
FLEXIBLE GMRES WITH DEFLATED RESTARTINGL. GIRAUD∗, S. GRATTON† , X. PINEL‡ , AND X. VASSEUR‡CERFACS TECHNICAL REPORT TR/PA/09/111Abstra
t. In many situations, it has been observed that signi�
ant 
onvergen
e improvements 
an be a
hievedin pre
onditioned Krylov subspa
e methods by enri
hing them with some spe
tral information. On the other hande�e
tive pre
onditioning strategies are often designed where the pre
onditioner varies from one step to the next sothat a �exible Krylov solver is required. In this paper, we present a new numeri
al te
hnique for non-symmetri
problems that 
ombines these two features. We illustrate the numeri
al behavior of the new solver both on a set ofsmall a
ademi
 test examples as well as on large industrial simulation arising in wave propagation simulations.Key words. Krylov subspa
e methods, �exible pre
onditioning, de�ation, impli
it restartingAMS subje
t 
lassi�
ations. 65F10, 65N22, 15A061. Introdu
tion. The solution of large linear systems is a basi
 kernel in many large s
alesimulations and pre
onditioned Krylov subspa
e methods are among the most popular linearsolvers. For non-symmetri
 problems the GMRES [25℄ method is often 
hosen be
ause of itsrobustness [18, 19℄ and be
ause the Eu
lidean norm of the system residual is non-in
reasing alongthe iterations. In order to make the GMRES method a�ordable from a memory and �oating pointoperation-
ount point of view, a restarting or a trun
ation [26℄ pro
ess has to be implemented. Inthe 
lassi
al restarted GMRES approa
h, the initial guess at restart is 
hosen to be the best (for theresidual norm) known iterate, enfor
ing thereby the non-in
rease of the residual norm even when arestart is performed. In su
h a situation the restart is performed with only one ve
tor. In addition,it has been observed that reusing part of the 
urrent Krylov spa
e (and not only one ve
tor) for the
onstru
tion of iterates in the next 
y
le of GMRES might signi�
antly improve the 
onvergen
e.In many approa
hes, some estimate of the invariant subspa
e is sear
hed in the Krylov subspa
eand reused in the next restart either by augmenting the spa
e [3, 14, 23℄, by de�ating over thesubspa
e [16℄ or by ensuring some orthogonality properties with respe
t to that spa
e [20℄. One ofthe most re
ent work in this �eld based on a de�ation approa
h is GMRES-DR [16℄. This methodredu
es to GMRES, when no de�ation is applied, but may provide a mu
h faster 
onvergen
e thanGMRES for well 
hosen de�ation spa
es as des
ribed in [16℄.The methods mentioned above suppose that the pre
onditioner is a given matrix M that isnot allowed to 
hange along the iterations. However, there are situations where this is not trueanymore, as e.g. in domain de
omposition methods, when approximate solvers are 
onsidered forthe interior problems (see referen
es in [29, Se
t. 4.4℄ or in [31, Se
t. 4.3℄). This approa
h is notablyused when the size of the lo
al subproblems is so large that obtaining an approximate solution usingan iterative method is 
omputationally more interesting than using a dire
t method. If the domainde
omposition pre
onditioner is based on the use of approximate solvers, its appli
ation is not alinear operation in general, and �exible methods, su
h as the Flexible GMRES method (see theFGMRES method in [22℄), are designed to handle this situation.In this paper, we present a new approa
h that 
ombines �exible iterations and a restartingstrategy that exploits some spe
tral information. The paper is organized as follows: in Se
tion 2,we brie�y present Flexible GMRES [22℄ and GMRES with de�ated restarting [16℄. In Se
tion 3 wedes
ribe the minimum residual norm subspa
e method that allows de�ated restarting and �exiblepre
onditioning. Se
tion 4 is devoted to numeri
al experiments where both a
ademi
 and real lifeproblems are 
onsidered to illustrate the numeri
al features of the new solver.2. Problem setting. For the sake of generality we des
ribe in this paper approa
hes for
omplex-valued linear systems, although everything also spe
ializes to real arithmeti
 
al
ulation.Let A ∈ Cn×n be a square nonsingular n × n non-symmetri
 
omplex matrix, and b ∈ Cn be a
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2ve
tor, that both de�ne the linear system
Ax = b. (2.1)Among the possible subspa
e methods to solve the linear system (2.1) we 
onsider the variantsthat sear
h for an approximation asso
iated with a minimum residual norm property su
h as inGMRES. In this se
tion we brie�y present two existing minimum residual norm subspa
e methodsthat allow either variable pre
onditioning or de�ated restarting respe
tively. Both methods willplay an important role in the novel subspa
e method that allows �exible pre
onditioning andde�ated restarting simultaneously. First we introdu
e some notations and de�nitions used throughthe paper.2.1. Notations and de�nitions.2.1.1. Notations. We denote ‖.‖ the Eu
lidean norm, Ik ∈ Ck×k the identity matrix ofdimension k and 0i×j ∈ Ci×j the zero re
tangular matrix with i rows and j 
olumns. T denotesthe transpose operation, whereas H represents the Hermitian transpose operation. Given a ve
tor

d ∈ C
k with 
omponents di, D = diag(d1, · · · , dk) is the diagonal matrix D ∈ C

k×k su
h that
Dii = di. Given a matrix Q we denote qj its j − th 
olumn. Finally em ∈ Cm denotes the
m-th Cartesian basis ve
tor of Cm. Regarding the algorithmi
 part (Algorithms 1-6), we adoptMatlab-like notations in the presentation. For instan
e Q(i, j) denotes the qij entry of matrix Qand Q(1 : m, 1 : j) refers to the submatrix made of the �rst m rows and �rst j 
olumns of Q.2.1.2. De�nitions. De�nition 2.1 introdu
es the fundamental relation that will 
hara
terizethe 
lass of methods that allow �exible pre
onditioning and/or de�ated restarting.Definition 2.1. Flexible Arnoldi relation. The subspa
e methods investigated in this paperwill satisfy the following relation named later on �exible Arnoldi relation:

AZℓ = Vℓ+1H̄ℓwhere Zℓ ∈ Cn×ℓ, Vℓ+1 ∈ Cn×(ℓ+1) su
h that V H
ℓ+1Vℓ+1 = Iℓ+1 and H̄ℓ ∈ C(ℓ+1)×ℓ. These methodswill 
ompute an approximation of the solution in a ℓ-dimensional a�ne spa
e x0 + Zℓ yℓ where

yℓ ∈ C
ℓ. In 
ertain 
ases, H̄ℓ will be an upper Hessenberg matrix.Finally we re
all the de�nition of a harmoni
 Ritz pair [17, 28℄ sin
e this notion plays an im-portant role when 
onsidering de�ated restarting.Definition 2.2. Harmoni
 Ritz pair. Consider a subspa
e U of Cn. Given a matrix B ∈

Cn×n, λ ∈ C and y ∈ U , (λ, y) is a harmoni
 Ritz pair of B with respe
t to U if and only if
By − λ y ⊥ B Uor equivalently, for the 
anoni
al s
alar produ
t,

∀w ∈ range(B U) wH (By − λ y) = 0.We 
all y a harmoni
 Ritz ve
tor asso
iated with the harmoni
 Ritz value λ.2.2. Flexible GMRES. In many large-s
ale s
ienti�
 and industrial appli
ations one mightnot be able to 
onsider a �xed pre
onditioner at ea
h step of the subspa
e method. This happens forinstan
e when blo
k pre
onditioners, in
luding domain de
omposition te
hniques, are 
onsideredwhere the blo
ks are too large to be handled by a dire
t solver. In su
h a situation, an iterativesolver has to be implemented to solve linear systems involving these blo
ks. Consequently thepre
onditioner varies from one step to the next and �exible Krylov solvers have been developed tomanage this issue [22, 33℄.In [22℄ Saad has proposed a minimum residual norm subspa
e method based on the GMRESapproa
h that allows variable pre
onditioning. We denote Mj the nonsingular matrix that repre-sents the pre
onditioner at step j of the method. Algorithm 1 depi
ts the FGMRES(m) methodwhere the approximation subspa
e is not allowed to be larger than a pres
ribed dimension noted



3
m in the rest of the paper. Starting from an initial guess x0, it is based on the �exible Arnoldirelation with Zm ∈ C

n×m, Vm+1 ∈ C
n×(m+1) and the upper Hessenberg matrix H̄m ∈ C

(m+1)×m

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1. (2.2)An approximate solution xm ∈ Cn is then found by minimizing the residual norm ‖b−A(x0+Zmy)‖over the spa
e x0 + range(Zm), the 
orresponding residual being rm = b − Axm ∈ Cn with rm ∈

range(Vm+1). An optimality property similar to the one that de�nes GMRES is thus obtained. Wenote however that no general 
onvergen
e results are available sin
e the subspa
e of approximants
range(Zm) is no longer a standard Krylov subspa
e. We refer the reader to [22, 24℄ for the analysisof the breakdown in FGMRES. Finally, we note that the additional storage 
ost of FGMRES(m)over GMRES(m) only 
on
erns the extra memory required to store Zm; i.e., m additional ve
torsof length n.Algorithm 1 Flexible GMRES(m)1: Initialization: Choose m > 0, tol > 0, x0 ∈ C

n. Let r0 = b − Ax0, β = ‖r0‖, c = [β, 01×m]Twhere c ∈ Cm+1, v1 = r0/β.Loop2: Computation of Vm+1, Zm and H̄m (see Algorithm 2): Apply m steps of the Arnoldimethod with �exible pre
onditioning (zj = M−1
j vj , 1 ≤ j ≤ m) to obtain Vm+1 ∈

C
n×(m+1), Zm ∈ C

n×m and the upper Hessenberg matrix H̄m ∈ C
(m+1)×m su
h that:

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1.3: Minimum norm solution: Compute the minimum norm solution xm ∈ Cn in the a�nespa
e x0 + range(Zm); that is, xm = x0 + Zmy∗ where y∗ = argmin

y∈Cm

‖c− H̄my‖.4: Che
k the 
onvergen
e 
riterion: If ‖c− H̄my∗‖/‖b‖ ≤ tol, exit5: Settings: Set x0 = xm, r0 = b−Ax0, β = ‖r0‖, c = [β, 01×m]T , v1 = r0/β.End of loopAlgorithm 2 Flexible GMRES(m): 
omputation of Vm+1, Zm and H̄m1: for j = 1, m do2: zj = M−1
j vj3: w = Azj4: for i = 1, j do5: hi,j = wHvi6: w = w − hi,jvi7: end for8: hi+1,j = ‖w‖, vj+1 = w/hi+1,j9: end for10: De�ne Zm = [z1, · · · , zm], Vm+1 = [v1, · · · , vm+1], H̄m = {hi,j}1≤i≤m+1,1≤j≤m2.3. GMRES with de�ated restarting. Krylov subspa
e methods with standard restart-ing implement a s
heme where the maximal dimension of the approximation subspa
e is �xed (mhere). The method is restarted in order to 
ontrol both the memory requirements and the 
ompu-tational 
ost of the orthogonalization s
heme of the method. In the 
ase of GMRES(m) it meansin pra
ti
e that the orthonormal basis built is thrown away. Sin
e some information is dis
ardedat the restart, the 
onvergen
e is expe
ted to be slower 
ompared to full GMRES.Nevertheless more sophisti
ated pro
edures have been proposed to enhan
e 
onvergen
e prop-erties of restarted Krylov subspa
e methods. Basi
ally these methods fall in the 
ategory of aug-mented or de�ated methods and we refer the reader to [27, Se
tions 8 and 9℄ for a review anddetailed referen
es. In this paper we fo
us on GMRES with de�ated restarting, one of those meth-ods, referred to as GMRES-DR [16℄. This method aims at using spe
tral information at a restart



4mainly to improve the 
onvergen
e of restarted GMRES. We 
onsider a �xed right pre
onditioningmatrix noted M and suppose that an Arnoldi relation of type AM−1Vm = Vm+1H̄m holds. Wenote that H̄m ∈ C(m+1)×m has the following form
H̄m =

[

Hm

hm+1,meT
m

]where Hm ∈ Cm×m is supposed to be nonsingular. A subspa
e of dimension k (with k < m)spanned by harmoni
 Ritz ve
tors (and not only the approximate solution with minimum residualnorm) is retained in the restarting s
heme. We denote Yk = VmGk these harmoni
 Ritz ve
torswhere Yk = [y1, . . . , yk] ∈ Cn×k and Gk = [g1, . . . , gk] ∈ Cm×k. As originally proposed by Morgan[16℄, the ve
tors gj and asso
iated Ritz values λj (with 1 ≤ j ≤ k) are obtained as solutions of thefollowing eigenvalue problem
(Hm + |hm+1,m|

2H−H
m emeT

m)gj − λjgj = 0. (2.3)Next, the QR fa
torization of the following (m + 1)× (k + 1) matrix
[[

Gk

01×k

]

V H
m+1 r0

]

=

[[

Gk

01×k

]

c− H̄my∗

] with r0 = Vm+1(c− H̄my∗)is performed where c ∈ Cm+1 and y∗ ∈ Cm. This allows to 
ompute new matri
es V new
k+1 ∈ Cn×(k+1)and H̄new

k ∈ C(k+1)×k su
h that
AM−1V new

k = V new
k+1 H̄new

k ,

V new
k+1

H V new
k+1 = Ik+1,

range([Yk, r0]) = range(V new
k+1 )where H̄new

k is a (k + 1)× k re
tangular matrix. GMRES-DR then 
arries out m− k Arnoldi stepswith �xed pre
onditioning and starting ve
tor vnew
k+1 to eventually build Vm+1 and H̄m. At theend of the GMRES 
y
le with de�ated restarting we have a �nal relation similar to the Arnoldirelation (2.2) with Vm+1 ∈ C

n×(m+1) and H̄m ∈ C
(m+1)×m

AM−1Vm = Vm+1H̄m with V H
m+1 Vm+1 = Im+1where H̄m is no longer upper Hessenberg after the �rst 
y
le. An approximate solution xm ∈ Cnis then found by minimizing the residual norm ‖b − A(x0 + M−1Vmy)‖ over the spa
e x0 +

M−1range(Vm), the 
orresponding residual being rm = b−Axm ∈ Cn with rm ∈ range(Vm+1). Anoptimality property is thus also obtained.We refer the reader to [16, 21℄ for further 
omments on the algorithm and 
omputational details.This approa
h has been proved e�
ient on many a
ademi
 examples [16℄. We note that GMRESwith de�ated restarting is equivalent to GMRES with eigenve
tors [14℄ and to impli
itly restartedGMRES [15℄. Details of the method are given in Algorithms 3 and 4 respe
tively. GMRES-DR(m, k) does require only m−k matrix ve
tor produ
ts and pre
onditioning operations per 
y
lewhile GMRES(m) needs m. Finally we note that Krylov subspa
e methods with de�ated restartinghave been ex
lusively developed in the 
ase of a �xed pre
onditioner. In Se
tion 3 we extend theGMRES-DR method to the 
ase of variable pre
onditioning.



5Algorithm 3 Right-pre
onditioned GMRES with de�ated restarting: GMRES-DR(m, k)1: Initialization: Choose m > 0, k > 0, tol > 0, x0 ∈ Cn. Let r0 = b − Ax0; β = ‖r0‖,
c = [β, 01×m]T ∈ C

m+1, v1 = r0/β.2: Computation of Vm+1 and H̄m: Apply m steps of the Arnoldi pro
edure with right pre
ondi-tioning to obtain Vm+1 ∈ Cn×(m+1) and the upper Hessenberg matrix H̄m ∈ C(m+1)×m su
hthat:
AM−1Vm = Vm+1H̄m with V H

m+1Vm+1 = Im+1.Loop3: Minimum norm solution: Compute the minimum norm solution xm ∈ Cn in the a�nespa
e x0 + M−1range(Vm); that is, xm = x0 + M−1Vmy∗ where y∗ = argmin
y∈Cm

‖c− H̄my‖.Set x0 = xm and r0 = b−Ax0.4: Che
k the 
onvergen
e 
riterion: If ‖c− H̄my∗‖/‖b‖ ≤ tol, exit5: Computation of V new
k+1 and H̄new

k : see Algorithm 4. At the end of this step the followingrelations hold:
AM−1V new

k = V new
k+1 H̄new

k with V new
k+1

HV new
k+1 = Ik+1 and r0 ∈ range(V new

k+1 ).6: Arnoldi pro
edure: Set Vk+1 = V new
k+1 , H̄k = H̄new

k and apply (m− k) steps of the Arnoldipro
edure with right pre
onditioning and starting ve
tor vk+1 to build Vm+1 ∈ Cn×(m+1)and H̄m ∈ C(m+1)×m su
h that:
AM−1Vm = Vm+1H̄m with V H

m+1Vm+1 = Im+1.7: Setting: Set c = V H
m+1r0.End of loopAlgorithm 4 GMRES-DR(m, k): 
omputation of V new

k+1 and H̄new
k1: Input: A, Vm+1 su
h that AM−1Vm = Vm+1H̄m and c−H̄my∗ su
h that r0 = Vm+1(c−H̄my∗).2: Settings: De�ne hm+1,m = H̄m(m + 1, m), Hm ∈ Cm×m as Hm = H̄m(1 : m, 1 : m).3: Compute k harmoni
 Ritz ve
tors: Compute k independent eigenve
tors gi of the matrix

Hm + |hm+1,m|
2H−H

m emeT
m. Set Gk = [g1, . . . , gk] ∈ Cm×k.4: Augmentation of Gk: De�ne Gk+1 ∈ C(m+1)×(k+1) as

Gk+1 =

[[

Gk

01×k

]

, c− H̄my∗

]

.5: Orthonormalization of the 
olumns of Gk+1: Perform a QR-fa
torization of Gk+1 as Gk+1 =
Pk+1Γk+1. De�ne Pk ∈ Cm×k as Pk = Pk+1(1 : m, 1 : k).6: Settings and �nal relation: Set V new

k+1 = Vm+1Pk+1 and H̄new
k = PH

k+1H̄mPk. At the end of thisstep the following relations are satis�ed:
AM−1VmPk = Vm+1Pk+1P

H
k+1H̄mPk ; i.e., AM−1V new

k = V new
k+1 H̄new

kwhere H̄new
k is generally a dense matrix.3. Flexible GMRES with de�ated restarting. In this se
tion we present the new sub-spa
e method that allows de�ated restarting and variable pre
onditioning simultaneously. Wesuppose that a �exible Arnoldi relation holds (AZm = Vm+1H̄m) and analyze one 
y
le of thismethod.3.1. Analysis of a 
y
le. We dis
uss now the two main points related to the extension ofGMRES-DR in a �exible setting: what is the harmoni
 Ritz information re
overed at restart and isit still possible as in GMRES-DR to restart at low 
omputational 
ost the �exible Arnoldi relation?



6Both questions will be answered in this se
tion.3.1.1. Harmoni
 Ritz formulation. Proposition 1 presents the harmoni
 Ritz formulationused in the �exible variant of GMRES with de�ated restarting.Proposition 1. Flexible GMRES with de�ated restarting relies on the 
omputation of kharmoni
 Ritz ve
tors Yk = VmGk with Yk ∈ Cn×k and Gk ∈ Cm×k, where ea
h harmoni
 Ritzpair (λj , Vmgj) satis�es
(Hm + |hm+1,m|

2H−H
m emeT

m)gj − λjgj = 0.

Yk 
orrespond to harmoni
 Ritz ve
tors of AZmV H
m with respe
t to range(Vm).Proof. The proposed eigenvalue problem - whi
h is the same as in GMRES with de�atedrestarting (see relation (2.3)) - 
an be also written in a 
ompa
t form as

H̄H
m H̄mgj − λjH̄

H
m

(

gj

0

)

= 0. (3.1)Sin
e Vm+1 has orthonormal 
olumns the following relations hold for the two terms of Equation (3.1)
H̄H

m H̄m = (AZm)H(AZm),

H̄H
m

(

gj

0

)

= H̄H
mV H

m+1Vm+1

(

gj

0

)

= (AZm)HVmgj .Consequently the eigenvalue problem (3.1) be
omes
∀w ∈ range(AZm) wH (AZmgj − λj Vmgj) = 0, (3.2)or equivalently sin
e V H

m Vm = Im

∀w ∈ range(AZmV H
m Vm) wH (AZmV H

m Vmgj − λj Vmgj) = 0.Thus following De�nition 2.2, Yk 
orrespond to harmoni
 Ritz ve
tors of AZmV H
m with respe
t to

range(Vm). When a �xed pre
onditioning is used, it is straightforward to dedu
e that GMRES-DRrelies on harmoni
 Ritz ve
tors of AM−1V H
m with respe
t to range(Vm). Due to relation (3.2) wealso note that the harmoni
 residual ve
tors AZmV H

m Vmgj−λj Vmgj ∈ range(Vm+1) are orthogonalto a subspa
e of dimension m spanned by the 
olumns of AZm.In Lemma 3.1 we detail a useful relation satis�ed by the harmoni
 Ritz ve
tors.Lemma 3.1.In Flexible GMRES with de�ated restarting, the harmoni
 Ritz ve
tors are given by Yk = VmGkwith 
orresponding harmoni
 Ritz values λk. Gk ∈ C
m×k satis�es the following relation:

AZmGk = Vm+1

[[

Gk

01×k

]

, ρm

] [

diag(λ1, · · · , λk)
α1×k

] (3.3)where ρm ∈ C
m+1 is su
h that r0 = Vm+1ρm = Vm+1(c− H̄my∗) and α1×k = [α1, · · · , αk] ∈ C

1×k.Proof. The harmoni
 residual ve
tors AZmV H
m Vmgi − λi Vmgi and the residual ve
tor r0 allreside in a subspa
e of dimension m + 1 (spanned by the 
olumns of Vm+1) and are orthogonal tothe same subspa
e of dimension m (spanned by the 
olumns of AZm subspa
e of range(Vm+1)), sothey must be 
ollinear. Consequently there exist k 
oe�
ients noted αi ∈ C with 1 ≤ i ≤ k su
hthat

∀i ∈ {1, · · · , k} AZmgi − λiVmgi = αir0 = αiVm+1ρm. (3.4)Setting α1×k = [α1, · · · , αk] ∈ C1×k, the 
ollinearity expression (3.4) 
an be written in matrix form
AZmGk = Vm+1

[[

Gk

01×k

]

, ρm

] [

diag(λ1, · · · , λk)
α1×k

]

.



73.1.2. Flexible Arnoldi relation. Let us further denote by Gk = PkΓk the QR-fa
torizationof Gk, where Pk ∈ C
m×k has orthonormal 
olumns and Γk ∈ C

k×k is a nonsingular upper triangularmatrix. We denote Gk+1 ∈ C(m+1)×(k+1) the following matrix that appears in Lemma 3.1:
Gk+1 =

[[

Gk

01×k

]

, ρm

]

. (3.5)Proposition 2 shows that a �exible Arnoldi relation 
an be re
overed at low 
omputational
ost when restarting with some harmoni
 information; i.e., without involving any matrix-ve
torprodu
t with A as in [5℄.Proposition 2.At ea
h restart of Flexible GMRES with de�ated restarting, the �exible Arnoldi relation
AZnew

k = V new
k+1 H̄new

kholds with
Znew

k = ZmPk,

V new
k+1 = Vm+1Pk+1,and

H̄new
k = PH

k+1H̄mPk.Proof.After orthogonalization of the ve
tor ρm against the 
olumns of [

Pk

01×k

] we obtain the unitnorm ve
tor pk+1 ∈ Cm+1 that satis�es
pk+1 = p̄k+1/‖p̄k+1‖ with p̄k+1 = ρm −

[

Pk

01×k

] [

Pk

01×k

]H

ρm.We note a = ‖p̄k+1‖ and uk×1 ∈ C
k the following quantity uk×1 =

[

Pk

01×k

]H

ρm respe
tively. Thus
ρm =

[[

Pk

01×k

]

, pk+1

] [

uk×1

a

]

.Consequently the QR fa
torization of Gk+1 = Pk+1Γk+1 
an be written as
[[

Gk

01×k

]

, ρm

]

=

[[

Pk

01×k

]

, pk+1

] [

Γk uk×1

01×k a

]

.From relation (3.3) of Lemma 3.1 we dedu
e
AZmPk = Vm+1Pk+1Γk+1

[

diag(λ1, · · · , λk)
α1×k

]

Γ−1
k . (3.6)Using the �exible Arnoldi relation AZm = Vm+1H̄m and PH

k+1Pk+1 = Ik+1 we obtain
PH

k+1H̄mPk = Γk+1

[

diag(λ1, · · · , λk)
α1×k

]

Γ−1
k .If we denote Znew

k = ZmPk, V new
k+1 = Vm+1Pk+1 and

H̄new
k = Γk+1

[

diag(λ1, · · · , λk)
α1×k

]

Γ−1
k = PH

k+1H̄mPk,



8Equation (3.6) 
an be written in the following �exible Arnoldi relation
AZnew

k = V new
k+1 H̄new

k .Next, setting Zk = Znew
k , Vk+1 = V new

k+1 and H̄k = H̄new
k respe
tively �exible GMRES withde�ated restarting then 
arries out (m−k) �exible Arnoldi steps with �exible pre
onditioning andstarting ve
tor vk+1 leading to

A Zm = Vm+1 H̄m,where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) and H̄m ∈ C(m+1)×m.3.2. Algorithm and 
omputational aspe
ts. Details of �exible GMRES with de�atedrestarting are depi
ted in Algorithms 5 and 6 respe
tively. We will 
all this algorithm FGMRES-DR(m, k) and 
ompare this method with both FGMRES(m) and GMRES-DR(m, k) from a 
om-putational and storage point of view.Algorithm 5 Flexible GMRES with de�ated restarting: FGMRES-DR(m, k)1: Initialization: Choose m > 0, k > 0, tol > 0, x0 ∈ Cn. Let r0 = b − Ax0; β = ‖r0‖,
c = [β, 01×m]T ∈ C

m+1, v1 = r0/β.2: Computation of Vm+1, Zm and H̄m: Apply m steps of the Arnoldi pro
edure with �exiblepre
onditioning to obtain Vm+1 ∈ Cn×(m+1), Zm ∈ Cn×m and the upper Hessenberg matrix
H̄m ∈ C(m+1)×m su
h that:

AZm = Vm+1H̄m with V H
m+1Vm+1 = Im+1.Loop3: Minimum norm solution: Compute the minimum norm solution xm ∈ Cn in the a�nespa
e x0 + range(Zm); that is, xm = x0 + Zmy∗ where y∗ = argmin

y∈Cm

‖c − H̄my‖. Set
x0 = xm and r0 = b−Ax0.4: Che
k the 
onvergen
e 
riterion: If ‖c− H̄my∗‖/‖b‖ ≤ tol, exit5: Computation of V new

k+1 , Znew
k and H̄new

k : see Algorithm 6. At the end of this step thefollowing relations hold:
AZnew

k = V new
k+1 H̄new

k with V new
k+1

HV new
k+1 = Ik+1 and r0 ∈ range(V new

k+1 ). (3.7)6: Arnoldi pro
edure: Set Vk+1 = V new
k+1 , Zk = Znew

k , H̄k = H̄new
k and apply (m − k) stepsof the Arnoldi pro
edure with �exible pre
onditioning and starting ve
tor vk+1 to build

Vm+1 ∈ Cn×(m+1), Zm ∈ Cn×m and H̄m ∈ C(m+1)×m su
h that:
AZm = Vm+1H̄m with V H

m+1Vm+1 = Im+1.7: Setting: Set c = V H
m+1r0.End of loop3.2.1. Computational 
ost. We summarize now in Table 3.1 the main 
omputational 
ostsasso
iated with ea
h generi
 
y
le of FGMRES(m), GMRES-DR(m, k) and FGMRES-DR(m, k).We have only in
luded the 
osts proportional to the size of the original problem n whi
h is supposedto be mu
h larger than m and k. We denote opA and opM the �oating point operation 
ounts for thematrix-ve
tor produ
t and the pre
onditioner appli
ation respe
tively. The main 
omputationaldi�eren
es are in the 
al
ulation of Vk+1 and Zk when 
omparing FGMRES and FGMRES-DR.In FGMRES-DR those ve
tors are 
omputed using dense matrix-matrix operations e�
iently im-plemented in BLAS-3 libraries, while in FGMRES-DR they are obtained through a sequen
e ofmatrix-ve
tor produ
ts, possibly sparse, depending on the nature of A and the pre
onditioners.For de�ating variants, the redu
tion of this total 
ost is still possible. The right-hand side cof the least-squares problem is 
omputed as c = V H

m+1r0 whi
h involves 2n(m + 1) operations as



9Algorithm 6 FGMRES-DR(m, k): 
omputation of V new
k+1 , Znew

k and H̄new
k1: Input: A, Zm, Vm+1 su
h that AZm = Vm+1H̄m and c−H̄my∗ su
h that r0 = Vm+1(c−H̄my∗).2: Settings: De�ne hm+1,m = H̄m(m + 1, m), Hm ∈ Cm×m as Hm = H̄m(1 : m, 1 : m).3: Compute k harmoni
 Ritz ve
tors. Compute k independent eigenve
tors gi of the matrix

Hm + |hm+1,m|
2H−H

m emeT
m. Set Gk = [g1, . . . , gk] ∈ Cm×k.4: Augmentation of Gk: De�ne Gk+1 ∈ C(m+1)×(k+1) as

Gk+1 =

[[

Gk

01×k

]

, c− H̄my∗

]

. (3.8)5: Orthonormalization of the 
olumns of Gk+1: Perform a QR-fa
torization of Gk+1 as Gk+1 =
Pk+1Γk+1. De�ne Pk ∈ Cm×k as Pk = Pk+1(1 : m, 1 : k).6: Settings and �nal relation: Set V new

k+1 = Vm+1Pk+1, Znew
k = ZmPk and H̄new

k = PH
k+1H̄mPk, sothat the following relations are satis�ed:

AZmPk = Vm+1Pk+1P
H
k+1H̄mPk ; i.e., AZnew

k = V new
k+1 H̄new

k (3.9)where H̄new
k is generally a dense matrix.Computation of FGMRES(m) GMRES-DR(m, k) FGMRES-DR(m, k)

Vm(:, 1 : k + 1) kopA + nk(2k + 5) 2n(m + 1)(k + 1) 2n(m + 1)(k + 1)

Zm(:, 1 : k) kopM - 2nmk

Vm(:, k + 2 : m + 1)
(m− k)opA+

n(m− k)(2m + 2k + 5)
(m− k)(opA + opM )+
n(m− k)(2m + 2k + 5)

(m− k)opA+
n(m− k)(2m + 2k + 5)

Zm(:, k + 1 : m) (m− k)opM - (m− k)opM

c 2n 2n(m + 1) 2n(m + 1)Table 3.1Computational 
ost of a generi
 
y
le of FGMRES(m), GMRES-DR(m, k) and FGMRES-DR(m, k).shown in Table 3.1. This 
ost 
an be �rst redu
ed by observing that the residual r0 belongs to thesubspa
e spanned by the 
olumns of Vk+1, 
onsequently only its �rst (k + 1) entries are non-zero.These quantities 
an be obtained by 
omputing V H
k+1r0 and it only requires 2n(k + 1) operations.This has been notably investigated in [21℄. The 
al
ulation of c 
an be even more redu
ed asdes
ribed in Proposition 3.Proposition 3. The �rst (k+1) 
omponents of the right-hand side c of the next least-squaresproblem are given by the last 
olumn of Γk+1, the triangular fa
tor of the QR fa
torization of thematrix Gk+1 de�ned in relation (3.5).Proof. In Proposition 2 we have shown that ρm = Pk+1

[

uk×1

a

]

. Consequently r0 = Vm+1ρm =

V new
k+1

[

uk×1

a

]

. Thus the right-hand side of the new least-squares problem is given by
c = V H

m+1r0 = V H
m+1V

new
k+1

[

uk×1

a

]

=





uk×1

a
0(m−k)×1



 .We note that Proposition 3 holds for both GMRES-DR(m, k) and FGMRES-DR(m, k).3.2.2. Storage requirements. Regarding storage, we have only in
luded the storage pro-portional to the size of the original problem n whi
h is supposed to be mu
h larger than m and
k.



10 Standard. With this 
onvention FGMRES-DR(m, k) requires the storage of Zm, Vm+1 and atmost k + 1 additional ve
tors to store in turn V new
k+1 and Znew

k . Thus FGMRES-DR(m, k) requiresthe storage of (2m + k + 2) ve
tors of length n.Bu�ered. If an extra memory blo
k of buff size 
an be allo
ated, a blo
ked matrix-matrixprodu
t 
an be implemented to perform V new
k+1 = Vm+1Pk+1 and Znew

k = ZmPk, that 
omputesthese matri
es blo
k-row by blo
k-row before overwriting the result in the data stru
ture allo
atedfor Vm+1 (Zm respe
tively). The de�nition of this blo
k size 
an be governed by the BLAS-3performan
e of the targeted 
omputer.E
onomi
. A redu
tion of storage is however still possible. It 
an indeed be remarked that
Znew

k and V new
k+1 
an overwrite Zk and Vk+1. This 
an be a

omplished by performing the matrixmultipli
ations Vk+1 ← Vm+1Pk+1 and Zk ← ZmPk of Step 6 in Algorithm 6 in pla
e, i.e., withinthe arrays Vm+1 and Zm. Here we have exploited the fa
t that multipli
ations involving triangularfa
tors 
an be done in pla
e. It is therefore advisable to perform a LU fa
torization with 
om-plete pivoting of Pk+1 to obtain a very good approximation ΠPk+1Σ = LU , and then, to performsu

essively the operations X ← XL and X ← XU and the 
orresponding permutations e.g. for

X being V . This approa
h leads to a storage of (2m + 1) ve
tors of length n only. It is 
learlysaving a lot of memory when k is 
lose to m, but may introdu
e additional round-o� errors that
an hopefully be monitored by inspe
ting the quantity ‖ΠPkΣ− LU‖

‖Pk‖
.Table 3.2 summarizes the requirements related to the storage for both GMRES-DR(m, k) andFGMRES-DR(m, k). We note that the e
onomi
 variant of FGMRES-DR(m, k) needs the sameamount of memory as FGMRES(m) and that �exible variants require m additional ve
tors withrespe
t to non �exible variants.Strategy GMRES-DR(m, k) FGMRES-DR(m, k)Standard n(m + k + 2) n(2m + k + 2)Bu�ered n(m + 1) + buff size n(2m + 1) + buff sizeE
onomi
 n(m + 1) n(2m + 1)Table 3.2Storage required for GMRES-DR(m, k) and FGMRES-DR(m, k).4. Numeri
al experiments. In this se
tion we investigate the numeri
al behavior of theFGMRES-DR(m,k) algorithm on both a
ademi
 and realisti
 appli
ations. We 
onsider the 
aseof both sparse or dense matri
es in either real or 
omplex arithmeti
. All the examples in
lude adetailed 
omparison with FGMRES(m). This allows us to show the e�e
ts of in
orporating thede�ation strategy in the �exible pre
onditioning framework.In the following experiments, the right-hand sides are 
omputed as b = A1 where 1 is theve
tor of appropriate dimension with all 
omponents equal to one. A zero initial iterate x0 is
onsidered as an initial guess and the following stopping 
riterion is used:

‖b−Axℓ‖

‖b‖
≤ 10−12 (4.1)where ℓ represents the step when the iterations are stopped. The numeri
al tests in Se
tions 4.1 and4.2 were performed on a personal 
omputer running Linux (Intel Pentium IV, 2.4 Ghz with 2 GBof memory) using Matlab version 7.1 (release 14). The numeri
al results shown in Se
tion 4.3 wereobtained on one pro
essor of a Cray-XD1 
omputer (AMD Opteron 2.4 Ghz with 2 GB of memory)using a Fortran implementation. This 
ode was 
ompiled by the Portland Group 
ompiler suitewith the best optimization options and linked with the vendor BLAS and LAPACK subroutines,optimized for AMD ar
hite
tures.4.1. Harwell-Boeing and Matrix Market test problems. In order to illustrate the nu-meri
al behavior of FGMRES-DR(m,k), we �rst 
onsider a few test matri
es from the Harwell-Boeing [11℄ and Matrix Market [2℄ libraries so that any reader 
ould reprodu
e these experiments.The sparse matri
es named Sherman4, Saylor4 and Young1
 have been 
hosen. Sherman4 and



11Saylor4 are real matri
es, whereas Young1
 is a 
omplex-valued one. They represent 
hallengingsparse matri
es 
oming from realisti
 appli
ations (reservoir modelling, a
ousti
s) that are oftenused to analyze the behaviour of numeri
al algorithms. For those experiments, the pre
onditioner
onsists in �ve steps of pre
onditioned full GMRES, where the pre
onditioner is based on anILU(0) fa
torization. In the 
ase of Sherman4 only, the inner solver 
orresponds to �ve steps ofunpre
onditioned full GMRES.In Table 4.1, we depi
t the total number of matrix-ve
tor produ
ts performed in the innerand outer parts of the solver (Mv) and the total number of dot produ
ts (dot) for several �exiblemethods. We also display the ratios of total memory and total �oating point operations where thereferen
e is the 
orresponding quantity of the full FGMRES method; i.e.,
rops =

flops(Krylov solver)

flops(full FGMRES)
and rmem =

mem(Krylov solver)

mem(full FGMRES)
, (4.2)where we assume that the memory allo
ated for full FGMRES is exa
tly what is needed to store

Zℓ and Vℓ+1, ℓ being the step where 
onvergen
e is a
hieved.In order to illustrate the possible bene�t of using the e
onomi
 implementation presented inSe
tion 3.2.2 we e�e
tively 
onsider di�erent 
ombinations of restart parameters and harmoni
 Ritzvalues for the �exible methods. Indeed the performan
e of FGMRES-DR(5,3) 
an be 
omparedwith FGMRES(5) if the e
onomi
 variant is implemented or with FGMRES(7) if a standard im-plementation is 
onsidered (see Table 3.2). The total amount of �oating point operations spent inmatrix-ve
tor produ
ts, dot produ
ts, pre
onditioning and basis orthogonalization has been 
om-puted for ea
h solution method, ex
luding however the 
ost of the ILU(0) fa
torization that isidenti
al for ea
h proposed method. We have also indi
ated the results related to full FGMRES asa referen
e solution method; i.e., when memory is not 
onstrained. It 
an be noti
ed that �exiblemethods with de�ated restarting enables a faster 
onvergen
e than those with standard restarting.It also results in a faster 
al
ulation sin
e a signi�
ant amount of �oating point operations is saved.Moreover we 
an also note that the performan
es of FGMRES-DR(10,5) in terms of �oating pointoperations are 
lose to those of full �exible GMRES espe
ially when 
onsidering the Sherman4 andSaylor4 matri
es. Those results also highlight the bene�t of using de�ated restarting as it enablesa signi�
ant saving in memory.Sherman4 Saylor4 Young1
Mv dot rops rmem Mv dot rops rmem Mv dot rops rmemFGMRES-DR(5,3) 373 1288 1.41 0.14 115 384 1.10 0.30 1633 5698 2.60 0.08FGMRES(5) 1273 3813 3.56 0.14 409 1221 3.22 0.30 6145 18430 7.41 0.08FGMRES(7) 877 2771 2.54 0.19 295 931 2.39 0.41 5095 16126 6.33 0.11FGMRES-DR(10,5) 247 951 1.02 0.27 109 396 1.08 0.57 967 3831 1.71 0.15FGMRES(10) 979 3331 2.97 0.27 175 590 1.46 0.57 3619 12351 4.69 0.15FGMRES(13) 649 2358 2.06 0.35 145 517 1.25 0.73 3205 11742 4.33 0.19full FGMRES 229 1311 1.00 1.00 109 441 1.00 1.00 421 3535 1.00 1.00Table 4.1Performan
e of FGMRES(m) and FGMRES-DR(m,k) to satisfy the 
onvergen
e threshold (4.1); Mv is thetotal number of matrix ve
tor produ
ts, dot the total number of dot produ
ts and rops and rmem are the ratios of�oating point operations and memory respe
tively where the referen
e method is full FGMRES (see Equation (4.2)).4.2. Two-dimensional Helmholtz problem. Our goal in this se
tion is to illustrate theperforman
e of FGMRES with de�ated restarting on a simple two-dimensional partial di�erentialequation model problem. In order to illustrate the e�e
t of the part of the spe
trum targeted by thede�ation, we report �rst in Figures 4.3 and 4.4 on a numeri
al example where the pre
onditioner is�xed so that FGMRES-DR redu
es to GMRES-DR. This �xed pre
onditioner approa
h enables usto display in Figure 4.2 (Figure 4.1) the 
omplete spe
trum of the pre
onditioned matrix (originalmatrix respe
tively). We then investigate a variable pre
onditioner and apply the same strategiesin the sele
tion of the de�ated eigenve
tors for all the other presented results. We 
onsider a model



12wave propagation problem in a two-dimensional homogeneous medium:
−

∂

∂x

(

∂u

∂x

)

−
∂

∂y

(

∂u

∂y

)

− σ2 u = f in Ω =]0, 1[2 (4.3)with homogeneous Diri
hlet boundary 
onditions u = 0 on the boundary ∂Ω. The unknown urepresents the pressure �eld in the frequen
y domain and σ the 
onstant wavenumber. A se
ondorder �nite di�eren
e dis
retization s
heme of the Helmholtz equation (4.3) is used on a equidistantCartesian grid of step size h with the following dispersion stability 
ondition σ h = 0.625 [7℄ beingsatis�ed. One V(1,1) 
y
le of a geometri
 multigrid method [32℄ is used as a pre
onditioner. Thismultigrid method uses a two-level hierar
hy with a red-bla
k Gauss-Seidel smoother, bilinear inter-polation as prolongation and its adjoint as restri
tion operator. Galerkin 
oarse grid dis
retizationis employed to build the 
oarse grid operator and a sparse dire
t solution method is used to solvethe 
oarse grid systems. Numeri
al experiments with this two-grid pre
onditioner for FGMRES ontwo-dimensional wave propagation problems in geophysi
s with Robin boundary 
onditions havebeen reported in [10℄. The dis
retization of the Helmholtz equation on a 64× 64 grid with σ = 40leads to a real-valued sparse symmetri
 inde�nite matrix A, whose spe
trum is shown in Figure 4.1.There are 117 negative eigenvalues for this 
hoi
e of wavenumber and step size. The spe
trum ofthe pre
onditioned operator AM is also shown in Figure 4.2. It exhibits both positive and negativeisolated real eigenvalues and a 
luster of eigenvalues around (1, 0).
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Fig. 4.1. Spe
trum of the original Helmholtz operator. Case of h = 1/64 with σ = 40.The harmoni
 Ritz ve
tors 
orresponding to the k eigenvalues λi of smallest magnitude of thematrix Hm+h2
m+1,mH−H

m emeT
m have been 
hosen in Algorithm 6 (step 3). In the sequel we 
all thisstrategy Smallest. However any 
ombination of k harmoni
 ve
tors may be sele
ted. Thus wehave 
onsidered two other possibilities. The �rst one sele
ts the k eigenpairs 
orresponding to theeigenvalues of largest magnitude. It is 
alled Largest. The se
ond de�ation strategy retains the keigenve
tors asso
iated with the eigenvalues su
h as |1−λi| is of largest magnitude. With this latter
hoi
e we aim at sele
ting eigenvalues lo
ated away from a 
luster around the eigenvalue of the"ideal" pre
onditioned operator AM with M−1 = A. This possibly allows simultaneous de�ation ofeigenvalues of both smallest and largest magnitude. We 
all this strategy Cluster. We investigatethe in�uen
e of the di�erent de�ation strategies (Smallest, Largest and Cluster respe
tively)and 
ompare FGMRES-DR(m,k) with FGMRES(m) for di�erent values of the restart parameter

m. Table 4.2 gives the number of approximate eigenpairs k that led to the smallest number of
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Fig. 4.2. Spe
trum of the pre
onditioned operator, when a V(1,1) 
y
le of a multigrid method is used as apre
onditioner. Case of h = 1/64 with σ = 40. Note the di�erent s
alings on Figures 4.1 and 4.2iterations ℓ to satisfy the stopping 
riterion (4.1) for ea
h de�ation strategy. These results havebeen obtained by running FGMRES-DR(m,k) with 1 ≤ k < m for ea
h value of the restartparameter m. If the goal is to minimize the number of iterations, numeri
al results show thatthe Cluster de�ation strategy is almost the most e�
ient on this appli
ation (see bold valuesin Table 4.2) leading sometimes to a signi�
ant redu
tion. The total amount of �oating pointoperations in
luding the 
ost of pre
onditioning has been 
omputed for ea
h solution method. We
hoose FGMRES(m) as a referen
e solution method and report the following normalized quantityin Table 4.2:
rops =

flops(Strat)

flops(FGMRES(m))
(4.4)where Strat denotes the FGMRES-DR(m,k) solution method with a given de�ation strategy amongSmallest, Largest and Cluster. Consequently values of rops less than 1 indi
ate whi
h solutionmethods are expe
ted to be more e�
ient than FGMRES(m) in terms of 
omputational work. Inthis table, we see that the Smallest de�ation strategy yields the best performan
e with respe
tto �oating point operations on this appli
ation (see itali
 values in Table 4.2). The Clusterde�ation strategy tends to favour values of k 
lose to the restart parameter m to be most e�e
tive.A possible explanation is that this de�ation strategy 
aptures �rst the set of few outlier eigenvaluesand then the set of real eigenvalues 
lose to zero (see Figure 4.2) - also 
aptured by the Smallestde�ation strategy. Figures 4.3 and 4.4 show a typi
al 
onvergen
e history on this wave propagationproblem for two di�erent settings of (m,k).The 
hoi
e of the two-grid 
omponents has led to a �xed pre
onditioner. This allowed usto 
ompute the spe
trum of the pre
onditioned operator shown in Figure 4.2. The e�
ien
y ofFGMRES with de�ated restarting has been shown on this simple model problem. This is of primaryinterest for three-dimensional wave propagation appli
ations, where the 
oarse grid systems of thetwo-grid method 
an not be handled any more by a sparse dire
t solution method due to ex
essivememory requirements. Iterative methods are then required to solve the 
oarse grid systems onlyapproximately. A non 
onstant pre
onditioner is then obtained whi
h requires the use of �exibleKrylov subspa
e methods. The study of pre
onditioned FGMRES-DR for su
h three-dimensionalwave propagation appli
ations is beyond the s
ope of this paper and will be analyzed in the nearfuture. Nevertheless we give an illustration of the potential bene�ts of FGMRES-DR on the two-



14 FGMRES Smallest Largest Cluster
m ℓ rops k ℓ rops k ℓ rops k ℓ rops

10 492 1.00 6 161 0.55 4 355 0.98 7 175 0.71
12 194 1.00 2 97 0.55 4 181 1.25 9 76 0.87
14 148 1.00 5 75 0.66 3 138 1.11 10 58 0.80
16 152 1.00 8 61 0.60 6 127 1.16 11 50 0.62
18 124 1.00 6 54 0.55 2 103 0.90 16 45 1.25
20 101 1.00 7 52 0.65 4 85 0.98 16 41 0.90Table 4.2Wave propagation problem (h = 1/64, σ = 40). Case of a 
onstant two-grid pre
onditioner. On ea
h lineis shown the iso-memory performan
e of FGMRES and FGMRES-DR; ℓ is the number of iterations required tosatisfy the stopping 
riterion (4.1) and rops the ratio of total �oating point operations v.s. FGMRES(m) (seeEquation (4.4)). Best values of ℓ are marked in bold, while best values of rops are marked in itali
.
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Fig. 4.3. Convergen
e history of the s
aled residual with respe
t to number of iterations on the wave propaga-tion problem (h = 1/64, σ = 40). Experiments with GMRES-DR(10,7). Case of a 
onstant two-grid pre
onditioner.dimensional model problem (4.3) when su
h inexa
t 
oarse grid solution method is used. As anexample of approximate 
oarse grid solver, we 
onsider now the use of an iterative method to solvethe 
oarse grid system to a loose toleran
e of 0.15 on the normalized residual. Table 4.3 reportsthe results for the two promising de�ation strategies Smallest and Cluster in this setting. Thesame 
on
lusions as in the 
onstant pre
onditioner 
ase hold: FGMRES with de�ated restartingis e�
ient. This 
ase study illustrates that there are possibly better 
hoi
es than sele
ting theharmoni
 Ritz ve
tors 
orresponding to the harmoni
 Ritz values of smallest magnitude. If thegoal is to minimize the number of matrix-ve
tor produ
ts the Cluster poli
y is the most e�
ienton that problem.4.3. Three-dimensional Maxwell's equations in the frequen
y domain. The bound-ary element method has be
ome a popular tool in 
omputational ele
tromagneti
s for the solutionof Maxwell's equations in the frequen
y domain. These simulations are very demanding in termsof 
omputer resour
es, and require fast and e�
ient numeri
al methods. Using the equivalen
e
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Fig. 4.4. Convergen
e history of the s
aled residual with respe
t to number of iterations on the wave propa-gation problem (h = 1/64, σ = 40). Experiments with GMRES-DR(20,14). Case of a 
onstant two-grid pre
ondi-tioner. FGMRES Smallest Cluster
m ℓ rops k ℓ rops k ℓ rops

10 488 1.00 3 115 0.28 8 125 0.66
12 208 1.00 2 96 0.50 10 87 1.25
14 141 1.00 8 75 0.87 12 74 1.78
16 156 1.00 8 67 0.68 13 54 0.80
18 124 1.00 6 57 0.60 16 47 0.86
20 106 1.00 7 54 0.66 16 46 0.90Table 4.3Wave propagation problem (h = 1/64, σ = 40). Case of a non 
onstant two-grid pre
onditioner. On ea
hline is shown the iso-memory performan
e of FGMRES and FGMRES-DR; ℓ is the number of iterations requiredto satisfy the stopping 
riterion (4.1) and rops the ratio of total �oating point operations v.s. FGMRES(m) (seeEquation (4.4)). Best values of ℓ are marked in bold, while best values of rops are marked in itali
.prin
iple, Maxwell's equations 
an be re
ast in the form of integral equations. The dis
retization isperformed on the surfa
e of the obje
t and gives rise to a linear system, where the matrix is denseand 
omplex. Su
h a linear system 
an be solved without expli
itly forming the matrix A thanksto the fast multipole method (FMM) approximation [8, 9, 13, 30℄. In this framework, the featuresof the fast multipole te
hniques 
an be further exploited to design an inner-outer s
heme [4℄. Ana

urate FMM is used within the outer solver as it governs the �nal a

ura
y of the 
omputedsolution. The inner solver, that a
ts as a �exible pre
onditioner, 
onsists in a few steps of full GM-RES pre
onditioned by a sparse approximate inverse pre
onditioner [1, 6℄ and uses a less a

urateFMM.In this se
tion, we 
onsider a 
omplex geometry that 
orresponds to an air intake of anaerospa
e industry obje
t. Su
h a 
avity is known to be parti
ularly 
hallenging to solve. Thedimension of the linear system is 16 950 for the frequen
y 
onsidered in that example.In Figure 4.5 we depi
t the 
onvergen
e history for both FGMRES and FGMRES-DR where



16the inner solver is one restart of GMRES(30) with a sparse approximate inverse pre
onditionerbased on Frobenius norm minimization. The restart parameters of FGMRES and FGMRES-DRare 
hosen so that both solvers use the same amount of storage that 
orresponds to 51 ve
tors oflength n. For this implementation the tri
k based on the LU de
omposition with 
omplete pivotingof Pk at restarting was not implemented in the prototype 
ode. Based on a previous work [12℄,where a de�ating pre
onditioning te
hnique targeting the smallest eigenvalues in magnitude wasvery su

essful, we sele
t the same part of the spe
trum for these experiments. The history isplotted at the iteration when the methods start generating di�erent iterates; that is after thesmallest restart 
onsidered for FGMRES-DR.It 
an be seen that FGMRES-DR 
onverges signi�
antly faster than regular FGMRES, espe-
ially when the number of de�ated dire
tions is in
reased. As it 
ould be expe
ted if too manydire
tions are de�ated the performan
e deteriorates (see k = 11 v.s. k = 13 in the graph). The
onvergen
e remains worse than full FGMRES but FGMRES-DR is mu
h less memory 
onsumingas rmem = 0.47. The gain would be
ome larger if more a

urate solutions were expe
ted. Onthat large ele
tromagneti
s 
al
ulation, the extra O(k) operations are 
ompletely negligible andthe saving in iteration 
ount dire
tly results in a 
omputational time saving. For instan
e for as
aled residual norm lower than 10−11 on one pro
essor of a Cray-XD1 
omputer, the CPU timeis about 5 hours 47 minutes with FGMRES(25) and only about 3 hours 19 minutes for FGMRES-DR(19,11).
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Fig. 4.5. Convergen
e history of the s
aled residual with respe
t to the iteration for the ele
tromagneti
sappli
ation.5. Con
luding remarks. There are many situations in s
ienti�
 
omputing where variablepre
onditioners have to be 
onsidered for the iterative solution of a linear system. In that frameworkwe have proposed a novel algorithm that attempts to 
ombine the numeri
al features of GMRES-DR and the �exibility of FGMRES. The new algorithm, referred to as FGMRES-DR, inheritsfrom the attra
tive numeri
al properties of its two parents. We have shown, on a set of small testexamples as well as on two real life appli
ations in wave propagation that, after the �rst restart ofthe method, FGMRES-DR may outperform FGMRES; the bene�t obtained is problem dependent.As for the GMRES-DR algorithm, the eigenvalues of smallest magnitude are often 
onsidered asgood 
andidates for the restarting pro
edure. However, any other part of the spe
trum 
an be
onsidered; the best suited 
hoi
e is again problem-dependent and heuristi
s 
ould be based onthe analysis of the e�e
t of the pre
onditioner on the system matrix or on the lo
ation of all the



17harmoni
 Ritz values available at restart.A
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