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A FLEXIBLE GENERALIZED CONJUGATE RESIDUAL METHOD WITH
INNER ORTHOGONALIZATION AND DEFLATED RESTARTING

I.. M. CARVALHO*, S. GRATTONT, R. LAGO¥, AND X. VASSEURS#

Abstract.

This work is concerned with the development and study of a minimum residual norm subspace method based
on the Generalized Conjugate Residual method with inner Orthogonalization (GCRO) method that allows flexible
preconditioning and deflated restarting for the solution of non-symmetric or non-Hermitian linear systems. First
we recall the main features of Flexible Generalized Minimum Residual with deflated restarting (FGMRES-DR), a
recently proposed algorithm of the same family but based on the GMRES method. Next we introduce the new
inner-outer subspace method named FGCRO-DR. A theoretical comparison of both algorithms is then made in
the case of flexible preconditioning. It is proved that FGCRO-DR and FGMRES-DR are algebraically equivalent
if a collinearity condition is satisfied. Furthermore we introduce three variants of FGCRO-DR that only differ in
the formulation of the generalized eigenvalue problem for the harmonic Ritz pair information and investigate their
main properties. Finally we demonstrate the effectiveness of the algorithms on a challenging application in quantum
chromodynamics.

Key words. flexible or inner-outer Krylov subspace methods, variable preconditioning, deflation, iterative
solver
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1. Introduction. In recent years, several authors studied inner-outer Krylov subspace meth-
ods that allow variable preconditioning for the iterative solution of large sparse linear systems of
equations. One of the first papers describing a subspace method with variable preconditioning is
due to Axelsson and Vassilevski who proposed the Generalized Conjugate Gradient method [2].
See also [1, Section 12.3] for additional references. Since then, numerous methods have been pro-
posed to address the symmetric, non-symmetric or non-Hermitian cases; these include Flexible
Conjugate Gradient 23], Flexible GMRES (FGMRES) [27], Flexible QMR [34] and GMRESR [39]
among others. This class of methods is required when preconditioning with a different (possibly
nonlinear) operator at each iteration of a subspace method is considered. This notably occurs
when adaptive preconditioners using information obtained from previous iterations [3, 14] are used
or when inexact solutions of the preconditioning system using e.g. adaptive cycling strategy in
multigrid [24] or approximate interior solvers in domain decomposition methods [35, Section 4.3]
are considered. The latter situation is frequent when solving very large systems of linear equations
resulting from the discretization of partial differential equations in three dimensions. Thus flexible
Krylov subspace methods have gained a considerable interest in the past years and are subject to
both theoretical and numerical studies [31]. We refer the reader to [32, Section 10] for additional
comments on flexible methods.

When non variable preconditioning is considered, the full GMRES method [30] is often chosen
for the solution of non-symmetric or non-Hermitian linear systems because of its robustness and its
minimum residual norm property [29]. Nevertheless to control both the memory requirements and
the computational cost of the orthogonalization scheme, restarted GMRES is preferred; it corre-
sponds to a scheme where the maximal dimension of the approximation subspace is fixed. It means
in practice that the orthonormal basis built is thrown away. Since some information is discarded at
the restart, the convergence may stagnate and is expected to be slower compared to full GMRES.
Nevertheless to retain the convergence rate a number of techniques have been proposed; they fall
in the class of augmented and deflated methods; see e.g. [4, 10, 11, 19, 28]. Deflated methods
compute spectral information at a restart and use this information to improve the convergence of
the subspace method. One of the most recent procedure based on a deflation approach is GMRES
with deflated restarting (GMRES-DR) [21]. This method reduces to restarted GMRES when no

*CNPq fellowship, Brazil. Applied Math. Dep., IME-UERJ, R. S. F. Xavier, 524, 629D, 20559-900, Rio de
Janeiro, R.J, Brazil

FINPT-TRIT, University of Toulouse and ENSERETHT, 2 rue Camichel, BP 7122, F-31071 Toulouse cedex 7,
France and CERFACS, 42, Avenue Gaspard Coriolis, F-31057 Toulouse Cedex 1, France

{FAPER.J Best Student Fellowship, PESC, COPPE-URFJ, 21941-972, Rio de Janeiro, R.J, Brazil

SCERFACS, 42, Avenue Gaspard Coriolis, F-31057 Toulouse Cedex 1, France



deflation is applied, but may provide a much faster convergence than restarted GMRES for well
chosen deflation spaces as described in [21].

Quite recently a new minimum residual norm subspace method based on GMRES allowing
deflated restarting and variable preconditioning has been proposed in [17]. It mainly attempted
to combine the numerical features of GMRES with deflated restarting and the flexibility property
of FGMRES. Numerical experiments have shown the efficiency of Flexible GMRES with deflated
restarting (FGMRES-DR) on both academic and industrial examples. In this paper we study a
new minimum residual norm subspace method based on the Generalized Conjugate Method with
inner Orthogonalization (GCRO) [9] allowing deflated restarting and variable preconditioning. It
is named Flexible Generalized Conjugate Residual Method with Inner Orthogonalization and De-
flated Restarting (FGCRO-DR) and can be viewed as an extension of GCRO-DR [26] to the case
of variable preconditioning. A major advantage of FGCRO-DR over FGMRES-DR is its ability to
solve sequence of linear systems (where both the left- and right-hand sides could change) through
recycling [26]. Although important this latter issue is not addressed in the paper and we concen-
trate on the case of a single linear system. In [26] Parks et al. mentioned that GCRO-DR and
GMRES-DR were algebraically equivalent i.e. both methods produce the same iterates in exact
arithmetic when solving the same given linear system starting from the same initial guess. When
variable preconditioning is considered, it seems therefore natural to ask whether FGCRO-DR and
FGMRES-DR could be also algebraically equivalent. We address this question in this paper and
the main theoretical developments that are proposed will help us to answer this question. The main
contributions of the paper are then twofold. First we prove that FGCRO-DR and FGMRES-DR
can be considered as algebraically equivalent, if a collinearity condition between two certain vectors
is satisfied at each cycle. When considering non variable preconditioning, these theoretical devel-
opments will also allow us to show the unconditional algebraic equivalence between GCRO-DR. and
GMRES-DR that was stated without proof in [26]. Secondly we extend the initial framework of
FGCRO-DR and introduce three variants of FGCRO-DR that only differ in the formulation of the
generalized eigenvalue problem for the harmonic Ritz information. While one of them corresponds
to the method briefly described in [18], the two others are new to the best of our knowledge. We
analyze their corresponding main properties and show their respective interest in an application in
quantum chromodynamics, where variable preconditioning is required.

This paper is organized as follows. In Section 2 we introduce the general background of this
study. We briefly recall the main properties of FGMRES-DR and then introduce the FGCRO-DR
method both from a mathematical and algorithmic points of view. Section 3 is mainly devoted to
the analysis of both flexible methods. Therein we show that both methods can be algebraically
equivalent in the flexible case if a certain collinearity condition is satisfied at each cycle. In Section
4 we propose three variants of FGCRO-DR, highlight noteworthy differences and finally compare
their respective computational costs. Furthermore we demonstrate the effectiveness of the three
algorithms on a challenging application in quantum chromodynamics in Section 5. Finally we draw
some conclusions and perspectives in Section 6.

2. Flexible Krylov methods with restarting.

2.1. General setting.

Notation. Throughout this paper we denote ||.|| the Euclidean norm, I}, € Ck** the identity
matrix of dimension k and 0;5; € C™*J the zero rectangular matrix with ¢ rows and j columns.
Given N € C"*™ Iy, = I,— N NT will represent the orthogonal projector onto range(N )=+, where

T refers to the Moore-Penrose pseudoinverse operation. Finally given Z,,, = [z1,--- , 2] € C**™,
we will usually decompose Z,, into two submatrices defined as Z, = [z1, -+ ,2;] € C™** and
Lk = [Zk—i-l; s ,Zm] S (Cnx(m—k).

Setting. We focus on minimum residual norm based subspace methods that allow flexible
preconditioning for the iterative solution of

Az =b, AeC™ gz beC" (2.1)

given an initial vector zo € C". In this paper A is supposed to be nonsingular. Flexible methods
refer to a class of methods where the preconditioner is allowed to vary at each iteration. We refer



the reader to e.g. [32] for a general introduction on Krylov subspace methods and to [32, Section
10] and [29, Section 9.4] for a review on flexible methods. The minimum residual norm GMRES
method [30] has been extended by Saad [27] to allow variable preconditioning. The resulting
algorithm known as FGMRES(m) relies on the Arnoldi relation

AZm = m+1Hm; (2'2)

where Z,, € C**™_ V,, .1 € C**(™+D has orthonormal columns and H,, € C™TD*™ is upper
Hessenberg. We denote M the preconditioning operator at iteration j and remark that M; may
be a nonlinear preconditioning function. We will then denote M ;(v) the action of M; on a vector v.
In (2.2), the columns of V,, 11 form an orthonormal basis of the subspace spanned by the following
vectors

{ro,Az1, -, Azym} with ro=0— Axg

whereas Z,, = [z1,-++ , 2m] and V,, = [v1, -+, vp] are related by

Zom = [Mi(v1), -, Mum(vp)] with v, = ﬁ
0

The minimization problem min ||b — Az|| is then solved as
Tm = To + Zmy",
where y* is the solution of the following least-squares problem of size (m + 1) x m
y* = argmingccm||ro — AZpyyll = argmin, cem ||[|7oll €1 — Hmyll,

where e; denotes the first canonical vector of C™*!. Flexible subspace methods with restarting
are based on a procedure where the construction of the subspace is stopped after a certain number
of steps (denoted by m in this paper with m < n). The method is then restarted mainly to control
both the memory requirements and the cost of the orthogonalization scheme. In FGMRES(m) the
restarting consists in taking as an initial guess the past iterate x,, associated with the smallest
residual norm.

The main focus of this paper is to present minimum residual norm subspace methods with
deflated restarting that allow flexible preconditioning. Deflated restarting aims at determining an
approximation subspace of dimension m as a direct sum of two subspaces of smaller dimension,
where one of these subspaces will contain relevant spectral information that will be kept for the
next cycle. We refer the reader to e.g. [28] and [32, Section 9] for a review on augmented and
deflated methods. Flexible methods with deflated restarting will notably satisfy the following
flexible Arnoldi relation

AZy = Vi1 Hyy with VL Vi =10, (2.3)

where H,, € Cm+tDxm ig not, necessarily of upper Hessenberg form. In this paper we call this
relation a flexible Arnoldi-like relation due to its similarity to relation (2.2).

Stagnation and breakdown. We refer the reader to [31, Section 6] for general comments and
a detailed discussion on the possibility of both breakdown and stagnation in flexible inner-outer
Krylov subspace methods. Although important, these issues are not addressed in this paper and
we assume that no breakdown occurs in the inner-outer subspace methods that will be proposed.

2.2. Flexible GMRES with deflated restarting. A number of techniques have been pro-
posed to compute spectral information at a restart and use this information to improve the conver-
gence rate of the Krylov subspace methods; see, e.g., [19, 20, 21, 28]. These techniques have been
exclusively developed in the case of a fixed preconditioner. Among others GMRES-DR is one of
those methods. It focuses on removing (or deflating) the eigenvalues of smallest magnitude. A full
subspace of dimension k, & < m (and not only the approximate solution with minimum residual



norm) is now retained at the restart and the success of this approach has been demonstrated on
many academic examples [19]. Approximations of eigenvalues of smallest magnitude are obtained
by computing harmonic Ritz pairs of A with respect to a certain subspace [21]. We present here
a definition of a harmonic Ritz pair equivalent to the one introduced in [25, 33]; it will be of key
importance when defining appropriate deflation strategies.

DEFINITION 2.1. Harmonic Ritz pair. Consider a subspace U of C*. Given B € C"*", 0 € C
andy € U, (0,y) is a harmonic Ritz pair of B with respect to U if and only if

By—0y 1l BU
or equivalently, for the canonical scalar product,
Vw € range(BU) w' (By —6y) =0.
We call y a harmonic Ritz vector associated with the harmonic Ritz value 6.

As in the case of fixed preconditioning, deflated restarting may also improve the convergence
rate of flexible subspace methods. In [17] a deflated restarting procedure has been proposed for the
FGMRES algorithm. The i-th cycle of the resulting algorithm called FGMRES-DR is now briefly

described and we denote r(()ifl) =b— Ax(()ifl) the residual obtained at the end of the previous cycle.

Based on the Arnoldi-like relation (2.3), the deflation procedure proposed in [17, Proposition
1] relies on the use of k& harmonic Ritz vectors Yy, = V,,, Py, of AZ,, V.2 with respect to range(V;,,),
where Vi, € C"** and P, € C™**. Next, the QR factorization of the following (m + 1) x (k + 1)
matrix

Py i1 Py = . i1 = .
] ][] ] s

is performed. This allows us to compute new matrices Z, € C*** V., € C"**+D) and H), €
CHE+Dxk gych that

A Zy, = Vip1 Hy,

H
Vk-{—l Vk+1 = IkJrlv

range([Yx, r(()i_ b ) = range(Vi11)

where Hj is a (k + 1) x k rectangular matrix. FGMRES-DR then carries out m — k Arnoldi
steps with flexible preconditioning and starting vector vg41 while maintaining orthogonality to Vj
leading to

H
A [ZkJrla T vzm] = [UkJrla T vaJrl] Hy—x  and Vm+1 Vi1 = Iyt

We note that H,,_; € C—k+1)x(m=k) 5 ypper Hessenberg. At the end of the i-th cycle this gives
the flexible Arnoldi-like relation

A Zm — Vm+1 -Hma

where Z,, € C"*™ V,, ;1 € C**(m+D and H,, € C(»tD*™  We note that H,, is no more upper
Hessenberg due to the leading dense (k + 1) x k submatrix Hy. At the end of the i-th cycle, an
approximate solution x(()i) € C™ is then found by minimizing the residual norm ||b—A(x((f—1) +Zny)|
over the space xéifl) + range(Z,,), the corresponding residual being r(()i) =b- Axéi), with r(()i) €
range(V;,+1). We refer the reader to [17] for the complete derivation of the method and numerical

experiments showing the efficiency of FGMRES-DR on both academic and industrial examples.



2.3. Flexible GCRO with deflated restarting. GCRO-DR |26] - a combination of GMRES-
DR and GCRO - is a Krylov subspace method that allows deflated restarting and subspace recycling
simultaneously. This latter feature is particularly interesting when solving sequences of linear sys-
tems with possibly different left- or right-hand sides. As pointed out in [26], GCRO-DR is attractive
because any subspace may be recycled. In this paper we restrict the presentation to the case of a
single linear system as proposed in (2.1).

GCRO and GCRO-DR belong to the family of inner-outer methods [1, Ch. 12| where the
outer iteration is based on GCR, a minimum residual norm method proposed by Eisenstat, Elman
and Schultz [13]. To this end GCR maintains a correction subspace spanned by range(Z,,) and an
approximation subspace spanned by range(V;,,), where Z,,,V,, € C**™ satisfy

A Zy = Vi,
vy, =1,.

The optimal solution of the minimization problem min ||b — Az|| over the subspace xg + range(Z,,)
is then found as x,, = 2o + Z,, Vnﬁ[ ro. Consequently r,, = b — A z,, satisfies

Tm =70 — Vi Vero =1Ilyiro, mm L range(V,,,).

In [9] de Sturler proposed an improvement to GMRESR [39], an inner-outer method based on
GCR in the outer part and GMRES in the inner part respectively. He suggested that the inner
iteration takes place in a subspace orthogonal to the outer Krylov subspace. In this inner iteration
the projected residual equation

(I, — Vi VINAZz = (1, = V;,, VD,
(In — Vin Vni[)Az =7,

is solved only approximately. If a minimum residual norm subspace method is used in the inner
iteration to solve this projected residual linear system, the residual over both the inner and outer
subspaces would be minimized. This leads to the GCRO (Generalized Conjugate Residual method
with inner Orthogonalization) Krylov subspace method [9]. Numerical experiments [9] indicate that
the resulting method may perform better than inner-outer methods (without orthogonalizations)
in some cases.

The GCRO method with deflated restarting (named GCRO-DR) based on harmonic Ritz value
information has been proposed in [26]. An approximate invariant subspace is used for deflation
following closely the GMRES-DR method. We refer the reader to [26] for a description of this
method, algorithms and implementation details. We present now a new variant of GCRO-DR that
allows flexible preconditioning by explaining the different steps occurring during the i-th cycle.

Again we denote r(()ifl) =b— Ax(()ifl) the residual obtained at the end of the previous cycle.

We suppose that a flexible Arnoldi-like relation of type (2.3) holds. As in Section 2.2 an
important point is to specify which harmonic Ritz information is selected. Given a certain matrix
W, € C™*™, to be specified later on, the deflation procedure relies on the use of & harmonic Ritz
vectors Yy = W,,, Py of AZ,,W} with respect to range(W,,), where Y3, € C"** and P, € C™*F.
Wy, will notably satisfy a property detailed in Lemma 3.3 and we point out that the calculation
of W is not needed in the practical implementation of the algorithm (see further discussion in

Section 4.2.1). Next, the QR factorization of the m x k matrix H,,P;, is performed. This allows
us to obtain new matrices Zy, Vi, € C*** such that

A Zyp =V,
VE Vv, = I,

by using information related to the QR factorization and the flexible Arnoldi relation (2.3) exclu-
sively. Then the inner iteration is based on the approximate solution of

(I, — Vi VI Az = (I, = Vi VE )T =Y.



For that purpose FGCRO-DR then carries out m — k steps of the Arnoldi method with flexible
preconditioning leading to

(In = ViVif") A [zigrs o 2m] = 1, V1] Hinek
(In —ViViEY A Zoo i = Vi iy1 Hi—ie

with v = r((]ifl)/Hr(()ifl) I. At the end of the cycle this gives the flexible Arnoldi-like relation

I VH AZ,_
A [Zk’Zm_k] = [Vk’ Vm—k+1] Omfk]ilxk * .H-mfk‘ '

A Zm — Vm+1 -Hma

where Z,,, € C"™, V1 € C*m+) and H,, € C(m+1)xm At the end of the i-th cycle, an ap-

proximate solution xéi) € C" is then found by minimizing the residual norm ||b — A(xéifl) + Zny)||
over the space xg'_l) + range(Z,,), the corresponding residual being r(()z) =b— Axg')., with r(()l) €

range(Vin+1).

2.4. Algorithms. Details of the FGCRO-DR method are given in Algorithm 1, where Matlab-
like notations are adopted (for instance in step 7b, Q(1 : m,1 : k) denotes the submatrix made of
the first m rows and first & columns of matrix Q). For the sake of completeness the FGMRES-
DR algorithm has been also described with notations chosen as close as possible to FGCRO-DR
to make a code comparison as easy as possible. Concerning Algorithm 1 we make the following
comments:

e As discussed later the computation of VV;{7 in step 5a is not required thanks to the definition
of the harmonic Ritz pair (see Definition 2.1).

e As pointed out by Morgan [21] and Parks et al. [26] we might have to adjust k during the
algorithm to include both the real and imaginary parts of complex eigenvectors.

e Although notations are similar in steps 6a and 6b, we remark that the respective orthogonal
and triangular factors do not have the same dimensions. In FGCRO-DR Q e C(mt1)xk
and R € CF** whereas Q € CmtUx(*+1) and R € Ch+Dx(E+1) in the FGMRES-DR
algorithm.

e The matrices Zj and Vj (such that AZ, = Vi and VkHVk = I}) are obtained in steps 8a
and 9a (see also Lemma 3.4).

e In steps 10a and 10b MY denotes the possibly nonlinear preconditioning operator at
iteration j during the i-th cycle.

e In step 11b Byym_r € CF*(m=F) results from the orthogonalization of [vgyo,- -« , Umi1]
against Vjy1.

e In FGMRES-DR the computation of the residual at the end of the cycle (step 14) can
be performed at a cheaper cost. Indeed it can be shown that ry =V, (c — H,,y*) [17,
Proposition 3].

3. Analysis of FGMRES-DR and FGCRO-DR. We compare now the flexible variants
of GMRES-DR and GCRO-DR introduced in Sections 2.2 and 2.3 respectively. In the following we
use the superscript # to denote quantities related to the FGMRES-DR algorithm e.g. Yk# denote
the set of harmonic Ritz vectors computed in the FGMRES-DR algorithm. When analyzing both
algorithms we will suppose that identical preconditioning operators are used in steps 10a and 10b
respectively i.e.

Vi Vi e (b1, md, MO0 =MOF() (3.1)

3.1. Equivalent preconditioning matrix. LEMMA 3.1. FEgquivalent preconditioning ma-
triz. Suppose that V, = [v1, - ,vp] € CY*P and Z, = [Mq(v1),--- , Mp(vp)] € C"*P obtained
during a cycle of a flexible method with (standard or deflated) restarting (with 1 <p <m <n) are
both of full rank i.e. range(V,) = range(Z,) = p. We will then denote My, € C"*" a nonsingular
equivalent preconditioning matriz defined as

Z, = My, V. (3.2)



Algorithm 1 Flexible GCRO-DR(m, k) and Flexible GMRES-DR/(m, k)
1: choose m, k, tol and xzg
2: rg =b— Az, 8= |roll, v1 =10/B, c = Per, i — 0 ~ -
3: Apply FGMRES(m) to obtain Hy,, Zm, V41 such that AZ,, = Vg1 Hp, y* = arg mqi:n lle = Hmyll,
yeem

180) =x0 + Zmy*y réO) =b-— Ax(()O) = Vm+1(c - Hmy*)z Wm = Vm
4: while [|r$|| > bl x tol do i — i+ 1

FGCRO-DR FGMRES-DR
5a: Compute k£ harmonic Ritz vec- 5b: Compute k harmonic Ritz vec-
tors of AZ,W,, with respect to tors of AZnVE with respect to
range(Wp,) and store them in Y. range(Vi,) and store them in Y.
Define P, such that Y, = W, P,. Define P, such that Y, =V, P, .
6a: QR=H,,P ) _ || P i
Ta: W, = I/I/'mPkkR’l ob: QR = Holxlj ¢ Hmy }
ga: V=V, ,,Q 7b: Hy=Q"HnQ(1l:m,1:k)
9a: Z, =Z,P,R! 8b:  Viy1 = Vm41@Q
10a:  Apply m — k flexible pre- 9b: Zy =ZmQ(1l:m,1:k)
conditioned Arnoldi steps 10b:  Apply m — k flexible precon-
with ([n -V Vk )JA  and ditioned  Arnoldi steps with
(i—1) (7. 1) A and wvgy; while main-
Uerr =70 /Il II'such that taining orthj)_gona]ity to Vi
(In = V,Vi'™)A {ZE+1""7Z7"].: such that A [zyt1,...,2m] =
[Vk+1, - X omt1] H, with [kt - Vmt1] Honi
Zj = M;l)(vj)_ with z; = M§i) (vj) and
11a: Set HmH = VWI;I+1 Va1 = Ima1
Ty Vil AZ g 11b:  Set H,, =
Om—k+1xk H, _. A, Bl
yielding A [z_l,...,zm] = Homkak} { Hyp H
[Ul,...,vm+1] Hp, yielding A [zl,...,zm} =
and define W = [Uh . 7vm+1} Hp,
W, Vm(l:nk+1: m)]

12:  y* =arg m1n e — H,,y|l with ¢ = Vg_‘_l (=1

13: :véi) = a:é ) + Zmy*
14: réi) =b— Ax(()i)
15: end while

Such a matriz represents the action of the nonlinear operafore M on the set of vectors v; (with
j=1,--+,p). It can be chosen e.g. as My, = [Z, Z,][V, V] where Z, (respectively V,,) denotes
an m"fhoqmml complement of Z,, (respectively V,) in C".

3.2. Relations between Z,, and W,, and Z# and V. We denote M 1)n and M(O) the

equivalent preconditioning matrices used in the initialization phase of both algorithms (q‘rep 3 in
Algorithm 1). With this notation we remark that the following relations hold

L= M W,, =2 = M) V. (3.3)

We first analyze the relation between Z# and V7.

LEMMA 3.2. At the end of the i-th cycle of the FGMRES-DR method Z7 and VI satisfy

3 # 11— 3
zh = MO VE = MVPVE MO s (3.4)

Proof.
The initialization phase leads to the relation Z7# = M(O) V.#. We suppose that at the end

of the i — 1th cycle the following relation holds: Z# = M‘(/# * V#. The orthogonal factor

m



Q# e Cm+TDx(k+1) ghtained in step 6b can be decomposed as follows
#—qf J=1] 9 3.5
a*=lat o=[,2] /] .5)
where Qk# € Cmtxk e €™+l and Q € C™*k. At step 9b of the i-th cycle Z,f& is defined as
= (i—1)# = (i—1)#
Z¥=25Q=M;VTVEQ=M TV

(3 (3 #
The proof is then completed since Z# = [./\/l,(ﬂﬁ&( k+1) Vi

end of step 10b. O

The next lemma details a relation between Z,, and W,, that is satisfied in the FGCRO-DR
method.

LEMMA 3.3. At the end of the i-th cycle of the FGCRO-DR method Z,, and W,, satisfy

(i) = MUF v, at the
k

771.

Ty = M) Wy = (MG W, M)

S Wikl (3.6)
Proof. The initialization phase leads to the relation Z,, = M&‘}}n Wi. We suppose that at the

end of the i — 1th cycle the following relation holds: Z,, = M&i,;l)Wm. At step 9a of the i-th cycle
Zy, is defined as

Zy =7, PR
=MW, PR
i—1
= My VW
The proof is then completed since Z,,_, = [M](jj_l(/l,l}k+1), MY (wm)] = M&i,)m_ka_k at the

end of step 11a. 0

Lemma 3.2 and 3.3 show that Z7 V7# Z and W, satisfy a similar relation that will play a
central role in Section 3.3. We investigate next the relation between Z,, and V,,.

LEMMA 3.4. At the end of the i-th cycle of the FGCRO-DR method Z,, and V,, satisfy

[AZy, Zon—i] = [Vie, M)

m—k

Proof. Due to the Arnoldi-like relation (2.3), AZ can be also written as

AZ, = AZ, P.R" (3.8)

= Vi1 Hy PR (3.9)

= Vin1Q (3.10)

=V, (3.11)

The proof is then completed since Z,,_, = [./\/l,(jj_l(vk“), e MY (vm)] = ‘(;) Vi, at the end

of step 11a. O
We conclude this section by presenting a technical lemma related to the FGMRES-DR method.
LEMMA 3.5. During the i-th cycle of the FGMRES-DR method, v,’j:_l satisfies the following

relation
_ _ o 1)#
”Z:-l = ”1?-1—1/““1?4—1” with U}f+1 = H[y#]LT(()l ) (3.12)

where r(()i_l)# =b- Améi_l)# denotes the residual obtained at the end of the (i — 1)-th cycle.
Proof. In (3.5) p € C™*1 is defined as

‘bl

p= Lo with p= (Lnsi — QFQEM)(cH — HEy*"). (3.13)

<



A consequence of the representation of Qk# in (3.5) is that the matrix V/ +1Qk can be written as

VjJrle# =ViQ. (3.14)
Using (3.13) and (3.14) we obtain

Ulfﬂ = Vm+1p = r(l DE_y, +1Qk#Qk Vr#—lﬁvr#-l—l( #— HEy#™).
iy =i VEQQUVAIVE,A(F — Rfy®).
Since V. Q has orthonormal columns this last expression now becomes
Ulﬁrl _ T(()ifl)# - VT#Q(VjQ)HT(()Fl)# _ H[V#Q]J(()ifl)#.
Since @ is the orthogonal factor of the QR decomposition of P,f, we have the following relation
range(VfP#) = range(V,7 Q).

Since by definition Y# V#P# the proof is then completed. O

3.3. Analysis of the FGMRES-DR and FGCRO-DR methods (Algorithm 1). Lemma
3.3 has already described an important property satisfied by W,, in the FGCRO-DR method pro-
posed in Algorithm 1. We will analyze further the relation between the FGMRES-DR and FGCRO-
DR methods. The next theorem states that the two flexible methods generate the same iterates in
exact arithmetic under some conditions involving notably two vectors.

THEOREM 3. 6

We denote r( =b-— Ax ) the residual obtained at the end of the i-th cycle of the FGCRO-
DR method (see step 14 of Algm"n‘hm 1). We suppose that Lemmma 8.1 holds and that the same
equivalent preconditioning matriz is obtained at the end of the i-th cycle of both FGCRO-DR and

FGMRES-DR algorithms i.e. Méf,) M‘(;;&#. Under this assumption the harmonic Ritz vectors

Yk# and Yy, can be chosen equal during the i 4+ 1-th cycle. If in addition there ezists a real-valued
positive coefficient n such that

i+1 7 7+1 '3 7
AMED @1y /Ty ) =9 1 AMEED 0 1) (3.15)

Yie,rd? 1m0+

in the FGCRO-DR, algorithm, then both algorithms generate the same iterates in exact arithmetic
and

H 7 7
Yie,r$? /1m0 11+

range(V,, 1) = range(VfH), (3.16)
range(Z,,) = range(Z7), (3.17)
with
Virr = Vi Qo vngzy s vomaal Vila= Vi vkea, oo s vmeal, (3.18)
L = [Zlf+1)?7zk+27"' 7zm]a Zn#; = [Zli_laszr?a"' azm]v (3.19)

where Q € CHVXE+) s g unitary matriz and X € CR+HIxE+D) o 4 nonsingular triangular
matriz.

Proof. The whole proof is performed in three parts assuming that we analyze the i + 1-th
cycle of each algorithm. Suppose that at the beginning of the i 4+ 1-th cycle (step 4) there exist
a unitary matrix Q € CH+Dx(¢+1 and a nonsingular matrix X € C*+Dx*+1) guch that the
following relations hold

Vi = VL, Q, (3.20)
Lyl = ZkJrlX (3.21)
[Uk+2v T vaJrl] = {Uli-zv T 7U777%L+1:| ) (3-22)

(242, 2m] = [z,’f”, e ,zf;f} . (3.23)
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We will then prove the existence of a unitary matrix Q' € Ck+Dx(k+1) and of a nonsingular matrix
X" e Ch+x(E+1) quch that at the end of the i + 1-th cycle

Vi = Vi, Q) (3.24)

Zy = ZF X, (3.25)

[Vkt2, " s Umt1] = {U]ﬁr?, ces a”ﬁ“} , (3.26)
[Zkt2, "y 2m] = {z,ﬁrz, e ,zﬁ} ) (3.27)

Regarding FGCRO-DR, we assume that at the beginning of the ¢ 4+ 1-th cycle (step 4)
range(W, ) = range(V,,). (3.28)

We will also prove that relation (3.28) holds at the end of the ¢ + 1-th cycle. Note that rela-
tions (3.16), (3.17) and (3.28) are obviously satisfied before the first cycle, because steps 1 to 3
are identical in both algorithms yielding V11 = Vfﬂ, Zm = Z7# and W, = V,,,. Finally a
consequence of (3.20), (3.22), (3.21) and (3.23) is that the residual of the linear system Ax = b in

both algorithms are equal at the beginning of the ¢ + 1-th cycle i.e. r(()i) = r(()i)#. We will denote rg

this residual for ease of notation.
Part I - Steps 5a and 5b. In this part, we prove that we can choose Yk# = Y, with Y, =

WP, = V#PY.
FGCRO-DR. Let y; = W,,p; be the j-th column of Y},. Since y; is a harmonic Ritz vector of
AZ, W with respect to range(W,, ), the following relation holds (see Definition (2.1))
(AZn WL W)™ (AZin W hy; — 05) = 0
which is equivalent to
ZH AR (AZ,pj — 0;Whp;) = 0. (3.29)
Due to (3.21) and (3.23) there exists a nonsingular matrix X € C™*™ that relates Z,, and Z7
Zm = ZEX. (3.30)
Using the last equality (3.30), the harmonic Ritz relation (3.29) now becomes
XHz#T AH (AZ# X p; — 0,Wop;) = 0.
From Lemma 3.3 and relation (3.30) we deduce
XUz AT (AZE Xpj — ;M) Zupy) =0,
XMz AT (AZH Xp; — ;MU0 28 Xy) =0,
where we have used explicitly the assumption on the equivalent preconditioning matrix obtained

at the end of the i-th cycle i.e. Mé[i,zn = M‘(/i#. Next, the application of Lemma 3.2 leads to

XHz# A1 (Az#y Ty xp. — 0,V Xp,) = 0. (3.31)

Since X is nonsingular the last equality proves that VT#ij is a harmonic Ritz vector of AZ7, VTﬁ&H
with respect to range(V,) associated to the Ritz value 6;. From relations (3.29) and (3.31) we
deduce that the harmonic Ritz vectors can be chosen to be equal and correspond to the same
harmonic Ritz values. In this case they notably satisfy the following equality

Vie{l, -k}, V#Xpj=Wnp; ie pl =Xp;. (3.32)

We will then denote Y = Yk# = Y} the k£ harmonic Ritz vectors computed in either FGCRO-DR
or FGMRES-DR. We assume that the harmonic Ritz values 6; (1 < j < k) are non zero.
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Part Ila - Steps 6a to 10a, 6b to 10b. We show that at the end of steps 10a and 10b the
following relations hold: range(Vyy1) = range(V,ﬁl) = range([Y, r(()i)/||r(()l)||]). This result will help

us to prove the existence of the matrix Q' introduced in relation (3.24).

FGCRO-DR. AZ,p; —0;W,,p; € range(Vy,11) is orthogonal to AZ,, due to the definition of

the harmonic Ritz information (3.29). Since r(()i) € range(V,,+1) is the non zero optimum residual

at the i-th cycle, we have (AZm)Hr(()i) = 0. Thus there exists a coefficient «; € C such that
AZyp; — 0;Wop; = arl). (3.33)
Using AZ,, = Vini1Hy, and QR = ﬁmPk we deduce
Vin1 Hyp; = 0;Winp; + g
Vint1@Q R = Ydiag(6y,...,0k) + r(()i)aT
where a = [aq, ..., ax] € C**L. This leads to
ViR =Ydiag(0y,...,0;) + r(()i)aT
diag(@l, . Gk)R* Orx1

Viar? 21 = [ /121 | S0 (3.34)
[ 0 0 0 0 ||r(() ) ||aTR 1 1
This relation leads to the following result
range(Vit1) = range([Y,§ /[r§l)- (3.35)
()
Similarly Wi11 = [Wy, ﬁ] can be written as, using Y = W,, Py
"o
(@) /1.0 Ly
[Wkaro /HTO ”] = [WmPkRi ') ]
o
= YR, rg” /1l
@@ [ BT Okxa
—wr | o % (3.0
From relations (3.36) and (3.35) we deduce that
range(Wir41) = range(Vi41). (3.37)

This last result also proves that range(W,,) = range(V,,,) at the end of the cycle.

FGMRES-DR. Using successively the relations of steps 8b and 6b and r(()i) = Vfﬂ(c# —
H#y#*), we deduce

Vl:f—lR# = VfHQ#R#
#
—v* || B # A
Vm+1 |:|:01><k:| c mY
= WipE ).

From the main result of Part I (VT#PE’& =Y) we finally obtain

i i i Iy, Ok x1
VELRE = Vo)) = 7 /) [ O 0] } . (3.38)
Since R¥ is nonsingular we deduce that
range(Vi¥: ) = range([Y, 7§ /|| |1]). (3.39)

Since both Vj1 and V.#  have orthonormal columns we deduce from (3.35) and (3.39) that there
+ k+1

exists a unitary matrix @' such that
Vi = Vi, Q' (3.40)

which proves the relation proposed in equation (3.24).
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Part 1Ib - Steps 6a to 10a, 6b to 10b. We show that at the end of steps 10a and 10b the fol-

lowing relations hold: range(Z;4+1) = range(Z,f:l) This result will help us to prove the existence

of the matrix X’ introduced in relation (3.25).

(i+1)

FGCRO-DR. Concerning Zyy1 = [Zk, 2k+1), there exists a nonsingular matrix M[W D /1O €
ksTo 7o

C™*™ (see Lemma 3.1) such that

— aG+D) (ONITNO)
Ziga = MU o Wi /1P

If T € Ch+Dx(+1) denotes the following triangular matrix

R Okx1
T:
[ O1xk 1 :|

Zi+1T can be written as

i+1 i i
ZinT =M o Wil /Ir§l T

ZinT = M[““%)/” oy 1l - (3.41)

where the last equality results from (3.36).
FGMRES-DR. Similarly from Lemma 3.2, Z,ﬁrl can be expressed as

VA

(i+1)# #
k+1 — kaﬁl Vk+1

where M‘(/i;[l)# € C™ ™ is nonsingular (see Lemma 3.1). If T# ¢ Ck+1)x(*+1) denotes the following
k+1

triangular matrix

1 0
e[ Bt
O1xk  1/[lrg” |l
Zk+1T# can be expressed as
i+1 i i
2T = MY ) (3.42)

thanks to the relation (3.38). Relations (3.41) and (3.42) characterize Z;1T and Zk+1T# with
respect to [Y, r(()i)/”r(()i) Il]- We can further improve this result by showing the following equality

i+1 i i i+1 i i
M oy s I = My /) (3.43)

Lemma 3.3 and Lemma 3.2 respectively give us two useful relations for /Y Y, r(()i)/||r(()i) 1

Wi, §? /1§01
i+1)# 7 [3 .
and Mé,;il) v, {71780 ie

1+1 7 7 7 7 7
MY o Vore g I = M), Yo MEED 67 /) D) (3.44)
7 7 7 # 7 7
M<“ g /e = a3 Ys M 0 /1§ D) (3.45)

Thus we investigate the relation between M( ) Y and M(z)#Y Using successively relation (3.32),
Wi = W,,P,R™!, Lemma 3.3, Z;, = Z,, PR~ !, relation (3 30) and finally Lemma 3.2 the following
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development can be made
M) Y = M) WP
M) Y = M) WiR
M) Y = ZiR
MY Y = Z,, P,
M) Y = ZEXP,
M) Y = MOPVEX P
My Y =M )#Y (3.46)

The fact that identical (possibly nonlinear) preconditioning operators are used in steps 10a and
10b of Algorithm 1 (see relation (3.1)) allows us to write

i+1), (i i i+)# (i i
MEED 8 /1) = MR (67 /17 ) (3.47)
Relations (3.46) and (3.47) finally show the relation (3.43). Consequently from relations (3.41),
(3.42) and (3.43) we deduce that there exists a nonsingular matrix X’ € C*+Dx(*+1) guch that

Zj = 21 X (3.48)

This proves the relation proposed in equation (3.25). Since T and T# are both triangular, we note
that X’ = T#T ! is also triangular.
Part I1la - Steps 10a and 10b. We first show that v,ﬁrz = V12 by expressing these two quan-

tities in function of r(()i) and Y.

FGCRO-DR. The Arnoldi relation (step 10a) yields vky2 = Uk+2/||0k+2]|], where G2 = (I, —

vk+lvk+1)( - WV )A./\/lkfll)(r(()i)/||7‘(()i)||). Since r(()i) is the optimum residual at the i-th cycle,

e. (AZ,)" (()1 = 0 we have
PH(AZ,)r() =0,
(Vm+1Hm,Pk)H7‘(()i) = 0,
RUVHR) = 0.

This shows that V;7vp41 = 0 since R is nonsingular. Therefore (I, — vgq10p, ;) and (I, — Vi V)
commute and from Part ITa of the proof, the following expression can be derived

_ i+1 % % (] i i
Okra = Ty AMED G 101D =Ty 0,0 AMETDEE /11D, (3.49)
FGMRES-DR. The following expression for vk+2 = ﬁk+2/||17k+2|| is obtained using Lemma 3.5
H l+1 z+1 7 7
ofs = = VEVEDAMED (o) = Wy 0,0 AMUTD Ty crg? /My ). (3.50)

Due to the assumption (3.15) of Theorem 3.6 we deduce from (3.49) and (3.50) that 4o =
n 17;::2 with n positive and therefore vi 4o = v,ﬁrz.

Part IIIb - Steps 10a and 10b. In this part we continue the analysis of the Arnoldi procedure
with flexible preconditioning and show that viyoy; = U,izﬂ foryj=1,....m—k—1.

For the case j = 1, we introduce U543 and 17,’5:_3 such that vgys = Uk+3/||0k+3|| and v,’j:_:} =
17]?+3/||17,i3||. The application of the Arnoldi procedure in both algorithms leads to

s = (In — vk o) (I — Vi Vi) AMUTY (B42)

_H _ # #H #H (i+1)
Vky3 = (In — Uk+2”k+2)( n = Vk+1Vk+1) AM; L (v k+2)'
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Thus from Parts II and Illa of the proof we obtain that vg3 and v,f:3 are equal. The proof can
then be completed by induction.

Results from Parts IT and T1T justify the relation (3.26) i.e. [vg12,- ", Umt1] = [U;f:_Q, e ,vﬁb“].
Consequently from Lemma 3.2, Lemma 3.4 and relation (3.1) we deduce the relation (3.27). This
finally shows the main relations (3.16) and (3.17) of Theorem 3.6 that are satisfied at the end of
the ¢ + 1-th cycle.

O

3.3.1. First consequence of Theorem 3.6. COROLLARY 3.7. If the same flexible precon-
ditioning operators are used in both Arnoldi procedures (steps 10a and 10b of Algorithm 1) and if
at each cycle i there exists a real-valued positive coefficient n; such that

i—1 i—1 i i—1 i—1
My o0 0y AMEL Iy ™D /a0 = 0 Ty aon )y aony AMEL G0 /g™,

v,

FGCRO-DR and FGMRES-DR are algebraically equivalent.
Proof. We have already emphasized that M(O) = M(O)# in relation (3.3). In Theorem 3.6 we

have analyzed the ¢ + 1-th cycle of both algorithms assuming that M(z M(i)# First we have
proved in Part IIb the relation (3.43) and secondly in Parts IIIa and IIIb ‘rha‘r [vk+2, Ce U] =
[U;Z_Q, coyvft] and [zgao,cc, 2m] = [z,iQ, -+, z7*] respectively. Consequently the same equivalent
preconditioner matrix is obtained at the end of the ¢ + 1-th cycle i.e. M(Hl) nd M‘(/Hl)# can be
chosen equal. We deduce that FGCRO-DR and FGMRES-DR are algebralcally equlvalen‘r a

3.3.2. About GCRO-DR and GMRES-DR. We propose a second consequence of Theo-
rem 3.6 analyzed now with a fixed preconditioning matrix M. Before, a straightforward reformu-
lation of Lemma 3.3 and Lemma 3.2 is proposed in this context.

LEMMA 3.8. When a fized right-preconditioning matriz M is used in FGCRO-DR, Z,, and
W, satisfy

T = MW,,. (3.51)

Proof. The application of FGMRES(m) in the initialization phase (step 3 in Algorithm 2)
leads to Z,, = MV,, when a fixed preconditioning matrix M is used. Thus M(O) = M. Suppose
that at the end of the i-th cycle Méf,zn = M. Since

Vik+1<j<m, MY =M,

we obtain from Lemma 3.3 that Z,, = My "Wy, = [MWi, MW,,_] = MW, ie. MG and
M can be chosen equal. O

LEMMA 3.9. When a fived right-preconditioning matriz M is used in FGMRES-DR, Z7 and
V# satisfy

ZH = MV, (3.52)

Proof. The proof follows the same steps as in Lemma 3.8 substituting M( I# for M(z

The next corollary details an important result related to the GCRO- DR and GMRES DR
methods.

COROLLARY 3.10. When a fized right preconditioner is used, the GCRO-DR and GMRES-DR
methods sketched in Algorithm 1 are unconditionally algebraically equivalent.

Proof. We denote M the fixed right preconditioning operator. Exploiting partial results shown
in Part ITa allows us to derive the following relation that holds during the i + 1-th cycle:

AMY = Ydlag(ﬂl, ‘e 70k) + T(()i)OZT.
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Thus
My, 0, AMY = 0. (3.53)
From Part IIla we know that
Do = H[Ywé,;)]LAMrg“. (3.54)
Due to (3.53) we deduce the following development,

Ukt2 = H[Y’Téi)]LAM(r((f) — vy,

V42 = H[Y,réi)]L AMTIy . T(()i),

Tkt = Tppo.

By induction it is possible to deduce the rest of the proof regarding v, 7 > 2. Using range(Vkﬁl) =
range(Vi41) obtained in Part ITa we deduce that

range(V,#) = range(V;,,) = range(W,,). (3.55)
From relation (3.55), Lemma 3.8 and Lemma 3.9 we deduce that
range(Z7%) = range(Z,,).

Consequently the minimization problem min ||r(()i) — AZ,y|| leads to the same solution for both
algorithms at each cycle: GCRO-DR and GMRES-DR sketched in Algorithm 1 are thus uncondi-
tionally algebraically equivalent. O

4. Variants of FGCRO-DR. We explore variants of FGCRO-DR that only differ in the
formulation of the generalized eigenvalue problem for the harmonic Ritz information. Their com-
putational cost is detailed carefully and their behaviour with respect to fixed preconditioning is
finally investigated.

4.1. Derivation and algorithms. In Section 2.3 the deflation procedure relied on the use of
k harmonic Ritz vectors of AZ,, W, with respect to range(W,,), where W,, satisfies the property
shown in Lemma 3.3. Tt is however possible to derive other variants of FGCRO-DR by choosing
differently the way the harmonic Ritz information is selected. Indeed at each cycle, Z,, and V,,
are also available and it seems natural to exploit this feature. Thus variants of FGCRO-DR can
be deduced by computing either k& harmonic Ritz vectors of AZ,,Z} with respect to range(Z,,)
or k harmonic Ritz vectors of AZ,,V;i with respect to range(V;,). We summarize the different
variants in Algorithm 2 with the same notations as in Algorithm 1. Strategy A corresponds to
the algorithm first presented in [18]. As far as we know, Strategies B and C are new. We note
that Strategy C has been introduced in Section 2.3 and equivalence with FGMRES-DR, has been
discussed in Section 3. The harmonic Ritz formulation of Strategy B has been inspired by step 5b
of Algorithm 1.

4.2. Computational cost. We first detail the computational cost related to the harmonic
Ritz information (step 5 of Algorithm 2) since this is the main difference between the proposed
strategies.

4.2.1. Harmonic Ritz information.
Strategy A. The generalized eigenvalue problem of Strategy A presented in Algorithm 2 is

(AZm)H (AZm)y = Q(AZm)HZmya
where € C and y € C™. Using the Arnoldi-like relation (2.3) it can be written as

H{n{ Hmy = HHTI,{VmH_i_lZmy.
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Algorithm 2 Flexible GCRO-DR(m, k) algorithms: strategies A, B and C.
1: choose m, k, tol and xg
2: rog =b— Az, = |Iroll; v1 =r0/B,i 0 ~
3: Flexible GMRES(m) yields Hyp, Zm, Vint1 such that AZ, = Vip1Hm, y* = arg m((i:n lle = Hmyll,
yecm

c = fer, xéo) =z0 + Zmy*, r(()o) =b-— Ax(()o) = Vint1(c — Hny*), Wi, = Vi, (only for Strategy C)
4: while [[r§7]| > ||b]| x tol do i — i+ 1

5: Compute k eigenvectors of the generalized eigenvalue problem Dy = 60Fy and store them in P,.
Strategy A Strategy B Strategy C
e D=7zZHAHAZ,, e D=ZHAHAZ,, e D=7zHAHAZ,,
E=2zHAHzZ, o E=ZHAHY,, o E=ZHARW,,
oY, =Z7,P, oY, =V, P, oY, =W, P,
6: QR=H,P,
7. W, =W, P,R™! (only for Strategy C)
8 V.=V, @
9:  Z, =Z,P R
10:  Apply m — k flexible preconditioned Arnoldi steps with (In — V ViH)A and Uppp =
rETO /ST such that (I — ViV A [zig1s -y 2m] = [Okgtse- s 0mer] H,,_, with
2 = M ()
11:  d* = arg d?iZI;LHr(()Z_l) — Ad||, wé éz D4 ax, 'rél) =b— Awéz)

122 W, = [W,,P,R™! Vu(l:n,k+1:m)] (only for Strategy C)
13: end while

The computation of HX H,, is cheap since it only involves a matrix of size (m + 1) x m, where
m is supposed to be small with respect to the problem size n. A block form for V, +1Zm can be
found as

VkHZk V,me,;C
v a1l Lm = = = . (4.1)
mekJrle Vm—k+1mek

Thanks to steps 8 and 9 in Algorithm 2, VkHZ;C can be also written as
(Vi 2" = Q" (Vi1 Z,)"™Y PR

where the superscript is related to the cycle index. Thus storing \%4 +1Z at the end of each cycle
allows us to compute at a cheap cost a k x k block of V, +1Z for the next cycle. Computing the
other blocks of V.2 | Z,, require 2n(m — k 4+ 1)m + 2nk(m — k) operations.

Strategy B. Similarly the generalized eigenproblem can be written as

HI Hyy=0HEVI V. (4.2)

Exploiting the fact that V;,, 11 has orthonormal columns finally leads to the generalized eigenprob-
lem

Y g my_GHH[ 4 ] (4.3)
01><1

which involves only a matrix of size (m + 1) x m.
Strategy C. The corresponding generalized eigenvalue problem can be written as

HE Hyy=0HEVI W,y (4.4)
Since Wy, = [Wki1, Vkt2, -+ U] (step 12 of Algorithm 2) a new form for V, +1Wm can be found
as
o VEL Wi O(k+1)x (m—k—1)
VieitWm = | Opn—k-1)x (k1) Im—k—1 . (4.5)

O1x(k+1) O1x (m—k—1)
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The structure of the (k+ 1) x (k + 1) block VL, Wi is as follows

VI W Vi wen
Vkil—l Wit1 = =

VE W, Opxa ]

vf+1 Wy U£+1 W41 U1?+1 W 1
Thanks to steps 7 and 8 in Algorithm 2, V;H W} is a k x k matrix that satisfies the following
relation

VW)@ =" (v, W)Y PR

where the superscript is related to the cycle index. Thus storing the (m+ 1) x m matrix V,X , W,
at the end of each cycle can be used to slightly reduce the cost of computing the new matrix
Vnﬁerm. It is then sufficient to compute UI?IH Wi, at a cost of 2nk operations. Comparing (4.1)
and (4.5) reveals that Strategy C requires less operations than Strategy A for computing the pair
of matrices of the generalized eigenvalue problem. Nevertheless Strategy C requires the additional
storage of W i.e. k additional vectors of length n (step 7 of Algorithm 2).

4.2.2. Cost of a cycle. We summarize in Table 4.1 the main computational costs associ-
ated with each step of the three strategies proposed in Algorithm 2. An Arnoldi method based
on the modified Gram-Schmidt procedure has been assumed!'. We have only included the costs
proportional to the size of the original problem n which is supposed to be much greater than m
and k. These costs exclude the cost related to both matrix-vector products and preconditioning
operations.

Step | Strategy A Strategy B Strategy C
5 2n(m — k 4+ 1)m+ - 2nk
2nk(m — k)
6 _ _ _
7 - - 2nmk
8 2n(m + 1)k 2n(m + 1)k 2n(m + 1)k
9 2nmk 2nmk 2nmk
10 | (4nk +n)(m —k)+ (Ank +n)(m — k)+ (Ank 4+ n)(m — k)+
n(m—k)(m—k+1)+ | 2n(m—k)(m—k+ 1)+ | 2n(m —k)(m —k+ 1)+
3n(m — k) 3n(m — k) 3n(m — k)
Total | Cp +2n(m? —k*+m) | Cp Cp + 2n(k + mk)
TaABLE 4.1

Computational cost of a cycle detailed for each strateqy and for each step of a given cycle of Algorithm 2.
This excludes the cost of matriz-vector operations and preconditioning operations. The total cost of Strategy B is
Cp = 2n((m + k)% — 2k% + 3m — 2k).

As remarked in Section 4.2.1 Strategy B involves the lowest computational cost among the three
variants. Concerning Strategy A and Strategy C it is then interesting to analyze the corresponding
additional costs versus m and k. As a first illustration Table 4.2 details three different cases i.e.
k=1, k=m/2and k = m — 1. When k = 1 we remark that Strategy A is the most expensive
one. This is mainly due to the construction of V., Z,, in step 5 of Algorithm 2. The additional
cost is of order O(nm?). For the case k = m — 1 we note that the additional cost for Strategy C -
now the most expensive one - also behaves as O(nm?).

4.3. Preconditioning. Although the primary focus of this paper is on flexible methods, we
propose now two comments on Strategies A, B and C when a nonvariable preconditioner is used.
In this setting we note that Strategy A corresponds to the method originally proposed by Parks et
al. in [26].

IStep 10: during this step the action of (I, — VkaH) requires Z;’L:k+1(4nk + n) operations, the Arnoldi

method based on modified Gram-Schmidt requires 327, . Zg:k+l(4n) operations whereas norm computation

and normalization cost 377, . (3n) operations.
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k Strategy A Strategy B Strategy C

1 D yponm24m—1) | O =2n(m?+5m —4) cD 4 an(m +1)

m/2 | WP fonBm2/a+m) | CD = on(tm?/4+2m) | CUMP 4 on(m?/2 + m/2)
m—11]c ™ 4 on3m—1) i —oan@m2+m+1) | O 4 2n(m? — 1)

TABLE 4.2
Computational cost of a cycle for k=1, k=m/2 and k =m — 1. C‘(Bk) denotes the cost of Strateqy B when k
harmonic Ritz vectors are used in the deflation procedure.

4.3.1. Behaviour in case of no preconditioning. When no preconditioning occurs, we
have the following relation Z,, = W, thanks to Lemma 3.8. Thus Strategies A and C are equivalent
in this case. Since Strategy C is algebraically equivalent to GMRES-DR, (Corollary 3.10), we
deduce that Strategy A is also algebraically equivalent to GMRES-DR. This shows a remark made
by Parks et al. in [26, page 1657]. We refer the reader to Table 5.1 in Section 5 for a numerical
illustration. We note that the equivalence between Strategy A and GMRES-DR does not hold
when preconditioning occurs as will be shown in Section 4.3.2.

4.3.2. Behaviour in case of fixed preconditioning. Suppose that a fixed preconditioner
M is used as a right preconditioner for the solution of (2.1). A desirable feature is that applying
the Krylov subspace method either on A with right preconditioner M or on A = AM without any
preconditioner leads to the same iterates when the same right-hand side is considered. We call this
property right-preconditioning invariance. We note that GMRES(m) with right-preconditioning
satisfies this property. The application of GMRES(m) in the initialization phase (step 3 in Algo-
rithm 2) leads to the relation Z,,, = MV, when a fixed right-preconditioner is used. Table 4.3
collects the different formulations of the first generalized eigenvalue problem, where we have used
the Z,, = MV, relation explicitly.

Strategy | Fixed preconditioning matrix M Equivalent matrix A = AM

A (AMV, )T (AMV,,))y = 0 (AMV,) T MVyy | (AVi)H (AV,)y = 0 (AV,) T MV,,y

(AMV, ) (AMV,,))y = 6 (AMV,,)"V,,y (AV, )T (AVy)y = 0 (AV;) T Viy

C (AMV, )T (AMV,))y = 0 (AMV,,) W,y | (AV,) 2 (AV,))y =0 (AV,,))E W,y
TABLE 4.3
Formulations of the first generalized eigenvalue problem when a fized right-preconditioning matriz M is used
(center) and when an equivalent preconditioned matriz A= AM is used (right) for strategies A, B and C.

From Table 4.3 it can be suspected that Strategy A is not right-preconditioning invariant since
this property is not satisfied during the first cycle of the method. A numerical illustration is given
in Figure 4.1. In Section 4.2 the generalized eigenvalue problems of Strategies B and C ((4.2)
and (4.4) respectively) only involve H,,, V,,+1 or W, i.e. quantities that are preconditioning
invariant. This is confirmed in Figures 4.2 and 4.3, where - as expected - Strategies B and C are
right-preconditioning invariant.

5. Numerical experiments. We present numerical experiments for a specific class of prob-
lems from quantum chromodynamics (QCD). This area is subject to active research to design
robust and efficient subspace methods for the efficient approximation of f(A) b, where f is a func-
tion defined on the spectrum of A [16, 38]. Methods based on variable preconditioning [8] have
been proven efficient when considering the sign function. Recently adaptive algebraic multigrid
methods [5, 6] have been also proposed for the solution of such nearly singular and highly disor-
dered physical systems. We focus here on the solution of a single linear system and investigate the
behaviour of various flexible methods with deflated restarting.

5.1. Lattice quantum chromodynamics. Quantum chromodynamics [7] is the fundamen-
tal theory explaining how neutrons and protons are bound inside nuclei and how their constituents
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Strategy A

—*%— FGCRO-DR(6,2) on the equivalent matrix
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Fia. 4.1. Strategy A of FGCRO-DR. Behaviour in case of fized preconditioning. Convergence history of
FGCRO-DR(6,2) on the equivalent preconditioned system AM¢ = b and on the original system Az = b with
right preconditioning matriz M. A € C*00%400 45 here o nonsingular sparse random triangular matriz and Jacobi
preconditioning is considered. The right-hand side b is a random vector of unit norm.
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Fia. 4.2. Strategy B of FGCRO-DR. Behaviour in case of fized preconditioning. Convergence history of
FGCRO-DR(6,2) on the equivalent preconditioned system AM¢o = b and on the original system Ax = b with right
preconditioning matriz M. The same linear systems as in Figure 4.1 are considered here.

- quarks and gluons - interact. Numerical simulations on a four-dimensional hypercube space-time
lattice are most often considered as a unique way to solve QCD ab initio [37]. The Wilson fermion
matrix - representing periodic nearest neighbour coupling - has the following block structure after
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Fia. 4.3. Strategy C of FGCRO-DR. Behaviour in case of fized preconditioning. Convergence history of
FGCRO-DR(6,2) on the equivalent preconditioned system AM¢o = b and on the original system Ax = b with right
preconditioning matriz M. The same linear systems as in Figure 4.1 are considered here.

a red-black (also named odd-even) ordering of the lattice points [15]

0 D 1, —kD
A= In o n/2xn/2 b :| _ |: n/2 b:| 5.1
a D, 0n/2><n/2 =KD In/? ( )

where the hopping parameter x is a real valued positive parameter. The Wilson fermion matrix
A € C"*" is a sparse, complex non-Hermitian matrix. It is positive definite as long as 0 < k < K.
Physically interesting cases are for k close to the critical parameter k.. As a model problem we have
used the matrix conf5.0 0014x4.1000.mtx submitted by B. Medeke and publicly available from the
Matrix Market collection?. This sparse matrix of order 3072 contains 39 nonzero elements per row.
The numerical tests were performed on a personal computer running Linux (Intel Dual Core, 2.13
Ghz with 2 GB of memory) using Matlab version 7.1 (release 14).

5.1.1. Solution of the QCD reduced system. QCD computations rely on the use of odd-
even preconditioning that aims at exploiting the block structure presented in (5.1). Denoting L and
U the strictly lower and triangular parts of A respectively, this odd-even technique is equivalent
to apply SSOR preconditioning to the original linear system Ax = b as

(I, — L) 'A(Il, —U) 'y = (I, — L)™' with y= (I, —U)ax. (5.2)

This leads to the following linear system

In/? 0n/2><n/2 Yr _ b, (5 3)
0n/2><n/2 In/2 - K:QDTDb Yy by + kD, b, |’ ’

Thanks to this decoupling, physicists focus on developing efficient methods for the numerical solu-
tion of the reduced system

(In/2 - K:QDTDb)yb = bb + K:Drbr (54)

which can be also seen as the Schur complement system of (5.1). Consequently we will next
compare different numerical methods for the solution of the reduced system (5.4). The right-hand
side b is chosen as the first Cartesian basis vector of C™. A zero initial iterate is considered as an
initial guess and all solvers are required to reduce the true residual to 1.0 x 10712,
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k=0.200 | k=0.202 | k=0.204 | K =0.206
GMRES(20) 330 418 550 770
GMRES-DR(20,16) 268 304 334 376
GCRO-DR(20,16) Strategy A 268 304 334 376
GCRO-DR(20,16) Strategy B 274 310 340 394
GCRO-DR(20,16) Strategy C 268 304 334 376
FGMRES(20) 226 328 430 532
FGMRES-DR(20,16) 176 220 242 264
FGCRO-DR(20,16) Strategy A 176 198 220 264
FGCRO-DR(20,16) Strategy B 176 198 242 286
FGCRO-DR(20,16) Strategy C 176 198 242 264
TABLE 5.1

Total number of matriz-vector products required to solve the QCD linear system (5.4) for different values of k.

In Table 5.1 we collect the total number of matrix-vector products occurring in the different
methods for four different linear systems corresponding to increasing values of x. We give both
unpreconditioned and preconditioned convergence results, where all the methods minimize over a
subspace of dimension 20 in each cycle. For the variants related to deflated restarting we have
fixed the value of k£ to 16 and selected the eigenvectors related to the k smallest eigenvalues in
modulus. In the first five lines of Table 5.1 we have included results related to GMRES, GMRES
with deflated restarting and GCRO with deflated restarting. We note that deflated restarting
leads to a dramatic improvement with respect to standard restarting. This behaviour has been
already observed in [22] for applications in QCD. Strategies A and C lead to the same number of
matrix-vector products as for GMRES-DR. This is due to the equivalence discussed in Section 4.3.1.
Indeed it has been checked that the three methods produce iterates that are equal up to the machine

precision at each restart. Figure 5.1 shows that H[karl()i—l)/”’r(()i—l)”]LAHYICLT(()ifl)/HHYk%T(()ifl)H and
I, T(i—l)/HT(i)H]LAT(()lil)/||T(()171)H are collinear as stated in Corollary 3.10. We also remark that
270 0

this collinearity property does not hold for the pairs of vectors (AHY’CL r(()ifl), Ar(()ifl)/Hr(()i*l) [I) and

(Iy r(()i_ 2 r(()i_ b ) respectively.

We discuss next the case of flexible methods. We consider the following algorithms: FGMRES,
FGMRES with deflated restarting and the three different strategies related to FGCRO-DR pre-
sented in Section 4. As a variable preconditioner we consider four iterations of unpreconditioned
GMRES. We can notice that flexible variants with deflated restarting lead to additional reduc-
tions in terms of matrix-vector products. Variants of FGCRO-DR. are most often as efficient as
FGMRES-DR, if not better. Thus the interest of the new algorithm FGCRO-DR has been shown
already in the case of a single linear system on this application. Furthermore one primary advan-
tage of FGCRO-DR is its ability to handle the solution of linear systems given in sequence. We
plan to illustrate this feature in a future research. For this specific choice of m and k parameters,

the lowest total number of matrix-vector products always corresponds to Strategy A. As shown in
Table 5.2 the vectors H[Yk’réi_l)]LA/\/ng)rl(Hyk}r((f*l)) and H[Ykﬁréi-m]LAM,(ﬁl(réH)) obtained in
Strategy C are not collinear. This might explain why Strategy C and FGMRES-DR(20,16) are not

algebraically equivalent in this case.

5.1.2. Computational cost of Strategies A, B and C. We detail now the behaviour
of Strategies A, B and C when a variable preconditioning is considered with a fixed value of
the restart parameter m = 20 and k varying. We select the case of kK = 0.206 which is the
most challenging as shown in Table 5.1. Table 5.3 collects the total number of matrix-vector
products and the normalized global computational cost of each strategy for varying k£ such that
1 <k <m—1. To produce a fair comparison between the three strategies this global cost
includes both the cost detailed in Section 4.2.2 and the one related to matrix-vector products

2http://math.nist.gov/MatrixMarket /data/misc/qcd/qcd.html
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cycle i of FGCRO-DR(20,16) Strategy C obtained during the convergence history. Case of no preconditioning and

Kk = 0.200.

Cycle r =0.200 Kk =0.202 Kk =0.204 Kk =0.206
i cos(«) cos(«) cos(a) cos(a)
1 0.97351791374476 | 0.95990773398568 | 0.95010035729778 | 0.92807215131352
2 0.95508546906640 | 0.93164336826626 | 0.91315357530771 | 0.86734097857504
3 0.98489849221921 | 0.97991760584828 | 0.96982159718869 | 0.95912459647826
4 0.96879881841919 | 0.97624255588142 | 0.96968106888483 | 0.93832538312347
5 0.93545030140439 | 0.94039492520401 | 0.92709902729626 | 0.88370626674617
6 0.96724690697981 | 0.97051191983231 | 0.90407615323902 | 0.89706063488241
7 0.97170523764768 | 0.98690054632099 | 0.98036433795137 | 0.94843268286296
8 0.94566451575530 | 0.97935681716533 | 0.98429649100801
9 0.96995038021057 | 0.99427074769599
10 0.96271377917353 | 0.94342942135706
11 0.90360537717426
. i T?E[i;q 52 (i) , (i—1)
Cosinus of a = £ ( H[Yk,r[()i_”]LAM}ill(HYﬁTé ), H[Yk,ré"’_l)]LAMk-H(rO )) computed at each cycle

of Strategy C of FGCRO-DR(20,16) obtained during the convergence history. Case of a flexible preconditioner.

and preconditioning operations. We will denote C, C}, and CZ these global costs - related to
Strategies A, B and C respectively.

The lowest computational cost obtained corresponds to £k = 13, & = 14 and k£ = 16 for
Strategies A, B and C respectively. A relatively large number of harmonic Ritz values is thus
required to yield an efficient method. This is in agreement with previous numerical experiments
[22]. Bold values in each line of Table 5.3 correspond to the lowest computational cost among the
three strategies for a given value of k. It can be noticed that most often a given strategy is more
interesting on a certain range of harmonic Ritz values. The interest of the three strategies has been
demonstrated on this application in QCD, since the optimal cost for each strategy (20047, 22120,
21728 for Strategies A, B and C respectively) only differ by less than 10%. In addition, when &
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k|| #Mop | C4/(2n) || #Muwp | CE/(2n) || #Mup | CZ/(2n)
1 507 40405 410 32420 507 40007
2 390 31314 390 30898 390 30940
3 370 29785 370 29374 370 29437
4 350 28252 432 34244 350 27932
5 330 26715 407 32326 330 26425
6 310 25174 382 30406 310 24916
7 290 23629 357 28484 290 23405
8 270 22080 394 31396 270 21892
9 307 24973 364 29080 307 24823
10 282 23026 334 26762 282 22916
11 257 21075 304 24442 304 24673
12 274 22396 274 22120 274 22372
13 244 20047 281 22682 281 22955
14 278 22686 278 22462 278 22756
15 265 21655 292 23566 265 21775
16 264 21556 286 23108 264 21728
17 260 21219 294 23740 277 22771
18 262 21346 286 23122 274 22564
19 323 26071 358 28742 316 25865
TABLE 5.3

Number of matriz-vector products #Mwvp and normalized global computational cost of Strategies A, B and C
when solving the QCD linear system (5.4) for k = 0.206 and for a variable number of harmonic Ritz values k. Case
of a flexible preconditioner.

varies, Strategy A is the best on six cases, Strategy B on five cases and Strategy C on eight cases,
indicating again the potential of each of these approaches.

6. Conclusion and perspectives. In this paper we have studied a new minimum residual
norm subspace method with deflated restarting that allows flexible preconditioning based on the
GCRO subspace method. The resulting method named FGCRO-DR has been presented together
with FGMRES-DR, a recently proposed algorithm of the same family but based on the GMRES
subspace method. A theoretical comparison analysis of both algorithms has been performed in
Section 3. Theorem 3.6 also proves the algebraic equivalence of GMRES-DR and GCRO-DR when
a fixed preconditioner is used. Furthermore three variants of the new algorithm - that only differ
in the formulation of the generalized eigenvalue problem for the harmonic Ritz information - have
been introduced and analyzed in Section 5. Numerical experiments on a challenging application
in quantum chromodynamics have shown the interest of these new variants when solving a given
linear system.

We have restricted the presentation to the case of a linear system with a single right-hand
side. In [26] reusing selected subspaces in GCRO-DR - in the case of fixed preconditioning - has
been proved efficient when solving sequence of linear systems where both the left- or right-hand
sides could change. A natural perspective could be thus to investigate the numerical properties
of FGCRO-DR in this setting. This seems to be especially appealing for applications related to
e.g. stochastic finite element methods [12, 36] in three dimensions where variable preconditioning
using approximate solvers has to be usually considered. When all right-hand sides are available
simultaneously and when the matrix is fixed, block subspace methods may be also suitable. Thus
a perspective could be to propose a block variant of FGCRO-DR.
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