
FLEXIBLE GMRES WITH DEFLATED RESTARTINGL. GIRAUD∗, S. GRATTON† , X. PINEL‡ , AND X. VASSEUR‡CERFACS TECHNICAL REPORT TR/PA/09/111Abstrat. In many situations, it has been observed that signi�ant onvergene improvements an be ahievedin preonditioned Krylov subspae methods by enrihing them with some spetral information. On the other hande�etive preonditioning strategies are often designed where the preonditioner varies from one step to the next sothat a �exible Krylov solver is required. In this paper, we present a new numerial tehnique for non-symmetriproblems that ombines these two features. We illustrate the numerial behavior of the new solver both on a set ofsmall aademi test examples as well as on large industrial simulation arising in wave propagation simulations.Key words. Krylov subspae methods, �exible preonditioning, de�ation, impliit restartingAMS subjet lassi�ations. 65F10, 65N22, 15A061. Introdution. The solution of large linear systems is a basi kernel in many large salesimulations and preonditioned Krylov subspae methods are among the most popular linearsolvers. For non-symmetri problems the GMRES [25℄ method is often hosen beause of itsrobustness [18, 19℄ and beause the Eulidean norm of the system residual is non-inreasing alongthe iterations. In order to make the GMRES method a�ordable from a memory and �oating pointoperation-ount point of view, a restarting or a trunation [26℄ proess has to be implemented. Inthe lassial restarted GMRES approah, the initial guess at restart is hosen to be the best (for theresidual norm) known iterate, enforing thereby the non-inrease of the residual norm even when arestart is performed. In suh a situation the restart is performed with only one vetor. In addition,it has been observed that reusing part of the urrent Krylov spae (and not only one vetor) for theonstrution of iterates in the next yle of GMRES might signi�antly improve the onvergene.In many approahes, some estimate of the invariant subspae is searhed in the Krylov subspaeand reused in the next restart either by augmenting the spae [3, 14, 23℄, by de�ating over thesubspae [16℄ or by ensuring some orthogonality properties with respet to that spae [20℄. One ofthe most reent work in this �eld based on a de�ation approah is GMRES-DR [16℄. This methodredues to GMRES, when no de�ation is applied, but may provide a muh faster onvergene thanGMRES for well hosen de�ation spaes as desribed in [16℄.The methods mentioned above suppose that the preonditioner is a given matrix M that isnot allowed to hange along the iterations. However, there are situations where this is not trueanymore, as e.g. in domain deomposition methods, when approximate solvers are onsidered forthe interior problems (see referenes in [29, Set. 4.4℄ or in [31, Set. 4.3℄). This approah is notablyused when the size of the loal subproblems is so large that obtaining an approximate solution usingan iterative method is omputationally more interesting than using a diret method. If the domaindeomposition preonditioner is based on the use of approximate solvers, its appliation is not alinear operation in general, and �exible methods, suh as the Flexible GMRES method (see theFGMRES method in [22℄), are designed to handle this situation.In this paper, we present a new approah that ombines �exible iterations and a restartingstrategy that exploits some spetral information. The paper is organized as follows: in Setion 2,we brie�y present Flexible GMRES [22℄ and GMRES with de�ated restarting [16℄. In Setion 3 wedesribe the minimum residual norm subspae method that allows de�ated restarting and �exiblepreonditioning. Setion 4 is devoted to numerial experiments where both aademi and real lifeproblems are onsidered to illustrate the numerial features of the new solver.2. Problem setting. For the sake of generality we desribe in this paper approahes foromplex-valued linear systems, although everything also speializes to real arithmeti alulation.Let A ∈ Cn×n be a square nonsingular n × n non-symmetri omplex matrix, and b ∈ Cn be a
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2vetor, that both de�ne the linear system
Ax = b. (2.1)Among the possible subspae methods to solve the linear system (2.1) we onsider the variantsthat searh for an approximation assoiated with a minimum residual norm property suh as inGMRES. In this setion we brie�y present two existing minimum residual norm subspae methodsthat allow either variable preonditioning or de�ated restarting respetively. Both methods willplay an important role in the novel subspae method that allows �exible preonditioning andde�ated restarting simultaneously. First we introdue some notations and de�nitions used throughthe paper.2.1. Notations and de�nitions.2.1.1. Notations. We denote ‖.‖ the Eulidean norm, Ik ∈ Ck×k the identity matrix ofdimension k and 0i×j ∈ Ci×j the zero retangular matrix with i rows and j olumns. T denotesthe transpose operation, whereas H represents the Hermitian transpose operation. Given a vetor

d ∈ C
k with omponents di, D = diag(d1, · · · , dk) is the diagonal matrix D ∈ C

k×k suh that
Dii = di. Given a matrix Q we denote qj its j − th olumn. Finally em ∈ Cm denotes the
m-th Cartesian basis vetor of Cm. Regarding the algorithmi part (Algorithms 1-6), we adoptMatlab-like notations in the presentation. For instane Q(i, j) denotes the qij entry of matrix Qand Q(1 : m, 1 : j) refers to the submatrix made of the �rst m rows and �rst j olumns of Q.2.1.2. De�nitions. De�nition 2.1 introdues the fundamental relation that will haraterizethe lass of methods that allow �exible preonditioning and/or de�ated restarting.Definition 2.1. Flexible Arnoldi relation. The subspae methods investigated in this paperwill satisfy the following relation named later on �exible Arnoldi relation:

AZℓ = Vℓ+1H̄ℓwhere Zℓ ∈ Cn×ℓ, Vℓ+1 ∈ Cn×(ℓ+1) suh that V H
ℓ+1Vℓ+1 = Iℓ+1 and H̄ℓ ∈ C(ℓ+1)×ℓ. These methodswill ompute an approximation of the solution in a ℓ-dimensional a�ne spae x0 + Zℓ yℓ where

yℓ ∈ C
ℓ. In ertain ases, H̄ℓ will be an upper Hessenberg matrix.Finally we reall the de�nition of a harmoni Ritz pair [17, 28℄ sine this notion plays an im-portant role when onsidering de�ated restarting.Definition 2.2. Harmoni Ritz pair. Consider a subspae U of Cn. Given a matrix B ∈

Cn×n, λ ∈ C and y ∈ U , (λ, y) is a harmoni Ritz pair of B with respet to U if and only if
By − λ y ⊥ B Uor equivalently, for the anonial salar produt,

∀w ∈ range(B U) wH (By − λ y) = 0.We all y a harmoni Ritz vetor assoiated with the harmoni Ritz value λ.2.2. Flexible GMRES. In many large-sale sienti� and industrial appliations one mightnot be able to onsider a �xed preonditioner at eah step of the subspae method. This happens forinstane when blok preonditioners, inluding domain deomposition tehniques, are onsideredwhere the bloks are too large to be handled by a diret solver. In suh a situation, an iterativesolver has to be implemented to solve linear systems involving these bloks. Consequently thepreonditioner varies from one step to the next and �exible Krylov solvers have been developed tomanage this issue [22, 33℄.In [22℄ Saad has proposed a minimum residual norm subspae method based on the GMRESapproah that allows variable preonditioning. We denote Mj the nonsingular matrix that repre-sents the preonditioner at step j of the method. Algorithm 1 depits the FGMRES(m) methodwhere the approximation subspae is not allowed to be larger than a presribed dimension noted



3
m in the rest of the paper. Starting from an initial guess x0, it is based on the �exible Arnoldirelation with Zm ∈ C

n×m, Vm+1 ∈ C
n×(m+1) and the upper Hessenberg matrix H̄m ∈ C

(m+1)×m

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1. (2.2)An approximate solution xm ∈ Cn is then found by minimizing the residual norm ‖b−A(x0+Zmy)‖over the spae x0 + range(Zm), the orresponding residual being rm = b − Axm ∈ Cn with rm ∈

range(Vm+1). An optimality property similar to the one that de�nes GMRES is thus obtained. Wenote however that no general onvergene results are available sine the subspae of approximants
range(Zm) is no longer a standard Krylov subspae. We refer the reader to [22, 24℄ for the analysisof the breakdown in FGMRES. Finally, we note that the additional storage ost of FGMRES(m)over GMRES(m) only onerns the extra memory required to store Zm; i.e., m additional vetorsof length n.Algorithm 1 Flexible GMRES(m)1: Initialization: Choose m > 0, tol > 0, x0 ∈ C

n. Let r0 = b − Ax0, β = ‖r0‖, c = [β, 01×m]Twhere c ∈ Cm+1, v1 = r0/β.Loop2: Computation of Vm+1, Zm and H̄m (see Algorithm 2): Apply m steps of the Arnoldimethod with �exible preonditioning (zj = M−1
j vj , 1 ≤ j ≤ m) to obtain Vm+1 ∈

C
n×(m+1), Zm ∈ C

n×m and the upper Hessenberg matrix H̄m ∈ C
(m+1)×m suh that:

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1.3: Minimum norm solution: Compute the minimum norm solution xm ∈ Cn in the a�nespae x0 + range(Zm); that is, xm = x0 + Zmy∗ where y∗ = argmin

y∈Cm

‖c− H̄my‖.4: Chek the onvergene riterion: If ‖c− H̄my∗‖/‖b‖ ≤ tol, exit5: Settings: Set x0 = xm, r0 = b−Ax0, β = ‖r0‖, c = [β, 01×m]T , v1 = r0/β.End of loopAlgorithm 2 Flexible GMRES(m): omputation of Vm+1, Zm and H̄m1: for j = 1, m do2: zj = M−1
j vj3: w = Azj4: for i = 1, j do5: hi,j = wHvi6: w = w − hi,jvi7: end for8: hi+1,j = ‖w‖, vj+1 = w/hi+1,j9: end for10: De�ne Zm = [z1, · · · , zm], Vm+1 = [v1, · · · , vm+1], H̄m = {hi,j}1≤i≤m+1,1≤j≤m2.3. GMRES with de�ated restarting. Krylov subspae methods with standard restart-ing implement a sheme where the maximal dimension of the approximation subspae is �xed (mhere). The method is restarted in order to ontrol both the memory requirements and the ompu-tational ost of the orthogonalization sheme of the method. In the ase of GMRES(m) it meansin pratie that the orthonormal basis built is thrown away. Sine some information is disardedat the restart, the onvergene is expeted to be slower ompared to full GMRES.Nevertheless more sophistiated proedures have been proposed to enhane onvergene prop-erties of restarted Krylov subspae methods. Basially these methods fall in the ategory of aug-mented or de�ated methods and we refer the reader to [27, Setions 8 and 9℄ for a review anddetailed referenes. In this paper we fous on GMRES with de�ated restarting, one of those meth-ods, referred to as GMRES-DR [16℄. This method aims at using spetral information at a restart



4mainly to improve the onvergene of restarted GMRES. We onsider a �xed right preonditioningmatrix noted M and suppose that an Arnoldi relation of type AM−1Vm = Vm+1H̄m holds. Wenote that H̄m ∈ C(m+1)×m has the following form
H̄m =

[

Hm

hm+1,meT
m

]where Hm ∈ Cm×m is supposed to be nonsingular. A subspae of dimension k (with k < m)spanned by harmoni Ritz vetors (and not only the approximate solution with minimum residualnorm) is retained in the restarting sheme. We denote Yk = VmGk these harmoni Ritz vetorswhere Yk = [y1, . . . , yk] ∈ Cn×k and Gk = [g1, . . . , gk] ∈ Cm×k. As originally proposed by Morgan[16℄, the vetors gj and assoiated Ritz values λj (with 1 ≤ j ≤ k) are obtained as solutions of thefollowing eigenvalue problem
(Hm + |hm+1,m|

2H−H
m emeT

m)gj − λjgj = 0. (2.3)Next, the QR fatorization of the following (m + 1)× (k + 1) matrix
[[

Gk

01×k

]

V H
m+1 r0

]

=

[[

Gk

01×k

]

c− H̄my∗

] with r0 = Vm+1(c− H̄my∗)is performed where c ∈ Cm+1 and y∗ ∈ Cm. This allows to ompute new matries V new
k+1 ∈ Cn×(k+1)and H̄new

k ∈ C(k+1)×k suh that
AM−1V new

k = V new
k+1 H̄new

k ,

V new
k+1

H V new
k+1 = Ik+1,

range([Yk, r0]) = range(V new
k+1 )where H̄new

k is a (k + 1)× k retangular matrix. GMRES-DR then arries out m− k Arnoldi stepswith �xed preonditioning and starting vetor vnew
k+1 to eventually build Vm+1 and H̄m. At theend of the GMRES yle with de�ated restarting we have a �nal relation similar to the Arnoldirelation (2.2) with Vm+1 ∈ C

n×(m+1) and H̄m ∈ C
(m+1)×m

AM−1Vm = Vm+1H̄m with V H
m+1 Vm+1 = Im+1where H̄m is no longer upper Hessenberg after the �rst yle. An approximate solution xm ∈ Cnis then found by minimizing the residual norm ‖b − A(x0 + M−1Vmy)‖ over the spae x0 +

M−1range(Vm), the orresponding residual being rm = b−Axm ∈ Cn with rm ∈ range(Vm+1). Anoptimality property is thus also obtained.We refer the reader to [16, 21℄ for further omments on the algorithm and omputational details.This approah has been proved e�ient on many aademi examples [16℄. We note that GMRESwith de�ated restarting is equivalent to GMRES with eigenvetors [14℄ and to impliitly restartedGMRES [15℄. Details of the method are given in Algorithms 3 and 4 respetively. GMRES-DR(m, k) does require only m−k matrix vetor produts and preonditioning operations per ylewhile GMRES(m) needs m. Finally we note that Krylov subspae methods with de�ated restartinghave been exlusively developed in the ase of a �xed preonditioner. In Setion 3 we extend theGMRES-DR method to the ase of variable preonditioning.



5Algorithm 3 Right-preonditioned GMRES with de�ated restarting: GMRES-DR(m, k)1: Initialization: Choose m > 0, k > 0, tol > 0, x0 ∈ Cn. Let r0 = b − Ax0; β = ‖r0‖,
c = [β, 01×m]T ∈ C

m+1, v1 = r0/β.2: Computation of Vm+1 and H̄m: Apply m steps of the Arnoldi proedure with right preondi-tioning to obtain Vm+1 ∈ Cn×(m+1) and the upper Hessenberg matrix H̄m ∈ C(m+1)×m suhthat:
AM−1Vm = Vm+1H̄m with V H

m+1Vm+1 = Im+1.Loop3: Minimum norm solution: Compute the minimum norm solution xm ∈ Cn in the a�nespae x0 + M−1range(Vm); that is, xm = x0 + M−1Vmy∗ where y∗ = argmin
y∈Cm

‖c− H̄my‖.Set x0 = xm and r0 = b−Ax0.4: Chek the onvergene riterion: If ‖c− H̄my∗‖/‖b‖ ≤ tol, exit5: Computation of V new
k+1 and H̄new

k : see Algorithm 4. At the end of this step the followingrelations hold:
AM−1V new

k = V new
k+1 H̄new

k with V new
k+1

HV new
k+1 = Ik+1 and r0 ∈ range(V new

k+1 ).6: Arnoldi proedure: Set Vk+1 = V new
k+1 , H̄k = H̄new

k and apply (m− k) steps of the Arnoldiproedure with right preonditioning and starting vetor vk+1 to build Vm+1 ∈ Cn×(m+1)and H̄m ∈ C(m+1)×m suh that:
AM−1Vm = Vm+1H̄m with V H

m+1Vm+1 = Im+1.7: Setting: Set c = V H
m+1r0.End of loopAlgorithm 4 GMRES-DR(m, k): omputation of V new

k+1 and H̄new
k1: Input: A, Vm+1 suh that AM−1Vm = Vm+1H̄m and c−H̄my∗ suh that r0 = Vm+1(c−H̄my∗).2: Settings: De�ne hm+1,m = H̄m(m + 1, m), Hm ∈ Cm×m as Hm = H̄m(1 : m, 1 : m).3: Compute k harmoni Ritz vetors: Compute k independent eigenvetors gi of the matrix

Hm + |hm+1,m|
2H−H

m emeT
m. Set Gk = [g1, . . . , gk] ∈ Cm×k.4: Augmentation of Gk: De�ne Gk+1 ∈ C(m+1)×(k+1) as

Gk+1 =

[[

Gk

01×k

]

, c− H̄my∗

]

.5: Orthonormalization of the olumns of Gk+1: Perform a QR-fatorization of Gk+1 as Gk+1 =
Pk+1Γk+1. De�ne Pk ∈ Cm×k as Pk = Pk+1(1 : m, 1 : k).6: Settings and �nal relation: Set V new

k+1 = Vm+1Pk+1 and H̄new
k = PH

k+1H̄mPk. At the end of thisstep the following relations are satis�ed:
AM−1VmPk = Vm+1Pk+1P

H
k+1H̄mPk ; i.e., AM−1V new

k = V new
k+1 H̄new

kwhere H̄new
k is generally a dense matrix.3. Flexible GMRES with de�ated restarting. In this setion we present the new sub-spae method that allows de�ated restarting and variable preonditioning simultaneously. Wesuppose that a �exible Arnoldi relation holds (AZm = Vm+1H̄m) and analyze one yle of thismethod.3.1. Analysis of a yle. We disuss now the two main points related to the extension ofGMRES-DR in a �exible setting: what is the harmoni Ritz information reovered at restart and isit still possible as in GMRES-DR to restart at low omputational ost the �exible Arnoldi relation?



6Both questions will be answered in this setion.3.1.1. Harmoni Ritz formulation. Proposition 1 presents the harmoni Ritz formulationused in the �exible variant of GMRES with de�ated restarting.Proposition 1. Flexible GMRES with de�ated restarting relies on the omputation of kharmoni Ritz vetors Yk = VmGk with Yk ∈ Cn×k and Gk ∈ Cm×k, where eah harmoni Ritzpair (λj , Vmgj) satis�es
(Hm + |hm+1,m|

2H−H
m emeT

m)gj − λjgj = 0.

Yk orrespond to harmoni Ritz vetors of AZmV H
m with respet to range(Vm).Proof. The proposed eigenvalue problem - whih is the same as in GMRES with de�atedrestarting (see relation (2.3)) - an be also written in a ompat form as

H̄H
m H̄mgj − λjH̄

H
m

(

gj

0

)

= 0. (3.1)Sine Vm+1 has orthonormal olumns the following relations hold for the two terms of Equation (3.1)
H̄H

m H̄m = (AZm)H(AZm),

H̄H
m

(

gj

0

)

= H̄H
mV H

m+1Vm+1

(

gj

0

)

= (AZm)HVmgj .Consequently the eigenvalue problem (3.1) beomes
∀w ∈ range(AZm) wH (AZmgj − λj Vmgj) = 0, (3.2)or equivalently sine V H

m Vm = Im

∀w ∈ range(AZmV H
m Vm) wH (AZmV H

m Vmgj − λj Vmgj) = 0.Thus following De�nition 2.2, Yk orrespond to harmoni Ritz vetors of AZmV H
m with respet to

range(Vm). When a �xed preonditioning is used, it is straightforward to dedue that GMRES-DRrelies on harmoni Ritz vetors of AM−1V H
m with respet to range(Vm). Due to relation (3.2) wealso note that the harmoni residual vetors AZmV H

m Vmgj−λj Vmgj ∈ range(Vm+1) are orthogonalto a subspae of dimension m spanned by the olumns of AZm.In Lemma 3.1 we detail a useful relation satis�ed by the harmoni Ritz vetors.Lemma 3.1.In Flexible GMRES with de�ated restarting, the harmoni Ritz vetors are given by Yk = VmGkwith orresponding harmoni Ritz values λk. Gk ∈ C
m×k satis�es the following relation:

AZmGk = Vm+1

[[

Gk

01×k

]

, ρm

] [

diag(λ1, · · · , λk)
α1×k

] (3.3)where ρm ∈ C
m+1 is suh that r0 = Vm+1ρm = Vm+1(c− H̄my∗) and α1×k = [α1, · · · , αk] ∈ C

1×k.Proof. The harmoni residual vetors AZmV H
m Vmgi − λi Vmgi and the residual vetor r0 allreside in a subspae of dimension m + 1 (spanned by the olumns of Vm+1) and are orthogonal tothe same subspae of dimension m (spanned by the olumns of AZm subspae of range(Vm+1)), sothey must be ollinear. Consequently there exist k oe�ients noted αi ∈ C with 1 ≤ i ≤ k suhthat

∀i ∈ {1, · · · , k} AZmgi − λiVmgi = αir0 = αiVm+1ρm. (3.4)Setting α1×k = [α1, · · · , αk] ∈ C1×k, the ollinearity expression (3.4) an be written in matrix form
AZmGk = Vm+1

[[

Gk

01×k

]

, ρm

] [

diag(λ1, · · · , λk)
α1×k

]

.



73.1.2. Flexible Arnoldi relation. Let us further denote by Gk = PkΓk the QR-fatorizationof Gk, where Pk ∈ C
m×k has orthonormal olumns and Γk ∈ C

k×k is a nonsingular upper triangularmatrix. We denote Gk+1 ∈ C(m+1)×(k+1) the following matrix that appears in Lemma 3.1:
Gk+1 =

[[

Gk

01×k

]

, ρm

]

. (3.5)Proposition 2 shows that a �exible Arnoldi relation an be reovered at low omputationalost when restarting with some harmoni information; i.e., without involving any matrix-vetorprodut with A as in [5℄.Proposition 2.At eah restart of Flexible GMRES with de�ated restarting, the �exible Arnoldi relation
AZnew

k = V new
k+1 H̄new

kholds with
Znew

k = ZmPk,

V new
k+1 = Vm+1Pk+1,and

H̄new
k = PH

k+1H̄mPk.Proof.After orthogonalization of the vetor ρm against the olumns of [

Pk

01×k

] we obtain the unitnorm vetor pk+1 ∈ Cm+1 that satis�es
pk+1 = p̄k+1/‖p̄k+1‖ with p̄k+1 = ρm −

[

Pk

01×k

] [

Pk

01×k

]H

ρm.We note a = ‖p̄k+1‖ and uk×1 ∈ C
k the following quantity uk×1 =

[

Pk

01×k

]H

ρm respetively. Thus
ρm =

[[

Pk

01×k

]

, pk+1

] [

uk×1

a

]

.Consequently the QR fatorization of Gk+1 = Pk+1Γk+1 an be written as
[[

Gk

01×k

]

, ρm

]

=

[[

Pk

01×k

]

, pk+1

] [

Γk uk×1

01×k a

]

.From relation (3.3) of Lemma 3.1 we dedue
AZmPk = Vm+1Pk+1Γk+1

[

diag(λ1, · · · , λk)
α1×k

]

Γ−1
k . (3.6)Using the �exible Arnoldi relation AZm = Vm+1H̄m and PH

k+1Pk+1 = Ik+1 we obtain
PH

k+1H̄mPk = Γk+1

[

diag(λ1, · · · , λk)
α1×k

]

Γ−1
k .If we denote Znew

k = ZmPk, V new
k+1 = Vm+1Pk+1 and

H̄new
k = Γk+1

[

diag(λ1, · · · , λk)
α1×k

]

Γ−1
k = PH

k+1H̄mPk,



8Equation (3.6) an be written in the following �exible Arnoldi relation
AZnew

k = V new
k+1 H̄new

k .Next, setting Zk = Znew
k , Vk+1 = V new

k+1 and H̄k = H̄new
k respetively �exible GMRES withde�ated restarting then arries out (m−k) �exible Arnoldi steps with �exible preonditioning andstarting vetor vk+1 leading to

A Zm = Vm+1 H̄m,where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) and H̄m ∈ C(m+1)×m.3.2. Algorithm and omputational aspets. Details of �exible GMRES with de�atedrestarting are depited in Algorithms 5 and 6 respetively. We will all this algorithm FGMRES-DR(m, k) and ompare this method with both FGMRES(m) and GMRES-DR(m, k) from a om-putational and storage point of view.Algorithm 5 Flexible GMRES with de�ated restarting: FGMRES-DR(m, k)1: Initialization: Choose m > 0, k > 0, tol > 0, x0 ∈ Cn. Let r0 = b − Ax0; β = ‖r0‖,
c = [β, 01×m]T ∈ C

m+1, v1 = r0/β.2: Computation of Vm+1, Zm and H̄m: Apply m steps of the Arnoldi proedure with �exiblepreonditioning to obtain Vm+1 ∈ Cn×(m+1), Zm ∈ Cn×m and the upper Hessenberg matrix
H̄m ∈ C(m+1)×m suh that:

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1.Loop3: Minimum norm solution: Compute the minimum norm solution xm ∈ Cn in the a�nespae x0 + range(Zm); that is, xm = x0 + Zmy∗ where y∗ = argmin

y∈Cm

‖c − H̄my‖. Set
x0 = xm and r0 = b−Ax0.4: Chek the onvergene riterion: If ‖c− H̄my∗‖/‖b‖ ≤ tol, exit5: Computation of V new

k+1 , Znew
k and H̄new

k : see Algorithm 6. At the end of this step thefollowing relations hold:
AZnew

k = V new
k+1 H̄new

k with V new
k+1

HV new
k+1 = Ik+1 and r0 ∈ range(V new

k+1 ). (3.7)6: Arnoldi proedure: Set Vk+1 = V new
k+1 , Zk = Znew

k , H̄k = H̄new
k and apply (m − k) stepsof the Arnoldi proedure with �exible preonditioning and starting vetor vk+1 to build

Vm+1 ∈ Cn×(m+1), Zm ∈ Cn×m and H̄m ∈ C(m+1)×m suh that:
AZm = Vm+1H̄m with V H

m+1Vm+1 = Im+1.7: Setting: Set c = V H
m+1r0.End of loop3.2.1. Computational ost. We summarize now in Table 3.1 the main omputational ostsassoiated with eah generi yle of FGMRES(m), GMRES-DR(m, k) and FGMRES-DR(m, k).We have only inluded the osts proportional to the size of the original problem n whih is supposedto be muh larger than m and k. We denote opA and opM the �oating point operation ounts for thematrix-vetor produt and the preonditioner appliation respetively. The main omputationaldi�erenes are in the alulation of Vk+1 and Zk when omparing FGMRES and FGMRES-DR.In FGMRES-DR those vetors are omputed using dense matrix-matrix operations e�iently im-plemented in BLAS-3 libraries, while in FGMRES-DR they are obtained through a sequene ofmatrix-vetor produts, possibly sparse, depending on the nature of A and the preonditioners.For de�ating variants, the redution of this total ost is still possible. The right-hand side cof the least-squares problem is omputed as c = V H

m+1r0 whih involves 2n(m + 1) operations as



9Algorithm 6 FGMRES-DR(m, k): omputation of V new
k+1 , Znew

k and H̄new
k1: Input: A, Zm, Vm+1 suh that AZm = Vm+1H̄m and c−H̄my∗ suh that r0 = Vm+1(c−H̄my∗).2: Settings: De�ne hm+1,m = H̄m(m + 1, m), Hm ∈ Cm×m as Hm = H̄m(1 : m, 1 : m).3: Compute k harmoni Ritz vetors. Compute k independent eigenvetors gi of the matrix

Hm + |hm+1,m|
2H−H

m emeT
m. Set Gk = [g1, . . . , gk] ∈ Cm×k.4: Augmentation of Gk: De�ne Gk+1 ∈ C(m+1)×(k+1) as

Gk+1 =

[[

Gk

01×k

]

, c− H̄my∗

]

. (3.8)5: Orthonormalization of the olumns of Gk+1: Perform a QR-fatorization of Gk+1 as Gk+1 =
Pk+1Γk+1. De�ne Pk ∈ Cm×k as Pk = Pk+1(1 : m, 1 : k).6: Settings and �nal relation: Set V new

k+1 = Vm+1Pk+1, Znew
k = ZmPk and H̄new

k = PH
k+1H̄mPk, sothat the following relations are satis�ed:

AZmPk = Vm+1Pk+1P
H
k+1H̄mPk ; i.e., AZnew

k = V new
k+1 H̄new

k (3.9)where H̄new
k is generally a dense matrix.Computation of FGMRES(m) GMRES-DR(m, k) FGMRES-DR(m, k)

Vm(:, 1 : k + 1) kopA + nk(2k + 5) 2n(m + 1)(k + 1) 2n(m + 1)(k + 1)

Zm(:, 1 : k) kopM - 2nmk

Vm(:, k + 2 : m + 1)
(m− k)opA+

n(m− k)(2m + 2k + 5)
(m− k)(opA + opM )+
n(m− k)(2m + 2k + 5)

(m− k)opA+
n(m− k)(2m + 2k + 5)

Zm(:, k + 1 : m) (m− k)opM - (m− k)opM

c 2n 2n(m + 1) 2n(m + 1)Table 3.1Computational ost of a generi yle of FGMRES(m), GMRES-DR(m, k) and FGMRES-DR(m, k).shown in Table 3.1. This ost an be �rst redued by observing that the residual r0 belongs to thesubspae spanned by the olumns of Vk+1, onsequently only its �rst (k + 1) entries are non-zero.These quantities an be obtained by omputing V H
k+1r0 and it only requires 2n(k + 1) operations.This has been notably investigated in [21℄. The alulation of c an be even more redued asdesribed in Proposition 3.Proposition 3. The �rst (k+1) omponents of the right-hand side c of the next least-squaresproblem are given by the last olumn of Γk+1, the triangular fator of the QR fatorization of thematrix Gk+1 de�ned in relation (3.5).Proof. In Proposition 2 we have shown that ρm = Pk+1

[

uk×1

a

]

. Consequently r0 = Vm+1ρm =

V new
k+1

[

uk×1

a

]

. Thus the right-hand side of the new least-squares problem is given by
c = V H

m+1r0 = V H
m+1V

new
k+1

[

uk×1

a

]

=





uk×1

a
0(m−k)×1



 .We note that Proposition 3 holds for both GMRES-DR(m, k) and FGMRES-DR(m, k).3.2.2. Storage requirements. Regarding storage, we have only inluded the storage pro-portional to the size of the original problem n whih is supposed to be muh larger than m and
k.



10 Standard. With this onvention FGMRES-DR(m, k) requires the storage of Zm, Vm+1 and atmost k + 1 additional vetors to store in turn V new
k+1 and Znew

k . Thus FGMRES-DR(m, k) requiresthe storage of (2m + k + 2) vetors of length n.Bu�ered. If an extra memory blok of buff size an be alloated, a bloked matrix-matrixprodut an be implemented to perform V new
k+1 = Vm+1Pk+1 and Znew

k = ZmPk, that omputesthese matries blok-row by blok-row before overwriting the result in the data struture alloatedfor Vm+1 (Zm respetively). The de�nition of this blok size an be governed by the BLAS-3performane of the targeted omputer.Eonomi. A redution of storage is however still possible. It an indeed be remarked that
Znew

k and V new
k+1 an overwrite Zk and Vk+1. This an be aomplished by performing the matrixmultipliations Vk+1 ← Vm+1Pk+1 and Zk ← ZmPk of Step 6 in Algorithm 6 in plae, i.e., withinthe arrays Vm+1 and Zm. Here we have exploited the fat that multipliations involving triangularfators an be done in plae. It is therefore advisable to perform a LU fatorization with om-plete pivoting of Pk+1 to obtain a very good approximation ΠPk+1Σ = LU , and then, to performsuessively the operations X ← XL and X ← XU and the orresponding permutations e.g. for

X being V . This approah leads to a storage of (2m + 1) vetors of length n only. It is learlysaving a lot of memory when k is lose to m, but may introdue additional round-o� errors thatan hopefully be monitored by inspeting the quantity ‖ΠPkΣ− LU‖

‖Pk‖
.Table 3.2 summarizes the requirements related to the storage for both GMRES-DR(m, k) andFGMRES-DR(m, k). We note that the eonomi variant of FGMRES-DR(m, k) needs the sameamount of memory as FGMRES(m) and that �exible variants require m additional vetors withrespet to non �exible variants.Strategy GMRES-DR(m, k) FGMRES-DR(m, k)Standard n(m + k + 2) n(2m + k + 2)Bu�ered n(m + 1) + buff size n(2m + 1) + buff sizeEonomi n(m + 1) n(2m + 1)Table 3.2Storage required for GMRES-DR(m, k) and FGMRES-DR(m, k).4. Numerial experiments. In this setion we investigate the numerial behavior of theFGMRES-DR(m,k) algorithm on both aademi and realisti appliations. We onsider the aseof both sparse or dense matries in either real or omplex arithmeti. All the examples inlude adetailed omparison with FGMRES(m). This allows us to show the e�ets of inorporating thede�ation strategy in the �exible preonditioning framework.In the following experiments, the right-hand sides are omputed as b = A1 where 1 is thevetor of appropriate dimension with all omponents equal to one. A zero initial iterate x0 isonsidered as an initial guess and the following stopping riterion is used:

‖b−Axℓ‖

‖b‖
≤ 10−12 (4.1)where ℓ represents the step when the iterations are stopped. The numerial tests in Setions 4.1 and4.2 were performed on a personal omputer running Linux (Intel Pentium IV, 2.4 Ghz with 2 GBof memory) using Matlab version 7.1 (release 14). The numerial results shown in Setion 4.3 wereobtained on one proessor of a Cray-XD1 omputer (AMD Opteron 2.4 Ghz with 2 GB of memory)using a Fortran implementation. This ode was ompiled by the Portland Group ompiler suitewith the best optimization options and linked with the vendor BLAS and LAPACK subroutines,optimized for AMD arhitetures.4.1. Harwell-Boeing and Matrix Market test problems. In order to illustrate the nu-merial behavior of FGMRES-DR(m,k), we �rst onsider a few test matries from the Harwell-Boeing [11℄ and Matrix Market [2℄ libraries so that any reader ould reprodue these experiments.The sparse matries named Sherman4, Saylor4 and Young1 have been hosen. Sherman4 and



11Saylor4 are real matries, whereas Young1 is a omplex-valued one. They represent hallengingsparse matries oming from realisti appliations (reservoir modelling, aoustis) that are oftenused to analyze the behaviour of numerial algorithms. For those experiments, the preonditioneronsists in �ve steps of preonditioned full GMRES, where the preonditioner is based on anILU(0) fatorization. In the ase of Sherman4 only, the inner solver orresponds to �ve steps ofunpreonditioned full GMRES.In Table 4.1, we depit the total number of matrix-vetor produts performed in the innerand outer parts of the solver (Mv) and the total number of dot produts (dot) for several �exiblemethods. We also display the ratios of total memory and total �oating point operations where thereferene is the orresponding quantity of the full FGMRES method; i.e.,
rops =

flops(Krylov solver)

flops(full FGMRES)
and rmem =

mem(Krylov solver)

mem(full FGMRES)
, (4.2)where we assume that the memory alloated for full FGMRES is exatly what is needed to store

Zℓ and Vℓ+1, ℓ being the step where onvergene is ahieved.In order to illustrate the possible bene�t of using the eonomi implementation presented inSetion 3.2.2 we e�etively onsider di�erent ombinations of restart parameters and harmoni Ritzvalues for the �exible methods. Indeed the performane of FGMRES-DR(5,3) an be omparedwith FGMRES(5) if the eonomi variant is implemented or with FGMRES(7) if a standard im-plementation is onsidered (see Table 3.2). The total amount of �oating point operations spent inmatrix-vetor produts, dot produts, preonditioning and basis orthogonalization has been om-puted for eah solution method, exluding however the ost of the ILU(0) fatorization that isidential for eah proposed method. We have also indiated the results related to full FGMRES asa referene solution method; i.e., when memory is not onstrained. It an be notied that �exiblemethods with de�ated restarting enables a faster onvergene than those with standard restarting.It also results in a faster alulation sine a signi�ant amount of �oating point operations is saved.Moreover we an also note that the performanes of FGMRES-DR(10,5) in terms of �oating pointoperations are lose to those of full �exible GMRES espeially when onsidering the Sherman4 andSaylor4 matries. Those results also highlight the bene�t of using de�ated restarting as it enablesa signi�ant saving in memory.Sherman4 Saylor4 Young1Mv dot rops rmem Mv dot rops rmem Mv dot rops rmemFGMRES-DR(5,3) 373 1288 1.41 0.14 115 384 1.10 0.30 1633 5698 2.60 0.08FGMRES(5) 1273 3813 3.56 0.14 409 1221 3.22 0.30 6145 18430 7.41 0.08FGMRES(7) 877 2771 2.54 0.19 295 931 2.39 0.41 5095 16126 6.33 0.11FGMRES-DR(10,5) 247 951 1.02 0.27 109 396 1.08 0.57 967 3831 1.71 0.15FGMRES(10) 979 3331 2.97 0.27 175 590 1.46 0.57 3619 12351 4.69 0.15FGMRES(13) 649 2358 2.06 0.35 145 517 1.25 0.73 3205 11742 4.33 0.19full FGMRES 229 1311 1.00 1.00 109 441 1.00 1.00 421 3535 1.00 1.00Table 4.1Performane of FGMRES(m) and FGMRES-DR(m,k) to satisfy the onvergene threshold (4.1); Mv is thetotal number of matrix vetor produts, dot the total number of dot produts and rops and rmem are the ratios of�oating point operations and memory respetively where the referene method is full FGMRES (see Equation (4.2)).4.2. Two-dimensional Helmholtz problem. Our goal in this setion is to illustrate theperformane of FGMRES with de�ated restarting on a simple two-dimensional partial di�erentialequation model problem. In order to illustrate the e�et of the part of the spetrum targeted by thede�ation, we report �rst in Figures 4.3 and 4.4 on a numerial example where the preonditioner is�xed so that FGMRES-DR redues to GMRES-DR. This �xed preonditioner approah enables usto display in Figure 4.2 (Figure 4.1) the omplete spetrum of the preonditioned matrix (originalmatrix respetively). We then investigate a variable preonditioner and apply the same strategiesin the seletion of the de�ated eigenvetors for all the other presented results. We onsider a model



12wave propagation problem in a two-dimensional homogeneous medium:
−

∂

∂x

(

∂u

∂x

)

−
∂

∂y

(

∂u

∂y

)

− σ2 u = f in Ω =]0, 1[2 (4.3)with homogeneous Dirihlet boundary onditions u = 0 on the boundary ∂Ω. The unknown urepresents the pressure �eld in the frequeny domain and σ the onstant wavenumber. A seondorder �nite di�erene disretization sheme of the Helmholtz equation (4.3) is used on a equidistantCartesian grid of step size h with the following dispersion stability ondition σ h = 0.625 [7℄ beingsatis�ed. One V(1,1) yle of a geometri multigrid method [32℄ is used as a preonditioner. Thismultigrid method uses a two-level hierarhy with a red-blak Gauss-Seidel smoother, bilinear inter-polation as prolongation and its adjoint as restrition operator. Galerkin oarse grid disretizationis employed to build the oarse grid operator and a sparse diret solution method is used to solvethe oarse grid systems. Numerial experiments with this two-grid preonditioner for FGMRES ontwo-dimensional wave propagation problems in geophysis with Robin boundary onditions havebeen reported in [10℄. The disretization of the Helmholtz equation on a 64× 64 grid with σ = 40leads to a real-valued sparse symmetri inde�nite matrix A, whose spetrum is shown in Figure 4.1.There are 117 negative eigenvalues for this hoie of wavenumber and step size. The spetrum ofthe preonditioned operator AM is also shown in Figure 4.2. It exhibits both positive and negativeisolated real eigenvalues and a luster of eigenvalues around (1, 0).
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Fig. 4.1. Spetrum of the original Helmholtz operator. Case of h = 1/64 with σ = 40.The harmoni Ritz vetors orresponding to the k eigenvalues λi of smallest magnitude of thematrix Hm+h2
m+1,mH−H

m emeT
m have been hosen in Algorithm 6 (step 3). In the sequel we all thisstrategy Smallest. However any ombination of k harmoni vetors may be seleted. Thus wehave onsidered two other possibilities. The �rst one selets the k eigenpairs orresponding to theeigenvalues of largest magnitude. It is alled Largest. The seond de�ation strategy retains the keigenvetors assoiated with the eigenvalues suh as |1−λi| is of largest magnitude. With this latterhoie we aim at seleting eigenvalues loated away from a luster around the eigenvalue of the"ideal" preonditioned operator AM with M−1 = A. This possibly allows simultaneous de�ation ofeigenvalues of both smallest and largest magnitude. We all this strategy Cluster. We investigatethe in�uene of the di�erent de�ation strategies (Smallest, Largest and Cluster respetively)and ompare FGMRES-DR(m,k) with FGMRES(m) for di�erent values of the restart parameter

m. Table 4.2 gives the number of approximate eigenpairs k that led to the smallest number of
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Fig. 4.2. Spetrum of the preonditioned operator, when a V(1,1) yle of a multigrid method is used as apreonditioner. Case of h = 1/64 with σ = 40. Note the di�erent salings on Figures 4.1 and 4.2iterations ℓ to satisfy the stopping riterion (4.1) for eah de�ation strategy. These results havebeen obtained by running FGMRES-DR(m,k) with 1 ≤ k < m for eah value of the restartparameter m. If the goal is to minimize the number of iterations, numerial results show thatthe Cluster de�ation strategy is almost the most e�ient on this appliation (see bold valuesin Table 4.2) leading sometimes to a signi�ant redution. The total amount of �oating pointoperations inluding the ost of preonditioning has been omputed for eah solution method. Wehoose FGMRES(m) as a referene solution method and report the following normalized quantityin Table 4.2:
rops =

flops(Strat)

flops(FGMRES(m))
(4.4)where Strat denotes the FGMRES-DR(m,k) solution method with a given de�ation strategy amongSmallest, Largest and Cluster. Consequently values of rops less than 1 indiate whih solutionmethods are expeted to be more e�ient than FGMRES(m) in terms of omputational work. Inthis table, we see that the Smallest de�ation strategy yields the best performane with respetto �oating point operations on this appliation (see itali values in Table 4.2). The Clusterde�ation strategy tends to favour values of k lose to the restart parameter m to be most e�etive.A possible explanation is that this de�ation strategy aptures �rst the set of few outlier eigenvaluesand then the set of real eigenvalues lose to zero (see Figure 4.2) - also aptured by the Smallestde�ation strategy. Figures 4.3 and 4.4 show a typial onvergene history on this wave propagationproblem for two di�erent settings of (m,k).The hoie of the two-grid omponents has led to a �xed preonditioner. This allowed usto ompute the spetrum of the preonditioned operator shown in Figure 4.2. The e�ieny ofFGMRES with de�ated restarting has been shown on this simple model problem. This is of primaryinterest for three-dimensional wave propagation appliations, where the oarse grid systems of thetwo-grid method an not be handled any more by a sparse diret solution method due to exessivememory requirements. Iterative methods are then required to solve the oarse grid systems onlyapproximately. A non onstant preonditioner is then obtained whih requires the use of �exibleKrylov subspae methods. The study of preonditioned FGMRES-DR for suh three-dimensionalwave propagation appliations is beyond the sope of this paper and will be analyzed in the nearfuture. Nevertheless we give an illustration of the potential bene�ts of FGMRES-DR on the two-



14 FGMRES Smallest Largest Cluster
m ℓ rops k ℓ rops k ℓ rops k ℓ rops

10 492 1.00 6 161 0.55 4 355 0.98 7 175 0.71
12 194 1.00 2 97 0.55 4 181 1.25 9 76 0.87
14 148 1.00 5 75 0.66 3 138 1.11 10 58 0.80
16 152 1.00 8 61 0.60 6 127 1.16 11 50 0.62
18 124 1.00 6 54 0.55 2 103 0.90 16 45 1.25
20 101 1.00 7 52 0.65 4 85 0.98 16 41 0.90Table 4.2Wave propagation problem (h = 1/64, σ = 40). Case of a onstant two-grid preonditioner. On eah lineis shown the iso-memory performane of FGMRES and FGMRES-DR; ℓ is the number of iterations required tosatisfy the stopping riterion (4.1) and rops the ratio of total �oating point operations v.s. FGMRES(m) (seeEquation (4.4)). Best values of ℓ are marked in bold, while best values of rops are marked in itali.
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Fig. 4.3. Convergene history of the saled residual with respet to number of iterations on the wave propaga-tion problem (h = 1/64, σ = 40). Experiments with GMRES-DR(10,7). Case of a onstant two-grid preonditioner.dimensional model problem (4.3) when suh inexat oarse grid solution method is used. As anexample of approximate oarse grid solver, we onsider now the use of an iterative method to solvethe oarse grid system to a loose tolerane of 0.15 on the normalized residual. Table 4.3 reportsthe results for the two promising de�ation strategies Smallest and Cluster in this setting. Thesame onlusions as in the onstant preonditioner ase hold: FGMRES with de�ated restartingis e�ient. This ase study illustrates that there are possibly better hoies than seleting theharmoni Ritz vetors orresponding to the harmoni Ritz values of smallest magnitude. If thegoal is to minimize the number of matrix-vetor produts the Cluster poliy is the most e�ienton that problem.4.3. Three-dimensional Maxwell's equations in the frequeny domain. The bound-ary element method has beome a popular tool in omputational eletromagnetis for the solutionof Maxwell's equations in the frequeny domain. These simulations are very demanding in termsof omputer resoures, and require fast and e�ient numerial methods. Using the equivalene



15

0 20 40 60 80 100 120
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

History of convergence for GMRES−DR(20,14)

Number of iterations

N
or

m
al

iz
ed

 r
es

id
ua

l

 

 

GMRES(20)

Away from cluster

Smallest in magnitude

Largest in magnitude

Fig. 4.4. Convergene history of the saled residual with respet to number of iterations on the wave propa-gation problem (h = 1/64, σ = 40). Experiments with GMRES-DR(20,14). Case of a onstant two-grid preondi-tioner. FGMRES Smallest Cluster
m ℓ rops k ℓ rops k ℓ rops

10 488 1.00 3 115 0.28 8 125 0.66
12 208 1.00 2 96 0.50 10 87 1.25
14 141 1.00 8 75 0.87 12 74 1.78
16 156 1.00 8 67 0.68 13 54 0.80
18 124 1.00 6 57 0.60 16 47 0.86
20 106 1.00 7 54 0.66 16 46 0.90Table 4.3Wave propagation problem (h = 1/64, σ = 40). Case of a non onstant two-grid preonditioner. On eahline is shown the iso-memory performane of FGMRES and FGMRES-DR; ℓ is the number of iterations requiredto satisfy the stopping riterion (4.1) and rops the ratio of total �oating point operations v.s. FGMRES(m) (seeEquation (4.4)). Best values of ℓ are marked in bold, while best values of rops are marked in itali.priniple, Maxwell's equations an be reast in the form of integral equations. The disretization isperformed on the surfae of the objet and gives rise to a linear system, where the matrix is denseand omplex. Suh a linear system an be solved without expliitly forming the matrix A thanksto the fast multipole method (FMM) approximation [8, 9, 13, 30℄. In this framework, the featuresof the fast multipole tehniques an be further exploited to design an inner-outer sheme [4℄. Anaurate FMM is used within the outer solver as it governs the �nal auray of the omputedsolution. The inner solver, that ats as a �exible preonditioner, onsists in a few steps of full GM-RES preonditioned by a sparse approximate inverse preonditioner [1, 6℄ and uses a less aurateFMM.In this setion, we onsider a omplex geometry that orresponds to an air intake of anaerospae industry objet. Suh a avity is known to be partiularly hallenging to solve. Thedimension of the linear system is 16 950 for the frequeny onsidered in that example.In Figure 4.5 we depit the onvergene history for both FGMRES and FGMRES-DR where



16the inner solver is one restart of GMRES(30) with a sparse approximate inverse preonditionerbased on Frobenius norm minimization. The restart parameters of FGMRES and FGMRES-DRare hosen so that both solvers use the same amount of storage that orresponds to 51 vetors oflength n. For this implementation the trik based on the LU deomposition with omplete pivotingof Pk at restarting was not implemented in the prototype ode. Based on a previous work [12℄,where a de�ating preonditioning tehnique targeting the smallest eigenvalues in magnitude wasvery suessful, we selet the same part of the spetrum for these experiments. The history isplotted at the iteration when the methods start generating di�erent iterates; that is after thesmallest restart onsidered for FGMRES-DR.It an be seen that FGMRES-DR onverges signi�antly faster than regular FGMRES, espe-ially when the number of de�ated diretions is inreased. As it ould be expeted if too manydiretions are de�ated the performane deteriorates (see k = 11 v.s. k = 13 in the graph). Theonvergene remains worse than full FGMRES but FGMRES-DR is muh less memory onsumingas rmem = 0.47. The gain would beome larger if more aurate solutions were expeted. Onthat large eletromagnetis alulation, the extra O(k) operations are ompletely negligible andthe saving in iteration ount diretly results in a omputational time saving. For instane for asaled residual norm lower than 10−11 on one proessor of a Cray-XD1 omputer, the CPU timeis about 5 hours 47 minutes with FGMRES(25) and only about 3 hours 19 minutes for FGMRES-DR(19,11).
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Fig. 4.5. Convergene history of the saled residual with respet to the iteration for the eletromagnetisappliation.5. Conluding remarks. There are many situations in sienti� omputing where variablepreonditioners have to be onsidered for the iterative solution of a linear system. In that frameworkwe have proposed a novel algorithm that attempts to ombine the numerial features of GMRES-DR and the �exibility of FGMRES. The new algorithm, referred to as FGMRES-DR, inheritsfrom the attrative numerial properties of its two parents. We have shown, on a set of small testexamples as well as on two real life appliations in wave propagation that, after the �rst restart ofthe method, FGMRES-DR may outperform FGMRES; the bene�t obtained is problem dependent.As for the GMRES-DR algorithm, the eigenvalues of smallest magnitude are often onsidered asgood andidates for the restarting proedure. However, any other part of the spetrum an beonsidered; the best suited hoie is again problem-dependent and heuristis ould be based onthe analysis of the e�et of the preonditioner on the system matrix or on the loation of all the
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