1Hm Wlth V +1Vm+1 = Im—',—l

Loop

3: Minimum norm solution: Compute the minimum norm solution x,, € C" in the affine

space zo + range(Z,,); that is, z,, = xg + Z,y* where y* = argmin ||c — H,y|. Set
yeCm

To = T, and rg = b — Axy.

4: Check the convergence criterion: Tf ||c — H,,y*[|/||b]| < tol, exit

5. Computation of V'Y, Z;* and HP*®: see Algorithm 6. At the end of this step the
following relations hold:

AZREY = VISP HPCY with Vk"fi”HVk"f}“ = Ip41 and ro € range(V'5)"). (3.7)

6: Arnoldi procedure: Set Vi1 = VIV, Zx = Z;°% | Hjy, = H and apply (m — k) steps
of the Arnoldi procedure with flezible preconditioning and starting vector vg4; to build
Vinp1 € Cxm4D) 7 e C"™ and H,, € C™*TDX™ guch that:

AZ,, = m+1I_{m with V] +1Vm+l =Imt1-

7. Setting: Set ¢ = VmHHrO.
End of loop

3.2.1. Computational cost. We summarize now in Table 3.1 the main computational costs
associated with each generic cycle of FGMRES(m), GMRES-DR(m, k) and FGMRES-DR(m, k).
We have only included the costs proportional to the size of the original problem n which is supposed
to be much larger than m and k. We denote op4 and opys the floating point operation counts for the
matrix-vector product and the preconditioner application respectively. The main computational
differences are in the calculation of Vi4;1 and Zj; when comparing FGMRES and FGMRES-DR.
In FGMRES-DR those vectors are computed using dense matrix-matrix operations efficiently im-
plemented in BLAS-3 libraries, while in FGMRES-DR they are obtained through a sequence of
matrix-vector products, possibly sparse, depending on the nature of A and the preconditioners.

For deflating variants, the reduction of this total cost is still possible. The right-hand side ¢
of the least-squares problem is computed as ¢ = VT£I+17“0 which involves 2n(m + 1) operations as



Algorithm 6 FGMRES-DR(m, k): computation of V"1, Z?* and Hpew

1: Input: A, Zp,, Vipg1 such that AZy = Vi1 H,y, and ¢c— H,y* such that ro = Ving1(c— Hpy™).
2: Settings: Define hpi1,m = Hpn(m+1,m), H, € C™*™ as Hy, = Hp,(1:m, 1 :m).

3: Compute k harmonic Ritz vectors.
H,, + |hm+17m|2Hn_1Heme%. Set Gy, = [g1, - - -

,gk] c (mek.

4: Augmentation of Gy: Define G41 € Clm+1)x(k+1) 54

|

lek

G ] ,c—Hmy*].

Compute k independent eigenvectors g; of the matrix

(3.8)

5. Orthonormalization of the columns of Giy1: Perform a QR-factorization of Gi1 as Gi41 =
Pi+1T k1. Define P, € C™*F as P, = Peya(1:m,1: k).

6: Settings and final relation: Set V5’

+1 =

that the following relations are satisfied:

AZy Py = Vipy1 Pop1 PR H Py e,

where H}°? is generally a dense matrix.

AZZ:LEU) —

new rynew
k+1 k

Vini1 Pip1, Zp¥° = Zy Py and HP* = PE H,, Py, 50

(3.9)

Computation of FGMRES(m) GMRES-DR(m, k) FGMRES-DR(m, k)
V(5,10 k+1) kopa + nk(2k +5) 2n(m+ 1)(k+1) 2n(m+ 1)(k+1)

Zm (10 k) kopas - 2nmk

. . (m — k)opa+ (m —k)(opa + opa)+ (m — k)opa+

V(i b 4+ 2:m +1) nim —k)(2m + 2k +5) | n(m — k)(2m + 2k +5) | n(m — k)(2m + 2k + 5)
Zm(k+1:m) (m — k)opum - (m — k)opn
c 2n 2n(m+1) 2n(m +1)
TaBLE 3.1

Computational cost of a generic cycle of FGMRES(m), GMRES-DR(m, k) and FGMRES-DR(m, k).

shown in Table 3.1. This cost can be first reduced by observing that the residual ry belongs to the
subspace spanned by the columns of Vj41, consequently only its first (k + 1) entries are non-zero.
These quantities can be obtained by computing Vkﬁlro and it only requires 2n(k + 1) operations.
This has been notably investigated in [21]. The calculation of ¢ can be even more reduced as
described in Proposition 3.

PROPOSITION 3. The first (k+1) components of the right-hand side ¢ of the next least-squares
problem are given by the last column of T'y11, the triangular factor of the QR factorization of the
matriz Gy defined in relation (3.5).

uk“} . Consequently o = Vyi10m =

Proof. In Proposition 2 we have shown that p,, = Py [ o

Viey [uk;l} . Thus the right-hand side of the new least-squares problem is given by
H H Ukx1 kot
¢= Voo = Vi VY { CLX } N ‘
O(m—k)xl
0

We note that Proposition 3 holds for both GMRES-DR(m, k) and FGMRES-DR(m, k).

3.2.2. Storage requirements. Regarding storage, we have only included the storage pro-
portional to the size of the original problem n which is supposed to be much larger than m and

k.
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Standard. With this convention FGMRES-DR(m, k) requires the storage of Z,,, V41 and at
most k + 1 additional vectors to store in turn V1" and Z;}*. Thus FGMRES-DR(m, k) requires
the storage of (2m + k + 2) vectors of length n.

Buffered. TIf an extra memory block of buf f size can be allocated, a blocked matrix-matrix
product can be implemented to perform Vk”ff’ = Vint1Pri+1 and Z7°Y = Z,,, P, that computes
these matrices block-row by block-row before overwriting the result in the data structure allocated
for Viny1 (Zp, respectively). The definition of this block size can be governed by the BLAS-3
performance of the targeted computer.

Economic. A reduction of storage is however still possible. It can indeed be remarked that
Zpe" and V71" can overwrite Zy and V1. This can be accomplished by performing the matrix
multiplications Vi41 <« V41 Pey1 and Zy «— Z,, P, of Step 6 in Algorithm 6 in place, i.e., within
the arrays V,,,+1 and Z,,,. Here we have exploited the fact that multiplications involving triangular
factors can be done in place. It is therefore advisable to perform a LU factorization with com-
plete pivoting of Py11 to obtain a very good approximation I1P; 1Y = LU, and then, to perform
successively the operations X < XL and X «— XU and the corresponding permutations e.g. for
X being V. This approach leads to a storage of (2m + 1) vectors of length n only. It is clearly
saving a lot of memory when k is close to m, but may introduce additional round-off errors that
ITLP.Y — LU ||

1Pl

Table 3.2 summarizes the requirements related to the storage for both GMRES-DR(m, k) and
FGMRES-DR(m, k). We note that the economic variant of FGMRES-DR(m, k) needs the same
amount of memory as FGMRES(m) and that flexible variants require m additional vectors with
respect to non flexible variants.

can hopefully be monitored by inspecting the quantity

Strategy | GMRES-DR(m, k) FGMRES-DR(m, k)

Standard | n(m+k+2) n(2m+k+2)
Buffered | n(m+ 1)+ buff size | n(2m+ 1) + buf f size
Economic | n(m + 1) n(2m+1)

TABLE 3.2

Storage required for GMRES-DR(m, k) and FGMRES-DR (m, k).

4. Numerical experiments. In this section we investigate the numerical behavior of the
FGMRES-DR/(m,k) algorithm on both academic and realistic applications. We consider the case
of both sparse or dense matrices in either real or complex arithmetic. All the examples include a
detailed comparison with FGMRES(m). This allows us to show the effects of incorporating the
deflation strategy in the flexible preconditioning framework.

In the following experiments, the right-hand sides are computed as b = A1 where 1 is the
vector of appropriate dimension with all components equal to one. A zero initial iterate xq is
considered as an initial guess and the following stopping criterion is used:

<1072 (4.1)

where ¢ represents the step when the iterations are stopped. The numerical tests in Sections 4.1 and
4.2 were performed on a personal computer running Linux (Intel Pentium IV, 2.4 Ghz with 2 GB
of memory) using Matlab version 7.1 (release 14). The numerical results shown in Section 4.3 were
obtained on one processor of a Cray-XD1 computer (AMD Opteron 2.4 Ghz with 2 GB of memory)
using a Fortran implementation. This code was compiled by the Portland Group compiler suite
with the best optimization options and linked with the vendor BLAS and LAPACK subroutines,
optimized for AMD architectures.

4.1. Harwell-Boeing and Matrix Market test problems. In order to illustrate the nu-
merical behavior of FGMRES-DR(m,k), we first consider a few test matrices from the Harwell-

Boeing [11] and Matrix Market [2] libraries so that any reader could reproduce these experiments.
The sparse matrices named Sherman4, Saylor4 and Younglc have been chosen. Sherman4 and
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Saylord are real matrices, whereas Younglc is a complex-valued one. They represent challenging
sparse matrices coming from realistic applications (reservoir modelling, acoustics) that are often
used to analyze the behaviour of numerical algorithms. For those experiments, the preconditioner
consists in five steps of preconditioned full GMRES, where the preconditioner is based on an
ILU(0) factorization. In the case of Sherman4 only, the inner solver corresponds to five steps of
unpreconditioned full GMRES.

In Table 4.1, we depict the total number of matrix-vector products performed in the inner
and outer parts of the solver (Mv) and the total number of dot products (dot) for several flexible
methods. We also display the ratios of total memory and total floating point operations where the
reference is the corresponding quantity of the full FGMRES method; i.e.,

flops(Krylov solver)
Tops = and 7em =

flops(full FGM RES)

mem(Krylov solver)
mem(full FGMRES)’

(4.2)

where we assume that the memory allocated for full FGMRES is exactly what is needed to store
Zy and Vi41, ¢ being the step where convergence is achieved.

In order to illustrate the possible benefit of using the economic implementation presented in
Section 3.2.2 we effectively consider different combinations of restart parameters and harmonic Ritz
values for the flexible methods. Indeed the performance of FGMRES-DR(5,3) can be compared
with FGMRES(5) if the economic variant is implemented or with FGMRES(7) if a standard im-
plementation is considered (see Table 3.2). The total amount of floating point operations spent in
matrix-vector products, dot products, preconditioning and basis orthogonalization has been com-
puted for each solution method, excluding however the cost of the ILU(0) factorization that is
identical for each proposed method. We have also indicated the results related to full FGMRES as
a reference solution method; i.e., when memory is not constrained. It can be noticed that flexible
methods with deflated restarting enables a faster convergence than those with standard restarting.
It also results in a faster calculation since a significant amount of floating point operations is saved.
Moreover we can also note that the performances of FGMRES-DR(10,5) in terms of floating point
operations are close to those of full flexible GMRES especially when considering the Sherman4 and
Saylor4 matrices. Those results also highlight the benefit of using deflated restarting as it enables
a significant saving in memory.

SHERMAN4 SAYLOR4 Younglc

Mv | dot | rops | Tmem || MV | dot | rops | Tmem || Mv dot | Tops | Tmem

FGMRES-DR/(5,3) 37311288 |1.41| 0.14||115| 384 (1.10| 0.30| 1633 | 5698 | 2.60| 0.08
FGMRES(5) 12733813 |3.56| 0.14 || 409|1221(3.22| 0.30|/6145|18430|7.41| 0.08
FGMRES(7) 8771277112.54| 0.191(/295| 931(2.39| 0.41]| 509516126 (6.33| 0.11
FGMRES-DR(10,5) || 247| 951|1.02| 0.27|{109| 396 |1.08 | 0.57|| 967 | 3831|1.71| 0.15
FGMRES(10) 979133311297 | 0.27|/175| 590 |1.46| 0.57| 3619 |12351[4.69| 0.15
FGMRES(13) 6492358 2.06| 0.35||145| 517|1.25| 0.73 | 3205|11742|4.33| 0.19

| fll FGMRES || 229[1311[1.00] 1.00][[109] 441]1.00] 1.00]] 421] 3535]1.00] 1.00|

TABLE 4.1

Performance of FGMRES(m) and FGMRES-DR(m,k) to satisfy the convergence threshold (4.1); Mv is the
total number of matriz vector products, dot the total number of dot products and rops and rmem are the ratios of
floating point operations and memory respectively where the reference method is full FGMRES (see Equation (4.2)).

4.2. Two-dimensional Helmholtz problem. Our goal in this section is to illustrate the
performance of FGMRES with deflated restarting on a simple two-dimensional partial differential
equation model problem. In order to illustrate the effect of the part of the spectrum targeted by the
deflation, we report first in Figures 4.3 and 4.4 on a numerical example where the preconditioner is
fixed so that FGMRES-DR. reduces to GMRES-DR. This fixed preconditioner approach enables us
to display in Figure 4.2 (Figure 4.1) the complete spectrum of the preconditioned matrix (original
matrix respectively). We then investigate a variable preconditioner and apply the same strategies
in the selection of the deflated eigenvectors for all the other presented results. We consider a model
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wave propagation problem in a two-dimensional homogeneous medium:

_a% <%> - 8% (%) —o*u=f in Q=]0,1] (4.3)
with homogeneous Dirichlet boundary conditions v = 0 on the boundary 9€2. The unknown u
represents the pressure field in the frequency domain and o the constant wavenumber. A second
order finite difference discretization scheme of the Helmholtz equation (4.3) is used on a equidistant
Cartesian grid of step size h with the following dispersion stability condition o h = 0.625 [7] being
satisfied. One V(1,1) cycle of a geometric multigrid method [32] is used as a preconditioner. This
multigrid method uses a two-level hierarchy with a red-black Gauss-Seidel smoother, bilinear inter-
polation as prolongation and its adjoint as restriction operator. Galerkin coarse grid discretization
is employed to build the coarse grid operator and a sparse direct solution method is used to solve
the coarse grid systems. Numerical experiments with this two-grid preconditioner for FGMRES on
two-dimensional wave propagation problems in geophysics with Robin boundary conditions have
been reported in [10]. The discretization of the Helmholtz equation on a 64 x 64 grid with o = 40
leads to a real-valued sparse symmetric indefinite matrix A, whose spectrum is shown in Figure 4.1.
There are 117 negative eigenvalues for this choice of wavenumber and step size. The spectrum of
the preconditioned operator AM is also shown in Figure 4.2. It exhibits both positive and negative
isolated real eigenvalues and a cluster of eigenvalues around (1,0).

Spectrum of the original operator
1 T T T T

0.6 i

0.2f : b

Imaginary part
o
(o]
[¢]
[¢]
]
0
(03
0]
)

Il

_1 1 1 1 1 1 1 1
-2000 0 2000 4000 6000 8000 10000 12000 14000 16000
Real part

Fig. 4.1. Spectrum of the original Helmholtz operator. Case of h =1/64 with o = 40.

The harmonic Ritz vectors corresponding to the k eigenvalues A; of smallest magnitude of the
matrix H,, +hfn+1’mH;LHeme?n have been chosen in Algorithm 6 (step 3). In the sequel we call this
strategy SMALLEST. However any combination of k harmonic vectors may be selected. Thus we
have considered two other possibilities. The first one selects the k eigenpairs corresponding to the
eigenvalues of largest magnitude. It is called LARGEST. The second deflation strategy retains the &k
eigenvectors associated with the eigenvalues such as |1 —);| is of largest magnitude. With this latter
choice we aim at selecting eigenvalues located away from a cluster around the eigenvalue of the
"ideal" preconditioned operator AM with M ~! = A. This possibly allows simultaneous deflation of
eigenvalues of both smallest and largest magnitude. We call this strategy CLUSTER. We investigate
the influence of the different deflation strategies (SMALLEST, LARGEST and CLUSTER respectively)
and compare FGMRES-DR(m,k) with FGMRES(m) for different values of the restart parameter

m. Table 4.2 gives the number of approximate eigenpairs k that led to the smallest number of
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Spectrum of the preconditioned operator
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Fia. 4.2. Spectrum of the preconditioned operator, when a V(1,1) cycle of a multigrid method is used as a
preconditioner. Case of h = 1/64 with o0 = 40. Note the different scalings on Figures 4.1 and 4.2

iterations ¢ to satisfy the stopping criterion (4.1) for each deflation strategy. These results have
been obtained by running FGMRES-DR(m,k) with 1 < k < m for each value of the restart
parameter m. If the goal is to minimize the number of iterations, numerical results show that
the CL.USTER deflation strategy is almost the most efficient on this application (see bold values
in Table 4.2) leading sometimes to a significant reduction. The total amount of floating point
operations including the cost of preconditioning has been computed for each solution method. We
choose FGMRES(m) as a reference solution method and report the following normalized quantity
in Table 4.2:
flops(Strat)

Tors = Flops(FGMRES(m)) (4.4)

where Strat denotes the FGMRES-DR(m,k) solution method with a given deflation strategy among
SMALLEST, LARGEST and CLUSTER. Consequently values of 7y less than 1 indicate which solution
methods are expected to be more efficient than FGMRES(m) in terms of computational work. In
this table, we see that the SMALLEST deflation strategy yields the best performance with respect
to floating point operations on this application (see italic values in Table 4.2). The CLUSTER
deflation strategy tends to favour values of k close to the restart parameter m to be most effective.
A possible explanation is that this deflation strategy captures first the set of few outlier eigenvalues
and then the set of real eigenvalues close to zero (see Figure 4.2) - also captured by the SMALLEST
deflation strategy. Figures 4.3 and 4.4 show a typical convergence history on this wave propagation
problem for two different settings of (m,k).

The choice of the two-grid components has led to a fixed preconditioner. This allowed us
to compute the spectrum of the preconditioned operator shown in Figure 4.2. The efficiency of
FGMRES with deflated restarting has been shown on this simple model problem. This is of primary
interest for three-dimensional wave propagation applications, where the coarse grid systems of the
two-grid method can not be handled any more by a sparse direct solution method due to excessive
memory requirements. Iterative methods are then required to solve the coarse grid systems only
approximately. A non constant preconditioner is then obtained which requires the use of flexible
Krylov subspace methods. The study of preconditioned FGMRES-DR for such three-dimensional
wave propagation applications is beyond the scope of this paper and will be analyzed in the near
future. Nevertheless we give an illustration of the potential benefits of FGMRES-DR on the two-
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FGMRES SMALLEST LARGEST CLUSTER
m / | Tops k | Y4 | Tops || K | Y4 | Tops k | / | Tops
10 || 492 | 1.00 || 6 | 161 | 0.55 || 4 | 355 | 0.98 7 1175 ] 0.71
12 || 194 | 1.00 || 2 | 97 | 0.55 || 4 | 181 | 1.25 9 76 | 0.87
14 || 148 | 1.00 || 5 75 0.66 || 3| 138 | 1.11 || 10 | 58 | 0.80
16 || 152 | 1.00 || 8 | 61 0.60 || 6 | 127 | 1.16 || 11 | 50 | 0.62
18 || 124 | 1.00 || 6 | 54 | 0.55 || 2 | 103 | 0.90 || 16 | 45 | 1.25
20 || 101 | 1.00 || 7| 52 0.65 | 4| 8 | 098 || 16 | 41 | 0.90
TABLE 4.2

Wave propagation problem (h = 1/64, o = 40). Case of a constant two-grid preconditioner. On each line
is shown the iso-memory performance of FGMRES and FGMRES-DR; { is the number of iterations required to
satisfy the stopping criterion (4.1) and rops the ratio of total floating point operations v.s. FGMRES(m) (see
Equation (4.4)). Best values of £ are marked in bold, while best values of Tops are marked in italic.

History of convergence for GMRES-DR(10,7)
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Fic. 4.3. Convergence history of the scaled residual with respect to number of iterations on the wave propaga-
tion problem (h = 1/64, o = 40). Ezperiments with GMRES-DR(10,7). Case of a constant two-grid preconditioner.

dimensional model problem (4.3) when such inexact coarse grid solution method is used. As an
example of approximate coarse grid solver, we consider now the use of an iterative method to solve
the coarse grid system to a loose tolerance of 0.15 on the normalized residual. Table 4.3 reports
the results for the two promising deflation strategies SMALLEST and CLUSTER in this setting. The
same conclusions as in the constant preconditioner case hold: FGMRES with deflated restarting
is efficient. This case study illustrates that there are possibly better choices than selecting the
harmonic Ritz vectors corresponding to the harmonic Ritz values of smallest magnitude. If the
goal is to minimize the number of matrix-vector products the CLUSTER policy is the most efficient
on that problem.

4.3. Three-dimensional Maxwell’s equations in the frequency domain. The bound-
ary element method has become a popular tool in computational electromagnetics for the solution
of Maxwell’s equations in the frequency domain. These simulations are very demanding in terms
of computer resources, and require fast and efficient numerical methods. Using the equivalence
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History of convergence for GMRES-DR(20,14)
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Fic. 4.4. Convergence history of the scaled residual with respect to number of iterations on the wave propa-
gation problem (h =1/64, c = 40). Ezperiments with GMRES-DR(20,14). Case of a constant two-grid precondi-
tioner.

FGMRES SMALLEST CLUSTER
m 12 Tops || K l Tops k l Tops
10 || 488 | 1.00 || 3 | 115 | 0.28 || 8 | 125 || 0.66
12 || 208 | 1.00 || 2 | 96 | 0.50 || 10 | 87 1.25
14 || 141 | 1.00 || 8 | 75 | 0.87 || 12| 74 1.78
16 || 156 | 1.00 || 8 | 67 | 0.68 || 13 | 54 || 0.80
18 || 124 | 1.00 || 6 | 57 | 0.60 || 16 | 47 || 0.86
20 || 106 | 1.00 || 7| 54 | 0.66 || 16 | 46 || 0.90

TABLE 4.3
Wave propagation problem (h = 1/64, o = 40). Case of a non constant two-grid preconditioner. On each
line is shown the iso-memory performance of FGMRES and FGMRES-DR; { is the number of iterations required
to satisfy the stopping criterion (4.1) and rops the ratio of total floating point operations v.s. FGMRES(m) (see
Equation (4.4)). Best values of £ are marked in bold, while best values of rops are marked in italic.

principle, Maxwell’s equations can be recast in the form of integral equations. The discretization is
performed on the surface of the object and gives rise to a linear system, where the matrix is dense
and complex. Such a linear system can be solved without explicitly forming the matrix A thanks
to the fast multipole method (FMM) approximation [8, 9, 13, 30]. In this framework, the features
of the fast multipole techniques can be further exploited to design an inner-outer scheme [4]. An
accurate FMM is used within the outer solver as it governs the final accuracy of the computed
solution. The inner solver, that acts as a flexible preconditioner, consists in a few steps of full GM-
RES preconditioned by a sparse approximate inverse preconditioner [1, 6] and uses a less accurate
FMM.

In this section, we consider a complex geometry that corresponds to an air intake of an
aerospace industry object. Such a cavity is known to be particularly challenging to solve. The
dimension of the linear system is 16 950 for the frequency considered in that example.

In Figure 4.5 we depict the convergence history for both FGMRES and FGMRES-DR where
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the inner solver is one restart of GMRES(30) with a sparse approximate inverse preconditioner
based on Frobenius norm minimization. The restart parameters of FGMRES and FGMRES-DR
are chosen so that both solvers use the same amount of storage that corresponds to 51 vectors of
length n. For this implementation the trick based on the LU decomposition with complete pivoting
of P, at restarting was not implemented in the prototype code. Based on a previous work [12],
where a deflating preconditioning technique targeting the smallest eigenvalues in magnitude was
very successful, we select the same part of the spectrum for these experiments. The history is
plotted at the iteration when the methods start generating different iterates; that is after the
smallest restart considered for FGMRES-DR.

It can be seen that FGMRES-DR converges significantly faster than regular FGMRES, espe-
cially when the number of deflated directions is increased. As it could be expected if too many
directions are deflated the performance deteriorates (see k = 11 v.s. k = 13 in the graph). The
convergence remains worse than full FGMRES but FGMRES-DR is much less memory consuming
as Tmem = 0.47. The gain would become larger if more accurate solutions were expected. On
that large electromagnetics calculation, the extra O(k) operations are completely negligible and
the saving in iteration count directly results in a computational time saving. For instance for a
scaled residual norm lower than 10~!! on one processor of a Cray-XD1 computer, the CPU time
is about 5 hours 47 minutes with FGMRES(25) and only about 3 hours 19 minutes for FGMRES-
DR(19,11).

10 |- %
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Fic. 4.5. Convergence history of the scaled residual with respect to the iteration for the electromagnetics
application.

5. Concluding remarks. There are many situations in scientific computing where variable
preconditioners have to be considered for the iterative solution of a linear system. In that framework
we have proposed a novel algorithm that attempts to combine the numerical features of GMRES-
DR and the flexibility of FGMRES. The new algorithm, referred to as FGMRES-DR, inherits
from the attractive numerical properties of its two parents. We have shown, on a set of small test
examples as well as on two real life applications in wave propagation that, after the first restart of
the method, FGMRES-DR may outperform FGMRES; the benefit obtained is problem dependent.
As for the GMRES-DR. algorithm, the eigenvalues of smallest magnitude are often considered as
good candidates for the restarting procedure. However, any other part of the spectrum can be
considered; the best suited choice is again problem-dependent and heuristics could be based on
the analysis of the effect of the preconditioner on the system matrix or on the location of all the
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harmonic Ritz values available at restart.
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