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SUMMARY

In the spectral stochastic finite element method for analyzing an uncertain system, the uncertainty is
represented by a set of random variables, and a quantity of interest such as the system response is considered
as a function of these random variables. Consequently, the underlying Galerkin projection yields a block
system of deterministic equations where the blocks are sparse but coupled. The solution of this algebraic
system of equations becomes rapidly challenging when the size of the physical system and/or the level
of uncertainty is increased. This paper addresses this challenge by presenting a preconditioned conjugate
gradient method for such block systems where the preconditioning step is based on the dual–primal
finite element tearing and interconnecting method equipped with a Krylov subspace reusage technique
for accelerating the iterative solution of systems with multiple and repeated right-hand sides. Preliminary
performance results on a Linux Cluster suggest that the proposed solution method is numerically scalable
and demonstrate its potential for making the uncertainty quantification of realistic systems tractable.
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1. INTRODUCTION

The realistic design and analysis of a physical system must take into account uncertainties
contributed by various sources such as manufacturing variability, insufficient data, unknown
physics, and aging. In many probabilistic frameworks, these uncertainties are first modeled as

∗Correspondence to: Debraj Ghosh, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012,
India.

†E-mail: dghosh@civil.iisc.ernet.in

Contract/grant sponsor: Advanced Simulation and Computing Program of the Department of Energy
Contract/grant sponsor: National Science Foundation; contract/grant number: CNS-0540419

Copyright q 2009 John Wiley & Sons, Ltd.



D. GHOSH, P. AVERY AND C. FARHAT

random quantities with assigned probability distributions. Then, the probabilistic nature of the
system response to a deterministic or random loading is estimated using a stochastic finite element
method (SSFEM). In such a method, the random parameters and external forces are first modeled
using square-integrable random variables and processes. The processes are further discretized
using a denumerable set of random variables known as the set of basic random variables. Next,
the system response is represented using a set of polynomials in these basic random variables.
When these are Gaussian, the natural choice of a set of orthogonal polynomials in these variables
becomes the set of Hermite polynomials. In this case, the resulting representation is called the
polynomial chaos expansion (PCE) [1]. Once the coefficients of this representation—referred to
as chaos coefficients—are estimated, any statistical quantity such as the mean, standard deviation,
and probability density function (PDF) of the system response can be derived in a straightforward
manner. When the physical domain of the problem is also discretized using, for example, deter-
ministic finite element bases, the approximation space for the entire problem naturally becomes a
tensor product space defined on the cartesian product of the physical and random domains.

Consider a linear elliptic equation with uncertain parameters where the physical domain is
discretized by a finite element model with n degrees of freedom (dof) and the response is represented
by a P-term PCE. To estimate the chaos coefficients, a Galerkin projection can be applied to
minimize the residual of the governing equation [1–3]. In Section 2, it is shown that such a
procedure transforms the stochastic problem into the following system of linear deterministic
equations:

Ku= f, K∈RnP×nP , u, f∈RnP (1)

where the matrix K has the form

K=

⎡
⎢⎢⎢⎢⎣

K11 K12 . . . K1P

K21 K22 . . . K2P

. . . . . . . . . . . .

KP1 KP2 . . . KPP

⎤
⎥⎥⎥⎥⎦ , Ki j ∈Rn×n (2)

The matrixK is block-sparse. Each of its blocksKi j is of size (n×n) and is also sparse. The block-
sparsity results from the properties of the polynomial chaos bases, while the sparsity within the
individual blocks results from the deterministic finite element discretization. The overall problem
size, which is characterized by the product nP , depends on (i) the size of the physical system
and the spatial mesh resolution that affect n and (ii) the level of uncertainty that affects P . The
majority of the current literature addresses the solution of Equation (1) for small- or medium-
sized problems. However, as P (and) or n is increased, solving Equation (1) becomes challenging
from both memory and CPU viewpoints. Therefore, the development of efficient computational
techniques for solving problem (1) has emerged as an active research area in recent years [4–7].

Previous attempts at solving Equation (1) have relied on iterative techniques such as block
Gauss–Jacobi [7], Minimal Residual Method (MINRES), or the preconditioned conjugate gradient
(PCG) algorithm [4–6]. In this paper, the latter method is adopted and an incomplete block-
diagonal preconditioner is proposed. When the uncertainty in the system is Gaussian in nature,
this preconditioner coincides with the block-Jacobi preconditioner used in [4, 5], and differs from
that proposed in [6] by a set of scaling factors of the diagonal blocks that significantly enhance
the performance of the preconditioner.
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The application of a block-diagonal preconditioner to Equation (1) requires solving repeated
linear systems of equations with different right-hand sides. The left-hand side of each of these
systems is the mean part of the stiffness matrix and therefore is sparse, symmetric, and positive
definite. In [5], such a preconditioner was based on an approximate inversion technique. In [4], it
was based on a matrix factorization. In [6], a CG algorithm was used for this purpose. In all of
these references, the reported performance results suggest a need for a better preconditioning step.

In this paper, the scalable domain decomposition (DD)-based finite element tearing and inter-
connecting dual–primal (FETI-DP) method [8–13], which is an enhanced variant of the ubiquitous
iterative FETI solver [10, 14–27], is proposed as an incomplete block-diagonal preconditioning
solver for Equation (1). It is equipped with the Krylov reusage technique first proposed in [15, 16]
for accelerating its convergence for systems with multiple and repeated right-hand sides. These
typically arise in nested iteration loops for linear problems. It is noted that an overlapping additive
Schwarz DD method with a similar idea of Krylov subspace reusage was recently exploited in
[28] for preconditioning stochastic problems, where the uncertainty model is a special case of the
general model considered in this paper and is such that K is block-diagonal. To this effect, the
remainder of this paper is organized as follows.

In Section 2, the SSFEM of interest is presented and Equation (1) is derived to keep this paper as
self-contained as possible. In Section 3, important issues related to the solution of this potentially
large linear system of equations are exposed and the incomplete block-diagonal preconditioner
proposed in this paper is introduced. Section 4 overviews the FETI-DP method, which is chosen
for computing the preconditioned residuals arising from the chosen PCG-based solution strategy.
This section also describes the tailoring of FETI-DP to the solution of systems with multiple
and/or repeated right-hand sides such as those arising from the target application. Implementational
details of the proposed preconditioning step and resulting overall PCG solver are described in
Section 5. A three-dimensional, large-scale application problem is discussed in Section 6. The
performance results obtained for this problem suggest that the overall PCG solver proposed in this
paper is numerically scalable and therefore holds a great potential for enabling the uncertainty
quantification of realistic systems. Finally, Section 7 concludes this paper.

2. SPECTRAL SSFEM

Let (�,F, P) denote the underlying probability space of uncertainty,� denote the set of elementary
events �,F denote a �-algebra on this event set, and � denote the probability measure. Let also
the physical domain D be a closed interval in the space Rd , where d is 1, 2 or 3, and x be a point
in this domain. Consider the second-order elliptic partial differential equation defined in �:

−∇·(a(x,�)∇u(x,�)) = f (x,�), x∈D

u(x,�) = 0, x∈�D
(3)

where u(x,�), f (x,�) :D×�→R. The uncertain parameters in this equation are embedded in the
coefficient and external functions a(x,�) and f (x,�), respectively. Here, the process a(x,�) is
assumed to be bounded away from zero and f (x,�) is assumed to satisfy the square integrability
condition ∫

�

∫
D

f 2(x,�)dxdP(�)<∞ (4)
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Since the random processes a(x,�) and f (x,�) are infinite-dimensional objects, for computational
purpose they are further discretized using a suitable basis function set in the space of square-
integrable random variables L2(�). For example, when the covariance of a process is known, the
Karhunen–Loève (KL) expansion [1] can be used for such a discretization. A finite-dimensional
representation of these processes yields the random vector n={�i (�)}i=m

i=1 , which completely char-
acterizes the uncertainty in the underlying system. In general, these random variables may not
be completely independent from each other, and their joint distribution may be non-Gaussian.
However, these random variables can be transformed into a function of an independent Gaussian
vector using various techniques [29]. Therefore, without loss of generality, n can be assumed to
be a vector of independent standard normal random variables. In the literature, m is often referred
to as the stochastic dimension of the problem. Since the response of the system, u, is actually also
a function of n, it can now be denoted as u(x,n).

Let the function p(n) denote the joint PDF of the random vector n. In this paper, the integral∫
� ·d�(�) or

∫
Rm ·p(n)dn is denoted by the expectation operator E{·}. Let the physical approxi-

mation space be a deterministic finite element space H1
0 (D) with the shape functions denoted by

{Ni (x)}i=n
i=1. The response of the system is next represented in a tensor product Hilbert space as

u(x,n)∈H =H1
0 (D)⊗L2(�) where the inner product is defined as

(u,v)H1
0 (D)⊗L2(�) =

∫
Rm

(∫
D

∇u(x,n)·∇v(x,n)dx
)

p(n)dn=E

{∫
D

∇u(x,n)·∇v(x,n)dx
}

(5)

A set of basis functions should be chosen in the random space L2(�) to represent the stochastic
counterpart of the response u(x,n). In this paper, the polynomial chaos basis functions [1, 30, 31]
are used for this purpose. Accordingly, any square-integrable random variable, vector, or process
can be represented using a basis function set {�i (n)}i=∞

i=0 , where the basis functions are chosen
to be the Hermite polynomials in the set of orthonormal variables n. The �i functions have the
following properties:

�0≡1, E{�i }=0 for i>0 and E{�i� j }=�i, jE{�2
i }

where �i, j denotes the Kronecker delta function. For computational purpose, only a finite number
P of basis functions is used. P depends on the stochastic dimension of the problem, m, and on
the highest retained polynomial degree, which is also referred to as the order of the expansion. For
example, when n={�1,�2}, the stochastic dimension is m=2, a second-order PCE yields P=6,
and the corresponding polynomials �i (�1,�2) are

�0(�1,�2) = 1, �1(�1,�2)=�1, �2(�1,�2)=�2

�3(�1,�2) = �21−1, �4(�1,�2)=�1�2, �5(�1,�2)=�22−1

Besides the Hermite polynomials, other basis functions such as other types of polynomials [32]
or wavelet functions [33] are often employed. Using both the deterministic or physical shape
functions {Ni (x)}i=n

i=1 and the stochastic basis functions {� j (n)} j=P−1
j=0 , the approximation û(x,n)

of the response u(x,n) can be represented as

û(x,n)=
i=n∑
i=1

j=P−1∑
j=0

ui, j Ni (x)� j (n), Ni (x)∈V (D), � j (n)∈ L2(�) (6)
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The chaos coefficients u( j)(x)=∑i=n
i=1 ui, j Ni (x) completely capture the probabilistic description of

the random quantities involved. For example, the mean and variance of the response at a physical
location x can be readily computed from the above expansion as

Mean= ū(x)=
i=n∑
i=1

ui,0Ni (x), Variance=Var(û(x))=
i=n∑
i=1

j=P−1∑
j=1

(ui, j Ni (x))2E{�2
j } (7)

The statistical moments of the stress and strain quantities can be computed using one of the
numerical techniques discussed in [34].

To evaluate the representation (6), the coefficients ui, j must first be estimated. This can be
achieved using the intrusive or stochastic Galerkin finite element method [1–3] as follows. First,
define a bilinear form B(u,v) :H×H →R as

B(u,v)=
∫

Rm

(∫
D
a(x,n)∇u(x,n)·∇v(x,n)dx

)
p(n)dn ∀u,v∈H (8)

Then, construct the variational form as

B(u,v)=V(v) ∀v∈H (9)

where V(v) :H →R is a bounded linear functional defined as

V(v)=
∫

Rm

(∫
D

f (x,n)v(x,n)dx
)
p(n)dn (10)

The positivity and boundedness of the coefficient a(x,n) almost everywhere imply the continuity
and coercivity of the bilinear form B(u,v). Under these conditions, the Lax–Milgram lemma [35]
guarantees the existence and uniqueness of the solution of the variational problem (9).

Let the process a(x,n) be represented as

a(x,n)=
L−1∑
i=0

a(i)(x)�i (n) (11)

Equation (11) can correspond to, for example, a KL expansion or a PCE. Using Equations
(8),(10),(11), the PCE of u(x,n) (6) and choosing v(x,n) as Nk(x)�l(n), the variational formulation
(9) can be written as

i=n∑
i=1

j=P−1∑
j=0

ui, j

∫
Rm

[K (n)]k,i� j (n)�l(n)p(n)dn=
∫

Rm
fk(n)�l(n)p(n)dn

∀k=1 . . .n, l=0 . . .P−1 and �l(n)∈ L2(�) (12)

where K (n) is an (n×n) matrix whose elements are random variables and can be expressed as

K (n)=
L−1∑
r=0

K(r)�i (n), K(r) ∈Rn×n (13)

where the (i,k)th element of the deterministic matrix K(r) is given by∫
D
a(r)(x)∇Ni (x)·∇Nk(x)dx (14)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2009)
DOI: 10.1002/nme



D. GHOSH, P. AVERY AND C. FARHAT

and

fk(n)=
∫
D

f (x,n)Nk(x)dx (15)

Equation (12) can be re-written in the form of Equation (1). Although described for a second-order
elliptic equation, this equation can be obtained for any elliptic equation of the form L(u(x,�))=
f (x,�).
In a computer implementation, the matrices K(i), i =0, . . ., L−1, are computed by calling the

usual finite element stiffness routines L times and changing only the coefficient a(i)(x) in each
call. Physically, K(0) refers to the mean stiffness and all other K(r) matrices refer to the random
fluctuations around the mean stiffness.

Next, the following notation is introduced:

u(i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1,i

u2,i

...

un,i

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∈Rn, f(i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E{ f1(n)�i }
E{ f2(n)�i }

...

E{ fn(n)�i }

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

∈Rn, i =0, . . ., P−1 (16)

where the functions fk(n) are defined in Equation (15). Asmentioned earlier, f (n) is also discretized
using KL or PCE. The expectation operations in the above equation can be evaluated using
the orthogonality of the random bases. As a special example, when f (n) is deterministic—say
f (n)= f—only f(0) survives in the above equation and all other f(i) terms vanish.
Using the above notation, K,u, and f in Equation (1) can now be written as

K=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L−1∑
i=0

K(i)E{�i�0�0}
L−1∑
i=0

K(i)E{�i�1�0} . . .
L−1∑
i=0

K(i)E{�i�P−1�0}
L−1∑
i=0

K(i)E{�i�0�1}
L−1∑
i=0

K(i)E{�i�1�1} . . .
L−1∑
i=0

K(i)E{�i�P−1�1}

. . . . . . . . . . . .

L−1∑
i=0

K(i)E{�i�0�P−1}
L−1∑
i=0

K(i)E{�i�1�P−1} . . .
L−1∑
i=0

K(i)E{�i�P−1�P−1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

u= {u(0),u(1), . . .,u(P−1)}T, f={ f(0), f(1), . . ., f(P−1)}T (18)

From the sparsity and other properties of the triple products E{�i� j�k}, it follows that K is
block-sparse and its diagonal blocks are always non-zero. More specifically, the sparsity pattern of
K depends on the representation described in Equation (11), the choice of basis functions �i , and
the order of the expansion. For example, for the linear static problem studied in Section 6 where
the random fluctuations of the five Young’s modulis of five structural components are expressed as
second-degree polynomials of Gaussian random variables and the displacement field is represented
by a fourth-order PCE, the sparsity pattern of K is graphically depicted in Figure 1. Increasing or
decreasing the order of the PCE adds or removes branches in K.
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Figure 1. Block-sparsity of the stiffness matrix K of the example cylinder head problem.

3. NESTED PCG SOLVERS FOR A SYSTEM OF SYSTEMS

Equation (1) is actually a system of systems of equations. As shown by Equation (17), the (P×P)

blocks of K of size (n×n) are linear combinations of the finite element stiffness matrices K(i).
When n or P is large, solving Equation (1) becomes a real challenge.

The matrices K(i) are typical finite element stiffness matrices. Therefore, for the elliptic problems
considered in this paper, these matrices are symmetric. Consequently, K is also symmetric. Here,
it is assumed that the chosen uncertainty model is such that K (n) (13) is positive definite, which
implies that K is also positive definite. In this case, the PCG algorithm is the preferred iterative
solver for problem (1) and the issue becomes the construction of a suitable preconditioner. To this
end, K is closely examined below.

The matrix K(0) corresponds to the stiffness matrix of the mean system. Hence, it is positive
definite provided the modeled system is properly constrained by sufficient boundary conditions.
Using the orthogonality of the chaos polynomials, it can be shown that K(0) contributes only to
the diagonal blocks of K. In other words, the off-diagonal block matrices have contributions only
from the fluctuations of the system properties. This suggests that the diagonal blocks are dominant
and calls for a block-diagonal preconditioner for K.

Furthermore for large-scale systems, factoring any diagonal block ofK can be so computationally
prohibitive that a second iterative solver becomes also necessary for constructing the desired block-
diagonal preconditioner. This is the context of this work that targets large-scale, large-dimension
stochastic problems, and where the second iterative solver is also chosen to be a PCG algorithm.
In this case, the overall iterative solution method has two nested PCG iterations: an outer one
associated with the main solution of Equation (1) and an inner one associated with the solution of
the auxiliary problem incurred by the block-diagonal preconditioner.

Nested PCG iterations can be computationally inefficient, unless special care is taken for accel-
erating the convergence of one of the two iterative loops. Here, the focus is set on the inner-PCG
iteration. To accelerate its convergence, the following approach is adopted. The blocks of the block-
diagonal preconditioner are chosen to be independent of the index of the outer-PCG iteration, and
the performance of the inner-PCG algorithm is optimized for the solution of multiple systems with
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a constant left-hand side but different right-hand sides. More specifically, the following incomplete
block-diagonal preconditioner is proposed:

M=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

E{�2
0}
K−1

(0) 0 . . . 0

0
1

E{�2
1}
K−1

(0) 0 0

. . . . . . . . . . . .

0 0 . . .
1

E{�2
P−1}

K−1
(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

The reader can observe that the diagonal blocks of M differ only by scaling factors, and only the
mean part K(0) contributes to them. Because of the latter observation, the M matrix described in
(19) is referred to here as an incomplete block-diagonal preconditioner. It can be shown that for
a Gaussian model for K (n), only the term K(0)E{�2

j } survives under the summation operator in
the j th diagonal block of K. Hence in this case, the proposed preconditioner M coincides with
the block-Jacobi preconditioner proposed in [4, 5]. It differs from that proposed in [6] by the
presence of the scaling factors 1/E{�2

j }, j=0, . . ., P−1, in the diagonal blocks, which is due

to the presence of the term E{�2
j } as the coefficient of K(0) in the j th diagonal block of K, as

described in Equation (17) (the reader is reminded that �0=1).
Each i th application of the preconditioner M described in (19) requires the solution of P

problems of the form

K(0)z j (i)=e j(i), j=0, . . ., P−1 (20)

where for large-scale problems K(0) is sparse and large and the notation (i) is used to emphasize the
dependence of the right-hand side e j on the outer-PCG iteration i . Hence, Equation (20) describes
a linear system of equations with multiple and repeated right-hand sides: the multiple right-hand
side aspect derives from the number of chaos polynomials P>1 and the repeated right-hand side
aspect from the outer-PCG iteration associated with the chosen overall solution strategy. Here, it
is proposed to solve this linear system by the FETI-DP method equipped with a Krylov subspace
re-usage technique for accelerating its convergence in the presence of multiple and/or repeated
right-hand sides.

4. FETI-DP AND ITS TAILORING FOR REPEATED RIGHT-HAND SIDES

4.1. FETI-DP: a DD-based iterative solver

During the last two decades, DD methods have emerged as a popular and often efficient category of
algorithms for the solution of large-scale systems of equations. These methods rely on partitioning
the computational domain into a set of subdomains (Figure 2) and on applying a divide-and-
conquer strategy for solving the associated system of equations. They are usually more amenable to
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Figure 2. Decomposition of a physical domain D into subdomains.

parallel processing than the traditional solution methods, which makes them attractive particularly
for computations on parallel computers.

FETI-DP [8–13] is a third-generation FETI-type [10, 14–27] DD method—that is, a DD method
with Lagrange multipliers and in which the interface problem is solved by a suitable PCG
algorithm—developed for the scalable and fast iterative solution of systems of equations arising
from the FE discretization of static, dynamic, second-order, and fourth-order elliptic partial differ-
ential equations. When equipped with the Dirichlet preconditioner [17] and applied to plane
stress/strain or shell problems, the condition number � of its interface problem grows asymptoti-
cally as [36]

�=O

(
1+ log2

H

h

)
(21)

where H and h denote the subdomain and mesh sizes, respectively. When equipped with the
same Dirichlet preconditioner and an auxiliary coarse problem constructed by enforcing some
set of optional constraints at the subdomain interfaces [9], the condition number estimate (21)
also holds for second-order scalar elliptic problems that model three-dimensional solid mechanics
problems [37]. This estimate proves the scalability of the FETI-DP method with respect to all
of the problem size, subdomain size, and number of subdomains. More specifically, it suggests
that one can expect FETI-DP to solve small-scale and large-scale problems in similar iteration
counts, a property often referred to as numerical scalability. This in turn suggests that when the
FETI-DP method is well-implemented on a parallel processor, it should be capable of solving an
n-times larger problem using an n-times larger number of processors in almost a constant CPU
time, a property often referred to as parallel scalability. This property shared by all FETI methods
was demonstrated in practice for many complex structural mechanics problems (for example, see
[8, 9, 25] and the references cited therein).

4.2. Acceleration of convergence for problems with multiple right-hand sides

Let

Ku j =b j, j=1, . . .,Nrhs (22)
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denote a series of Nrhs successive problems with different right-hand sides. Solving these problems
by the FETI-DP method requires first transforming them into the interface problems (for example,
see [8–13])

FIk j =g j , j =1, . . .,Nrhs (23)

where FI is a symmetric positive-definite matrix of size nI equal to the total number of dof on
the global interface of the mesh decomposition (designated here by I ) and k is the vector of
Lagrange multipliers introduced at the subdomain interfaces to enforce there the continuity of the
solution, then computing the solutions of the above interface problems by a PCG algorithm. After
the vector of Lagrange multiplier unknowns k j is computed, the primal solution u j is obtained by
straightforward and parallel local (subdomain) substitutions.

Solving problems (23) is equivalent to solving the following minimization problems:

min
k∈Rn

I

� j (k)= 1

2
kTFIk−gTj k, j =1, . . .,Nrhs (24)

Let

V
rj
j ={p1j ,p2j , . . .,pkj , . . .,pr jj }, j=1, . . .,Nrhs (25)

denote the Krylov space consisting of the search directions pkj generated during the solution of

the j th of problems (24) by r j FETI-DP iterations, and let V j ∈RnI×r j denote the rectangular
matrix associated with V

rj
j . From the orthogonality properties of the conjugate gradient method,

it follows that

VT
jFIV j =D j , j=1, . . .,Nrhs (26)

where D j is the diagonal matrix

D j =[d j1 d j2 . . . d jr j
] (27)

Suppose that during the solution by FETI-DP of the first problem FIk1=g1, the matrices V1
and FIV1 are stored. Consider next the second problem FIk2=g2, which can be also written as

min
k∈RnI

�2(k)= 1

2
kTFIk−gT2k (28)

If RnI is decomposed as follows:

RnI =V r1
1 ⊕V

r∗
1

1 , dim(V
r∗
1

1 )=nI −r1, V r1
1 and V

r∗
1

1 are FI -orthogonal (29)

then k2 can be searched for in the following form:

k2=k02+�2, k02∈V r1
1 , �2∈V

r∗
1

1 and k0
T

2 FI�2=�T2FI	
0
2=0 (30)
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Substituting the above expression of k2 into (28) and exploiting the orthogonality conditions
expressed in (30) reveals that k02 is the solution of the uncoupled minimization problem

min
k∈Vr1

1

�2(k)= 1

2
kTFIk−gT2k (31)

and �2 is the solution of the uncoupled minimization problem

min
�∈V r∗1

1

�2(�)= 1

2
�TFI�−gT2� (32)

Since k02∈V r1
1 , there exists a h02∈Rr1 such that

k02=V1�
0
2 (33)

The vector h02 is determined by substituting the above equation into Equation (31) and solving the
resulting minimization problem, which gives

(VT
1FIV1)�

0
2=VT

1g2 (34)

From Equation (26), it follows that �02 is given by

D1�
0
2=VT

1g2⇒�02 j =
[VT

1g2] j
d1 j

, j =1, . . .,r1 (35)

and from Equations (33), (34) it is concluded that

k02=V1D
−1
1 VT

1g2 (36)

Here, it is noted that the evaluation of �02 requires only r1 floating point operations, and that of
	02 a single matrix–vector product.

Next, attention is turned to the solution of problem (32) by the FETI-DP method. Since the
decomposition (30) requires �2 to be FI -orthogonal to k02, it follows that at each PCG iteration
k, the search directions pk2 must be explicitly FI -orthogonalized to V1. This entails modifying the
PCG-loop of the FETI-DP solver to compute the following ‘enriched’ search directions p̃k2:

p̃k2=pk2+
q=r1∑
q=1


qp
q
1 , 
q =−pq

T

1 FIpk2

pq
T

1 FIp
q
1

=−pk
T

2 FIp
q
1

pq
T

1 FIp
q
1

(37)

instead of the usual search directions pk2. The right-hand sides of Equations (34) and (37) explain
why it was assumed that V1 and FIV1 are stored during the solution by FETI-DP of the first
problem FIk1=g1.

Since V
r∗
1

1 is only a subspace of RnI , it follows that the FETI-DP method equipped with the
starting value given by Equation (36) and the orthogonalization procedure implied by Equation
(37) can be expected to converge faster for the second problem than for the first one. This was
extensively demonstrated in [15] where this approach was first proposed and in [16, 25] for various
applications. The extension of this methodology to Nrhs>2 right-hand sides is straightforward and
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can be found in [15, 16]. Essentially, the matrices of search directions V j and products FIV j
generated and performed during the solution of the previous problems are accumulated in two
matrices V and W=FIV, respectively, and the scope of the orthogonalization procedure (37)
is extended to all accumulated and stored search directions. For many applications, convergence
was observed to be continuously accelerated from one right-hand side to the next one. This
is because for each additional right-hand side, the number of components of the new solution
that are captured by the starting value of the form of 	02 increases and the dimension of the

supplementary space of the form of V
r∗
1

1 in which the FETI-DP method is forced to iterate
decreases.

The computational methodology outlined above is applicable to any Krylov-based iterative
solver. However, it is feasible only for DD-based iterative solvers such as FETI-DP. Indeed, iterative
DD methods iterate only on subdomain interface unknowns, whereas global iterative methods
iterate on all unknowns of a given problem. Hence, only in the case of a DD method the storage
of V and W=FIV is feasible, and only in this case the computational overhead incurred by the
inner products associated with the orthogonalization procedure (37) is affordable.

5. DISTRIBUTED IMPLEMENTATION

The methodology described in the previous sections for solving Equation (1) can be implemented
in a totally distributed fashion. Therefore, it is particularly suitable for parallel computing on
distributed memory systems including Linux clusters. First, a given FE mesh is partitioned into
subdomains using a mesh decomposer such as that described in [38, 39] or any other similar
software tool. Multiple subdomains are assigned to a given processor depending on the number of
generated subdomains and number of available processors. Each non-zero stiffness matrix K(i) ∈
Rn×n, i =0, . . ., P−1, and associated displacement and force vectors are formed and assembled (if
needed) on a subdomain-by-subdomain basis only. Each vector v∈RnP is divided into P number
of n-dimensional blocks as follows:

v=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(0)

v(1)

...

v(P−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, v(i) ∈Rn (38)

and the blocks v(i) are distributed among the processors according to the distribution of the mesh
subdomains.

5.1. Implementation of the outer-PCG algorithm

The solution of problem (1) is initialized with u0=0. Convergence is monitored at the outer-level
and in this work is declared when

‖Ku−f‖2�10−8×‖f‖2 (39)
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At each outer-PCG iteration, a matrix–vector product of the form Kv is performed at the
block-level using the block partitioning outlined in Equation (38) as follows:

Kv=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1∑
i=0

P−1∑
j=0

K(i)E{� j� j�0}v( j)

L−1∑
i=0

P−1∑
j=0

K(i)E{� j� j�1}v( j)

...

L−1∑
i=0

P−1∑
j=0

K(i)E{� j� j�P−1}v( j)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, v( j) ∈Rn (40)

Each block-level matrix–vector product K(i)v( j)(i =0, . . ., L−1,K(i) =0, j=0, . . ., P−1) is
performed in parallel on a subdomain-by-subomain basis. The triple products E{� j� j�k},
0�i, j,k�P−1, involving the random variables are computed only once and stored in a dense
three-dimensional array that is replicated in each processor.

5.2. Implementation of the inner-PCG algorithm

The FETI-DP method for computing the block-diagonal preconditioned residuals is invoked only
when a non-zero right-hand side e j (i) (see Equation (20)) is encountered. This DD method, which
incorporates its own PCG solver, is equipped in this work with the Dirichlet preconditioner [17]
and the auxiliary coarse problem described in [8]. Within this DD method, all local subdomain
problems as well as the coarse problem are solved by a direct sparse algorithm.

Unless otherwise mentioned, a maximum of 1000 search directions are accumulated and stored
throughout the calls to the FETI-DP solver in order to accelerate its convergence for subsequent
right-hand sides as described in Section 4.2. For any given problem, the convergence of FETI-DP
is declared when

‖FIk j −g j‖2�10−6×‖g j‖2 (41)

6. APPLICATION

The non-deterministic static analysis on a Linux Cluster of the cylinder head of a car engine (see
Figure 3) with uncertainties in the material properties is considered here. Given a deterministic
static load, the objective is to estimate the statistics of the structural response using the SSFEM
outlined above. For this purpose, three finite element models of the cylinder head with three
different mesh sizes are considered: model CH1 with 54 198 dof, model CH2 with 335 508 dof,
and model CH3 with 2 290 437 dof. All the three models are constructed using three different
types of elements: eight-noded brick elements with three dof per node, three-noded shell elements
with six dof per node, and six-noded pentahedral elements with three dof per node. The cylinder
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Figure 3. Finite element discretization of a cylinder head.

head is assumed to be made of five different pieces whose Young’s moduli Ei are assumed to be
independent random variables that can be expressed as

Ei = Ēi + �Ei√
2
(�2i −1), i =1, . . .,5 (42)

In the above equation, Ēi denotes the mean value of Ei ,�Ei its standard deviation, and the �is are
independent standard normal random variables. To ensure the positivity of Ei , it is assumed that
∀i,�Ei /

√
2<Ēi . Here, �Ei is assumed to be equal to 20% of Ēi for all i , and therefore the afore-

mentioned positivity constraint is satisfied. Furthermore, the structure is sufficiently constrained to
remove all possible rigid body modes. The displacement field is represented by a fourth-order PCE.
The total number of chaos polynomials in this expansion is P=126. These are estimated by solving
Equation (1) by the PCG method equipped with the incomplete block-diagonal preconditioner
proposed in this paper.

First, Equation (1) is solved for model CH1 using eight processors and four different mesh
decompositions with 22, 44, 90, and 223 subdomains, respectively. In each case, the CPU time
incurred by the preconditioning step is reported in Table I. As for any DD-based iterative solver,
there exists a range of number of subdomains for which the performance of FETI-DP is optimal.
In general, this range depends on many factors including the problem size. In this case, this range
appears to be in the neighborhood of 44–90. Figure 4 reports the history of the number of FETI-DP
iterations performed to achieve convergence for problem (20), as a function of the j th instance
of its application to the solution of a problem of the form given in (20). The reader can observe
that after a few initial calls to the FETI-DP solver, the number of iterations for convergence of
this DD iterative solver drops significantly. This demonstrates the effectiveness of the technique
described in Section 4.2 for accelerating the iterative solution of a system with multiple and/or
repeated right-hand sides.

Similarly, it is found that for models CH2 and CH3, the performance of the FETI-DP iterative
solver is optimal for numbers of subdomains in neighborhoods centered around 229 and 944,
respectively. For this reason, all subsequent performance results are discussed for the partitionings
of models CH1, CH2, and CH3 into 44, 229, and 944 subdomains, respectively.

Next, Equation (1) is solved for all three partitioned models CH1, CH2, and CH3 using an
increasing number of processors. The obtained performance results are reported in Tables II and
III, respectively, where Ns and Np denote the number of subdomains and processors, respectively,
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Table I. Model CH1: performance of the FETI-DP solver for
preconditioning using eight processors.

Ns FETI-DP CPU time (s)

22 100
44 82
90 94
223 122

50 100 150 200 250 3000
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44 subdomains

22 subdomains
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Figure 4. Effectiveness of the Krylov subspace reusage technique for accelerating the convergence of
FETI-DP for problems with multiple and repeated right-hand sides.

Table II. Performance results for models CH1 and CH2.

Model FETI-DP Total
and size Ns Np NPCG

itr NFETI-DP
call NFETI-DP

itr CPU time (s) CPU time (s)

CH1 44 8 16 301 2573 82 109
54 198 dof 44 4 16 301 2573 158 212
CH2 229 16 17 322 4520 512 601
335 508 dof 229 8 17 322 4530 912 1072

NPCG
itr denotes the number of iterations for convergence of the overall PCG method (outer-loop),

and NFETI−DP
call and NFETI−DP

itr denote the total number of calls to the FETI-DP solver and the
accumulated number of performed FETI-DP iterations, respectively.

From the results reported in Tables II and III, the following observations can be made:

• It is found that for the CH1 model, the solution on four processors of one preconditioning
problem of the form given in (20) consumes 5.5 s CPU. The solution on the same four
processors of 301 of such problems during the solution of the global problem (1) consumes
158 s CPU—that is, 0.52 s on average per preconditioning problem. This CPU efficiency of
FETI-DP is not only due to the acceleration technique described in Section 4.2, but also due
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Table III. Performance results for models CH2 and CH3.

Model FETI-DP Total
and size Np NPCG

itr NFETI-DP
call NFETI-DP

itr CPU time (s) CPU time (s)

CH2 60 17 322 4531 285 326
335 508 dof
CH3 60 16 301 6432 2548 2863
2 290 437 dof

to the fact that the local matrices governing the subdomain-by-subdomain version of problems
(20) are factored only once, during the first call to the FETI-DP solver.

• For each of models CH1 and CH2, both FETI-DP and the overall PCG algorithm proposed
in this paper for the solution of Equation (1) demonstrate an excellent parallel scalability.

• Model CH2 has 6.2 times more dof than model CH1. On eight processors, the total CPU
time consumed by FETI-DP during the solution of Equation (1) for model CH2 is 11.1 times
larger than that consumed by FETI-DP during the solution of the same equation for model
CH1. This demonstrates a reasonable numerical scalability of the FETI-DP method.

• Similarly on eight processors, the total CPU time consumed by the overall PCG algorithm for
the solution of Equation (1) associated with model CH2 is 9.8 times larger than that consumed
for the solution of the similar equation associated with the model CH1. This suggests that
the overall PCG algorithm proposed in this paper for the solution of Equation (1) is almost
numerically scalable.

• Model CH3 is 6.8 times larger than model CH2, and using 60 processors, the total CPU time
elapsed in the solution by FETI-DP of all of the preconditioning problems (1) is 9.1 times
larger for CH3 than for CH2. Again, this illustrates FETI-DP’s numerical scalability.

• Similarly on 60 processors, the total CPU time consumed by the overall PCG algorithm for the
solution of Equation (1) is 8.7 times larger for model CH3 than for model CH2. Once again,
this suggests that the overall PCG algorithm proposed in this paper is almost numerically
scalable.

• Even though P=126 and the proposed overall PCG algorithm converges in one (outer-)
iteration less for model CH3 than model CH2, the number of calls to the FETI-DP solver is
reported to be lower by 21 calls only for the case of model CH3. This is because only 21 of
the 126 diagonal blocks in the preconditioner (19) turn out to be non-zero.

7. CONCLUSIONS

An incomplete block-diagonal preconditioner and its FETI-DP solver tailored for systems with
multiple and repeated right-hand sides are proposed in this paper for the solution by an outer
PCG algorithm of large-scale block systems of deterministic equations arising from the finite
element stochastic analysis of structural problems with uncertainties. Performance results obtained
for a three-dimensional problem from the automotive industry suggest that the proposed solution
strategy is numerically scalable. These and similar performance results obtained for other stochastic
problems also suggest that the proposed algebraic solver has the potential for making the uncertainty
quantification of realistic systems tractable.
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