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A FLEXIBLE GENERALIZED CONJUGATE RESIDUAL METHOD WITHINNER ORTHOGONALIZATION AND DEFLATED RESTARTINGL. M. CARVALHO∗, S. GRATTON† , R. LAGO‡ , AND X. VASSEUR§Abstrat.This work is onerned with the development and study of a minimum residual norm subspae method basedon the Generalized Conjugate Residual method with inner Orthogonalization (GCRO) method that allows �exiblepreonditioning and de�ated restarting for the solution of non-symmetri or non-Hermitian linear systems. Firstwe reall the main features of Flexible Generalized Minimum Residual with de�ated restarting (FGMRES-DR), areently proposed algorithm of the same family but based on the GMRES method. Next we introdue the newinner-outer subspae method named FGCRO-DR. A theoretial omparison of both algorithms is then made inthe ase of �exible preonditioning. It is proved that FGCRO-DR and FGMRES-DR are algebraially equivalentif a ollinearity ondition is satis�ed. Furthermore we introdue three variants of FGCRO-DR that only di�er inthe formulation of the generalized eigenvalue problem for the harmoni Ritz pair information and investigate theirmain properties. Finally we demonstrate the e�etiveness of the algorithms on a hallenging appliation in quantumhromodynamis.Key words. �exible or inner-outer Krylov subspae methods, variable preonditioning, de�ation, iterativesolverAMS subjet lassi�ations. 65F10, 65N22, 15A061. Introdution. In reent years, several authors studied inner-outer Krylov subspae meth-ods that allow variable preonditioning for the iterative solution of large sparse linear systems ofequations. One of the �rst papers desribing a subspae method with variable preonditioning isdue to Axelsson and Vassilevski who proposed the Generalized Conjugate Gradient method [2℄.See also [1, Setion 12.3℄ for additional referenes. Sine then, numerous methods have been pro-posed to address the symmetri, non-symmetri or non-Hermitian ases; these inlude FlexibleConjugate Gradient [23℄, Flexible GMRES (FGMRES) [27℄, Flexible QMR [34℄ and GMRESR [39℄among others. This lass of methods is required when preonditioning with a di�erent (possiblynonlinear) operator at eah iteration of a subspae method is onsidered. This notably ourswhen adaptive preonditioners using information obtained from previous iterations [3, 14℄ are usedor when inexat solutions of the preonditioning system using e.g. adaptive yling strategy inmultigrid [24℄ or approximate interior solvers in domain deomposition methods [35, Setion 4.3℄are onsidered. The latter situation is frequent when solving very large systems of linear equationsresulting from the disretization of partial di�erential equations in three dimensions. Thus �exibleKrylov subspae methods have gained a onsiderable interest in the past years and are subjet toboth theoretial and numerial studies [31℄. We refer the reader to [32, Setion 10℄ for additionalomments on �exible methods.When non variable preonditioning is onsidered, the full GMRES method [30℄ is often hosenfor the solution of non-symmetri or non-Hermitian linear systems beause of its robustness and itsminimum residual norm property [29℄. Nevertheless to ontrol both the memory requirements andthe omputational ost of the orthogonalization sheme, restarted GMRES is preferred; it orre-sponds to a sheme where the maximal dimension of the approximation subspae is �xed. It meansin pratie that the orthonormal basis built is thrown away. Sine some information is disarded atthe restart, the onvergene may stagnate and is expeted to be slower ompared to full GMRES.Nevertheless to retain the onvergene rate a number of tehniques have been proposed; they fallin the lass of augmented and de�ated methods; see e.g. [4, 10, 11, 19, 28℄. De�ated methodsompute spetral information at a restart and use this information to improve the onvergene ofthe subspae method. One of the most reent proedure based on a de�ation approah is GMRESwith de�ated restarting (GMRES-DR) [21℄. This method redues to restarted GMRES when no
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2de�ation is applied, but may provide a muh faster onvergene than restarted GMRES for wellhosen de�ation spaes as desribed in [21℄.Quite reently a new minimum residual norm subspae method based on GMRES allowingde�ated restarting and variable preonditioning has been proposed in [17℄. It mainly attemptedto ombine the numerial features of GMRES with de�ated restarting and the �exibility propertyof FGMRES. Numerial experiments have shown the e�ieny of Flexible GMRES with de�atedrestarting (FGMRES-DR) on both aademi and industrial examples. In this paper we study anew minimum residual norm subspae method based on the Generalized Conjugate Method withinner Orthogonalization (GCRO) [9℄ allowing de�ated restarting and variable preonditioning. Itis named Flexible Generalized Conjugate Residual Method with Inner Orthogonalization and De-�ated Restarting (FGCRO-DR) and an be viewed as an extension of GCRO-DR [26℄ to the aseof variable preonditioning. A major advantage of FGCRO-DR over FGMRES-DR is its ability tosolve sequene of linear systems (where both the left- and right-hand sides ould hange) throughreyling [26℄. Although important this latter issue is not addressed in the paper and we onen-trate on the ase of a single linear system. In [26℄ Parks et al. mentioned that GCRO-DR andGMRES-DR were algebraially equivalent i.e. both methods produe the same iterates in exatarithmeti when solving the same given linear system starting from the same initial guess. Whenvariable preonditioning is onsidered, it seems therefore natural to ask whether FGCRO-DR andFGMRES-DR ould be also algebraially equivalent. We address this question in this paper andthe main theoretial developments that are proposed will help us to answer this question. The mainontributions of the paper are then twofold. First we prove that FGCRO-DR and FGMRES-DRan be onsidered as algebraially equivalent if a ollinearity ondition between two ertain vetorsis satis�ed at eah yle. When onsidering non variable preonditioning, these theoretial devel-opments will also allow us to show the unonditional algebrai equivalene between GCRO-DR andGMRES-DR that was stated without proof in [26℄. Seondly we extend the initial framework ofFGCRO-DR and introdue three variants of FGCRO-DR that only di�er in the formulation of thegeneralized eigenvalue problem for the harmoni Ritz information. While one of them orrespondsto the method brie�y desribed in [18℄, the two others are new to the best of our knowledge. Weanalyze their orresponding main properties and show their respetive interest in an appliation inquantum hromodynamis, where variable preonditioning is required.This paper is organized as follows. In Setion 2 we introdue the general bakground of thisstudy. We brie�y reall the main properties of FGMRES-DR and then introdue the FGCRO-DRmethod both from a mathematial and algorithmi points of view. Setion 3 is mainly devoted tothe analysis of both �exible methods. Therein we show that both methods an be algebraiallyequivalent in the �exible ase if a ertain ollinearity ondition is satis�ed at eah yle. In Setion4 we propose three variants of FGCRO-DR, highlight noteworthy di�erenes and �nally omparetheir respetive omputational osts. Furthermore we demonstrate the e�etiveness of the threealgorithms on a hallenging appliation in quantum hromodynamis in Setion 5. Finally we drawsome onlusions and perspetives in Setion 6.2. Flexible Krylov methods with restarting.2.1. General setting.Notation. Throughout this paper we denote ‖.‖ the Eulidean norm, Ik ∈ Ck×k the identitymatrix of dimension k and 0i×j ∈ Ci×j the zero retangular matrix with i rows and j olumns.Given N ∈ Cn×m ΠN⊥ = In−N N † will represent the orthogonal projetor onto range(N)⊥, where
† refers to the Moore-Penrose pseudoinverse operation. Finally given Zm = [z1, · · · , zm] ∈ Cn×m,we will usually deompose Zm into two submatries de�ned as Zk = [z1, · · · , zk] ∈ C

n×k and
Zm−k = [zk+1, · · · , zm] ∈ Cn×(m−k).Setting. We fous on minimum residual norm based subspae methods that allow �exiblepreonditioning for the iterative solution of

Ax = b, A ∈ C
n×n, x, b ∈ C

n (2.1)given an initial vetor x0 ∈ Cn. In this paper A is supposed to be nonsingular. Flexible methodsrefer to a lass of methods where the preonditioner is allowed to vary at eah iteration. We refer



3the reader to e.g. [32℄ for a general introdution on Krylov subspae methods and to [32, Setion10℄ and [29, Setion 9.4℄ for a review on �exible methods. The minimum residual norm GMRESmethod [30℄ has been extended by Saad [27℄ to allow variable preonditioning. The resultingalgorithm known as FGMRES(m) relies on the Arnoldi relation
AZm = Vm+1H̄m, (2.2)where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) has orthonormal olumns and H̄m ∈ C(m+1)×m is upperHessenberg. We denote Mj the preonditioning operator at iteration j and remark that Mj maybe a nonlinear preonditioning funtion. We will then denoteMj(v) the ation ofMj on a vetor v.In (2.2), the olumns of Vm+1 form an orthonormal basis of the subspae spanned by the followingvetors

{r0, Az1, · · · , Azm} with r0 = b − Ax0whereas Zm = [z1, · · · , zm] and Vm = [v1, · · · , vm] are related by
Zm = [M1(v1), · · · ,Mm(vm)] with v1 =

r0

‖r0‖
.The minimization problem min ‖b − Ax‖ is then solved as

xm = x0 + Zmy∗,where y∗ is the solution of the following least-squares problem of size (m + 1) × m

y∗ = argminy∈Cm‖r0 − AZmy‖ = argminy∈Cm‖‖r0‖ e1 − H̄my‖,where e1 denotes the �rst anonial vetor of C
m+1. Flexible subspae methods with restartingare based on a proedure where the onstrution of the subspae is stopped after a ertain numberof steps (denoted by m in this paper with m < n). The method is then restarted mainly to ontrolboth the memory requirements and the ost of the orthogonalization sheme. In FGMRES(m) therestarting onsists in taking as an initial guess the past iterate xm assoiated with the smallestresidual norm.The main fous of this paper is to present minimum residual norm subspae methods withde�ated restarting that allow �exible preonditioning. De�ated restarting aims at determining anapproximation subspae of dimension m as a diret sum of two subspaes of smaller dimension,where one of these subspaes will ontain relevant spetral information that will be kept for thenext yle. We refer the reader to e.g. [28℄ and [32, Setion 9℄ for a review on augmented andde�ated methods. Flexible methods with de�ated restarting will notably satisfy the following�exible Arnoldi relation

AZm = Vm+1H̄m with V H
m+1 Vm+1 = Im+1, (2.3)where H̄m ∈ C(m+1)×m is not neessarily of upper Hessenberg form. In this paper we all thisrelation a �exible Arnoldi-like relation due to its similarity to relation (2.2).Stagnation and breakdown. We refer the reader to [31, Setion 6℄ for general omments anda detailed disussion on the possibility of both breakdown and stagnation in �exible inner-outerKrylov subspae methods. Although important, these issues are not addressed in this paper andwe assume that no breakdown ours in the inner-outer subspae methods that will be proposed.2.2. Flexible GMRES with de�ated restarting. A number of tehniques have been pro-posed to ompute spetral information at a restart and use this information to improve the onver-gene rate of the Krylov subspae methods; see, e.g., [19, 20, 21, 28℄. These tehniques have beenexlusively developed in the ase of a �xed preonditioner. Among others GMRES-DR is one ofthose methods. It fouses on removing (or de�ating) the eigenvalues of smallest magnitude. A fullsubspae of dimension k, k < m (and not only the approximate solution with minimum residual



4norm) is now retained at the restart and the suess of this approah has been demonstrated onmany aademi examples [19℄. Approximations of eigenvalues of smallest magnitude are obtainedby omputing harmoni Ritz pairs of A with respet to a ertain subspae [21℄. We present herea de�nition of a harmoni Ritz pair equivalent to the one introdued in [25, 33℄; it will be of keyimportane when de�ning appropriate de�ation strategies.Definition 2.1. Harmoni Ritz pair. Consider a subspae U of C
n. Given B ∈ C

n×n, θ ∈ Cand y ∈ U , (θ, y) is a harmoni Ritz pair of B with respet to U if and only if
By − θ y ⊥ B Uor equivalently, for the anonial salar produt,

∀w ∈ range(B U) wH (By − θ y) = 0.We all y a harmoni Ritz vetor assoiated with the harmoni Ritz value θ.As in the ase of �xed preonditioning, de�ated restarting may also improve the onvergenerate of �exible subspae methods. In [17℄ a de�ated restarting proedure has been proposed for theFGMRES algorithm. The i-th yle of the resulting algorithm alled FGMRES-DR is now brie�ydesribed and we denote r
(i−1)
0 = b−Ax

(i−1)
0 the residual obtained at the end of the previous yle.Based on the Arnoldi-like relation (2.3), the de�ation proedure proposed in [17, Proposition1℄ relies on the use of k harmoni Ritz vetors Yk = VmPk of AZmV H

m with respet to range(Vm),where Yk ∈ Cn×k and Pk ∈ Cm×k. Next, the QR fatorization of the following (m + 1) × (k + 1)matrix
[[

Pk

01×k

]
V H

m+1 r
(i−1)
0

]
=

[[
Pk

01×k

]
c − H̄my∗

] with r
(i−1)
0 = Vm+1(c − H̄my∗)is performed. This allows us to ompute new matries Zk ∈ Cn×k, Vk+1 ∈ Cn×(k+1) and H̄k ∈

C
(k+1)×k suh that

A Zk = Vk+1 H̄k,

V H
k+1 Vk+1 = Ik+1,

range([Yk, r
(i−1)
0 ]) = range(Vk+1)where H̄k is a (k + 1) × k retangular matrix. FGMRES-DR then arries out m − k Arnoldisteps with �exible preonditioning and starting vetor vk+1 while maintaining orthogonality to Vkleading to

A [zk+1, · · · , zm] = [vk+1, · · · , vm+1] H̄m−k and V H
m+1 Vm+1 = Im+1.We note that H̄m−k ∈ C(m−k+1)×(m−k) is upper Hessenberg. At the end of the i-th yle this givesthe �exible Arnoldi-like relation

A Zm = Vm+1 H̄m,where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) and H̄m ∈ C(m+1)×m. We note that H̄m is no more upperHessenberg due to the leading dense (k + 1) × k submatrix H̄k. At the end of the i-th yle, anapproximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual norm ‖b−A(x

(i−1)
0 +Zmy)‖over the spae x

(i−1)
0 + range(Zm), the orresponding residual being r

(i)
0 = b − Ax

(i)
0 , with r

(i)
0 ∈

range(Vm+1). We refer the reader to [17℄ for the omplete derivation of the method and numerialexperiments showing the e�ieny of FGMRES-DR on both aademi and industrial examples.



52.3. Flexible GCRO with de�ated restarting. GCRO-DR [26℄ - a ombination of GMRES-DR and GCRO - is a Krylov subspae method that allows de�ated restarting and subspae reylingsimultaneously. This latter feature is partiularly interesting when solving sequenes of linear sys-tems with possibly di�erent left- or right-hand sides. As pointed out in [26℄, GCRO-DR is attrativebeause any subspae may be reyled. In this paper we restrit the presentation to the ase of asingle linear system as proposed in (2.1).GCRO and GCRO-DR belong to the family of inner-outer methods [1, Ch. 12℄ where theouter iteration is based on GCR, a minimum residual norm method proposed by Eisenstat, Elmanand Shultz [13℄. To this end GCR maintains a orretion subspae spanned by range(Zm) and anapproximation subspae spanned by range(Vm), where Zm, Vm ∈ Cn×m satisfy
A Zm = Vm,

V H
m Vm = Im.The optimal solution of the minimization problem min ‖b−Ax‖ over the subspae x0 +range(Zm)is then found as xm = x0 + Zm V H

m r0. Consequently rm = b − A xm satis�es
rm = r0 − Vm V H

m r0 = ΠV ⊥
m

r0, rm ⊥ range(Vm).In [9℄ de Sturler proposed an improvement to GMRESR [39℄, an inner-outer method based onGCR in the outer part and GMRES in the inner part respetively. He suggested that the inneriteration takes plae in a subspae orthogonal to the outer Krylov subspae. In this inner iterationthe projeted residual equation
(In − Vm V H

m )Az = (In − Vm V H
m )rm

(In − Vm V H
m )Az = rmis solved only approximately. If a minimum residual norm subspae method is used in the inneriteration to solve this projeted residual linear system, the residual over both the inner and outersubspaes would be minimized. This leads to the GCRO (Generalized Conjugate Residual methodwith inner Orthogonalization) Krylov subspae method [9℄. Numerial experiments [9℄ indiate thatthe resulting method may perform better than inner-outer methods (without orthogonalizations)in some ases.The GCRO method with de�ated restarting (named GCRO-DR) based on harmoni Ritz valueinformation has been proposed in [26℄. An approximate invariant subspae is used for de�ationfollowing losely the GMRES-DR method. We refer the reader to [26℄ for a desription of thismethod, algorithms and implementation details. We present now a new variant of GCRO-DR thatallows �exible preonditioning by explaining the di�erent steps ourring during the i-th yle.Again we denote r

(i−1)
0 = b − Ax

(i−1)
0 the residual obtained at the end of the previous yle.We suppose that a �exible Arnoldi-like relation of type (2.3) holds. As in Setion 2.2 animportant point is to speify whih harmoni Ritz information is seleted. Given a ertain matrix

Wm ∈ Cn×m, to be spei�ed later on, the de�ation proedure relies on the use of k harmoni Ritzvetors Yk = WmPk of AZmW †
m with respet to range(Wm), where Yk ∈ Cn×k and Pk ∈ Cm×k.

Wm will notably satisfy a property detailed in Lemma 3.3 and we point out that the alulationof W †
m is not needed in the pratial implementation of the algorithm (see further disussion inSetion 4.2.1). Next, the QR fatorization of the m × k matrix H̄mPk is performed. This allowsus to obtain new matries Zk, Vk ∈ Cn×k suh that

A Zk = Vk,

V H
k Vk = Ik,by using information related to the QR fatorization and the �exible Arnoldi relation (2.3) exlu-sively. Then the inner iteration is based on the approximate solution of

(In − Vk V H
k )Az = (In − Vk V H

k )r
(i−1)
0 = r

(i−1)
0 .



6For that purpose FGCRO-DR then arries out m − k steps of the Arnoldi method with �exiblepreonditioning leading to
(In − VkV H

k ) A [zk+1, · · · , zm] = [vk+1, · · · , vm+1] H̄m−k

(In − VkV H
k ) A Zm−k = Vm−k+1 H̄m−kwith vk+1 = r

(i−1)
0 /||r

(i−1)
0 ‖. At the end of the yle this gives the �exible Arnoldi-like relation

A [Zk, Zm−k] = [Vk, Vm−k+1]

[
Ik V H

k A Zm−k

0m−k+1×k H̄m−k

]

A Zm = Vm+1 H̄m,where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) and H̄m ∈ C(m+1)×m. At the end of the i-th yle, an ap-proximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual norm ‖b−A(x

(i−1)
0 +Zmy)‖over the spae x

(i−1)
0 + range(Zm), the orresponding residual being r

(i)
0 = b − Ax

(i)
0 , with r

(i)
0 ∈

range(Vm+1).2.4. Algorithms. Details of the FGCRO-DRmethod are given in Algorithm 1, where Matlab-like notations are adopted (for instane in step 7b, Q(1 : m, 1 : k) denotes the submatrix made ofthe �rst m rows and �rst k olumns of matrix Q). For the sake of ompleteness the FGMRES-DR algorithm has been also desribed with notations hosen as lose as possible to FGCRO-DRto make a ode omparison as easy as possible. Conerning Algorithm 1 we make the followingomments:
• As disussed later the omputation of W †

m in step 5a is not required thanks to the de�nitionof the harmoni Ritz pair (see De�nition 2.1).
• As pointed out by Morgan [21℄ and Parks et al. [26℄ we might have to adjust k during thealgorithm to inlude both the real and imaginary parts of omplex eigenvetors.
• Although notations are similar in steps 6a and 6b, we remark that the respetive orthogonaland triangular fators do not have the same dimensions. In FGCRO-DR Q ∈ C(m+1)×kand R ∈ Ck×k, whereas Q ∈ C(m+1)×(k+1) and R ∈ C(k+1)×(k+1) in the FGMRES-DRalgorithm.
• The matries Zk and Vk (suh that AZk = Vk and V H

k Vk = Ik) are obtained in steps 8aand 9a (see also Lemma 3.4).
• In steps 10a and 10b M

(i)
j denotes the possibly nonlinear preonditioning operator atiteration j during the i-th yle.

• In step 11b Bk×m−k ∈ Ck×(m−k) results from the orthogonalization of [vk+2, · · · , vm+1]against Vk+1.
• In FGMRES-DR the omputation of the residual at the end of the yle (step 14) anbe performed at a heaper ost. Indeed it an be shown that r0 = Vk+1(c − H̄my∗) [17,Proposition 3℄.3. Analysis of FGMRES-DR and FGCRO-DR. We ompare now the �exible variantsof GMRES-DR and GCRO-DR introdued in Setions 2.2 and 2.3 respetively. In the following weuse the supersript # to denote quantities related to the FGMRES-DR algorithm e.g. Y #

k denotethe set of harmoni Ritz vetors omputed in the FGMRES-DR algorithm. When analyzing bothalgorithms we will suppose that idential preonditioning operators are used in steps 10a and 10brespetively i.e.
∀i, ∀j ∈ {k + 1, · · · , m}, M

(i)
j (.) = M

(i)
j

#
(.) . (3.1)3.1. Equivalent preonditioning matrix. Lemma 3.1. Equivalent preonditioning ma-trix. Suppose that Vp = [v1, · · · , vp] ∈ Cn×p and Zp = [M1(v1), · · · ,Mp(vp)] ∈ Cn×p obtainedduring a yle of a �exible method with (standard or de�ated) restarting (with 1 ≤ p ≤ m < n) areboth of full rank i.e. range(Vp) = range(Zp) = p. We will then denote MVp

∈ Cn×n a nonsingularequivalent preonditioning matrix de�ned as
Zp = MVp

Vp. (3.2)



7Algorithm 1 Flexible GCRO-DR(m, k) and Flexible GMRES-DR(m, k)1: hoose m, k, tol and x02: r0 = b− Ax0, β = ‖r0‖, v1 = r0/β, c = βe1, i← 03: Apply FGMRES(m) to obtain H̄m, Zm, Vm+1 suh that AZm = Vm+1H̄m, y∗ = arg min
y∈Cm

‖c − H̄my‖,
x
(0)
0 = x0 + Zmy∗, r

(0)
0 = b−Ax

(0)
0 = Vm+1(c− H̄my∗), Wm = Vm4: while ‖r(i)

0 ‖ > ‖b‖ × tol do i← i + 1FGCRO-DR5a: Compute k harmoni Ritz ve-tors of AZmW †
m with respet to

range(Wm) and store them in Yk.De�ne Pk suh that Yk = WmPk.6a: Q R = H̄mPk7a: Wk = WmPkR−18a: Vk = Vm+1Q9a: Zk = ZmPkR−110a: Apply m − k �exible pre-onditioned Arnoldi stepswith (In − VkVk
H)A and

vk+1 = r
(i−1)
0 /‖r

(i−1)
0 ‖ suh that

(In − VkVk
H)A

ˆ

zk+1, . . . , zm
˜

=
ˆ

vk+1, . . . , vm+1
˜

H̄m−k with
zj =M

(i)
j (vj )11a: Set H̄m =

»

Ik V H
k AZm−k

0m−k+1×k H̄m−k

–yielding A
ˆ

z1, . . . , zm
˜

=
ˆ

v1, . . . , vm+1
˜

H̄mand de�ne Wm =
ˆ

Wk Vm(1 : n, k + 1 : m)
˜

FGMRES-DR5b: Compute k harmoni Ritz ve-tors of AZmV H
m with respet to

range(Vm) and store them in Yk.De�ne Pk suh that Yk = VmPk.6b: QR =

»»

Pk

01×k

–

c− H̄my∗

–7b: H̄k = Q HH̄mQ( 1 : m , 1 : k)8b: Vk+1 = Vm+1Q9b: Zk = ZmQ( 1 : m , 1 : k)10b: Apply m − k �exible preon-ditioned Arnoldi steps with
A and vk+1 while main-taining orthogonality to Vksuh that A

ˆ

zk+1, . . . , zm
˜

=
ˆ

vk+1, . . . , vm+1
˜

H̄m−kwith zj = M
(i)
j (vj ) and

V H
m+1 Vm+1 = Im+111b: Set H̄m =

»»

H̄k

0m−k×k

– »

Bk×m−k

H̄m−k

––yielding A
ˆ

z1, . . . , zm
˜

=
ˆ

v1, . . . , vm+1
˜

H̄m12: y∗ = arg min
y∈Cm

‖c− H̄my‖ with c = V H
m+1r

(i−1)
013: x

(i)
0 = x

(i−1)
0 + Zmy∗14: r

(i)
0 = b− Ax

(i)
015: end whileSuh a matrix represents the ation of the nonlinear operators Mj on the set of vetors vj (with

j = 1, · · · , p). It an be hosen e.g. as MVp
= [Zp Zp][Vp Vp]

−1 where Zp (respetively Vp) denotesan orthogonal omplement of Zp (respetively Vp) in Cn.3.2. Relations between Zm and Wm and Z#
m and V #

m . We denote M
(0)
Wm

and M
(0)

V #
m

theequivalent preonditioning matries used in the initialization phase of both algorithms (step 3 inAlgorithm 1). With this notation we remark that the following relations hold
Zm = M

(0)
Wm

Wm = Z#
m = M

(0)

V #
m

V #
m . (3.3)We �rst analyze the relation between Z#

m and V #
m .Lemma 3.2. At the end of the i-th yle of the FGMRES-DR method Z#

m and V #
m satisfy

Z#
m = M

(i)

V #
m

#
V #

m = [M
(i−1)#

V #
m

V #
k , M

(i)#

V #
m−k

V #
m−k]. (3.4)Proof.The initialization phase leads to the relation Z#

m = M
(0)

V #
m

V #
m . We suppose that at the endof the i − 1th yle the following relation holds: Z#

m = M
(i−1)

V #
m

#
V #

m . The orthogonal fator
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Q# ∈ C(m+1)×(k+1) obtained in step 6b an be deomposed as follows

Q# =
[
Q#

k ρ
]

=

[[
Q̄

01×k

]
ρ

] (3.5)where Q#
k ∈ C(m+1)×k, ρ ∈ Cm+1 and Q̄ ∈ Cm×k. At step 9b of the i-th yle Z#

k is de�ned as
Z#

k = Z#
mQ̄ = M

(i−1)

V #
m

#
V #

m Q̄ = M
(i−1)

V #
m

#
V #

k .The proof is then ompleted sine Z#
m−k = [M

(i)#
k+1 (v#

k+1), · · · ,M
(i)
m

#
(v#

m)] = M
(i)#

V #
m−k

V #
m−k at theend of step 10b.The next lemma details a relation between Zm and Wm that is satis�ed in the FGCRO-DRmethod.Lemma 3.3. At the end of the i-th yle of the FGCRO-DR method Zm and Wm satisfy

Zm = M
(i)
Wm

Wm = [M
(i−1)
Wm

Wk, M
(i)
Wm−k

Wm−k]. (3.6)Proof. The initialization phase leads to the relation Zm = M
(0)
Wm

Wm. We suppose that at theend of the i− 1th yle the following relation holds: Zm = M
(i−1)
Wm

Wm. At step 9a of the i-th yle
Zk is de�ned as

Zk = ZmPkR−1

= M
(i−1)
Wm

WmPkR−1

= M
(i−1)
Wm

Wk.The proof is then ompleted sine Zm−k = [M
(i)
k+1(wk+1), · · · ,M

(i)
m (wm)] = M

(i)
Wm−k

Wm−k at theend of step 11a.Lemma 3.2 and 3.3 show that Z#
m, V #

m , Zm and Wm satisfy a similar relation that will play aentral role in Setion 3.3. We investigate next the relation between Zm and Vm.Lemma 3.4. At the end of the i-th yle of the FGCRO-DR method Zm and Vm satisfy
[AZk, Zm−k] = [Vk, M

(i)
Vm−k

Vm−k]. (3.7)Proof. Due to the Arnoldi-like relation (2.3), AZk an be also written as
AZk = AZmPkR−1 (3.8)

= Vm+1H̄mPkR−1 (3.9)
= Vm+1Q (3.10)
= Vk. (3.11)The proof is then ompleted sine Zm−k = [M

(i)
k+1(vk+1), · · · ,M

(i)
m (vm)] = M

(i)
Vm−k

Vm−k at the endof step 11a.We onlude this setion by presenting a tehnial lemma related to the FGMRES-DR method.Lemma 3.5. During the i-th yle of the FGMRES-DR method, v#
k+1 satis�es the followingrelation

v#
k+1 = v̄#

k+1/||v̄
#
k+1|| with v̄#

k+1 = Π[Y #
k

]⊥r
(i−1)#
0 (3.12)where r

(i−1)#
0 = b − Ax

(i−1)#
0 denotes the residual obtained at the end of the (i − 1)-th yle.Proof. In (3.5) ρ ∈ Cm+1 is de�ned as

ρ =
ρ̄

||ρ̄||
with ρ̄ = (Im+1 − Q#

k Q#H
k )(c# − H̄#

my#∗). (3.13)



9A onsequene of the representation of Q#
k in (3.5) is that the matrix V #

m+1Q
#
k an be written as

V #
m+1Q

#
k = V #

m Q̄. (3.14)Using (3.13) and (3.14) we obtain
v̄#

k+1 = V #
m+1ρ̄ = r

(i−1)#
0 − V #

m+1Q
#
k Q#

k

H
V #H

m+1V
#
m+1(c

# − H̄#
my#∗).

v̄#
k+1 = r

(i−1)#
0 − V #

m Q̄Q̄HV #H
m V #

m+1(c
# − H̄#

my#∗).Sine V #
m Q̄ has orthonormal olumns this last expression now beomes

v̄#
k+1 = r

(i−1)#
0 − V #

m Q̄(V #
m Q̄)Hr

(i−1)#
0 = Π[V #

m Q̄]⊥r
(i−1)#
0 .Sine Q̄ is the orthogonal fator of the QR deomposition of P#

k , we have the following relation
range(V #

m P#
k ) = range(V #

m Q̄).Sine by de�nition Y #
k = V #

m P#
k the proof is then ompleted.3.3. Analysis of the FGMRES-DR and FGCRO-DRmethods (Algorithm 1). Lemma3.3 has already desribed an important property satis�ed by Wm in the FGCRO-DR method pro-posed in Algorithm 1. We will analyze further the relation between the FGMRES-DR and FGCRO-DR methods. The next theorem states that the two �exible methods generate the same iterates inexat arithmeti under some onditions involving notably two vetors.Theorem 3.6.We denote r

(i)
0 = b − Ax

(i)
0 the residual obtained at the end of the i-th yle of the FGCRO-DR method (see step 14 of Algorithm 1). We suppose that Lemma 3.1 holds and that the sameequivalent preonditioning matrix is obtained at the end of the i-th yle of both FGCRO-DR andFGMRES-DR algorithms i.e. M

(i)
Wm

= M
(i)#

V #
m

. Under this assumption the harmoni Ritz vetors
Y #

k and Yk an be hosen equal during the i + 1-th yle. If in addition there exists a real-valuedpositive oe�ient η suh that
Π

[Yk,r
(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (ΠY ⊥

k
r
(i)
0 /‖ΠY ⊥

k
r
(i)
0 ‖) = η Π

[Yk,r
(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖) (3.15)in the FGCRO-DR algorithm, then both algorithms generate the same iterates in exat arithmetiand

range(Vm+1) = range(V #
m+1), (3.16)

range(Zm) = range(Z#
m), (3.17)with

Vm+1 = [V #
k+1Q̂, vk+2, · · · , vm+1], V #

m+1= [V #
k+1, vk+2, · · · , vm+1], (3.18)

Zm = [Z#
k+1X̂, zk+2, · · · , zm], Z#

m = [Z#
k+1, zk+2, · · · , zm], (3.19)where Q̂ ∈ C(k+1)×(k+1) is a unitary matrix and X̂ ∈ C(k+1)×(k+1) is a nonsingular triangularmatrix.Proof. The whole proof is performed in three parts assuming that we analyze the i + 1-thyle of eah algorithm. Suppose that at the beginning of the i + 1-th yle (step 4) there exista unitary matrix Q̂ ∈ C(k+1)×(k+1) and a nonsingular matrix X̂ ∈ C(k+1)×(k+1) suh that thefollowing relations hold

Vk+1 = V #
k+1Q̂, (3.20)

Zk+1 = Z#
k+1X̂, (3.21)

[vk+2, · · · , vm+1] =
[
v#

k+2, · · · , v#
m+1

]
, (3.22)

[zk+2, · · · , zm] =
[
z#

k+2, · · · , z#
m

]
. (3.23)



10We will then prove the existene of a unitary matrix Q̂′ ∈ C(k+1)×(k+1) and of a nonsingular matrix
X̂ ′ ∈ C

(k+1)×(k+1) suh that at the end of the i + 1-th yle
Vk+1 = V #

k+1Q̂
′, (3.24)

Zk+1 = Z#
k+1X̂

′, (3.25)
[vk+2, · · · , vm+1] =

[
v#

k+2, · · · , v#
m+1

]
, (3.26)

[zk+2, · · · , zm] =
[
z#

k+2, · · · , z#
m

]
. (3.27)Regarding FGCRO-DR we assume that at the beginning of the i + 1-th yle (step 4)

range(Wm) = range(Vm). (3.28)We will also prove that relation (3.28) holds at the end of the i + 1-th yle. Note that rela-tions (3.16), (3.17) and (3.28) are obviously satis�ed before the �rst yle, beause steps 1 to 3are idential in both algorithms yielding Vm+1 = V #
m+1, Zm = Z#

m and Wm = Vm. Finally aonsequene of (3.20), (3.22), (3.21) and (3.23) is that the residual of the linear system Ax = b inboth algorithms are equal at the beginning of the i + 1-th yle i.e. r
(i)
0 = r

(i)#
0 . We will denote r0this residual for ease of notation.Part I - Steps 5a and 5b. In this part, we prove that we an hoose Y #

k = Yk with Yk =

WmPk = V #
m P#

k .FGCRO-DR. Let yj = Wmpj be the j-th olumn of Yk. Sine yj is a harmoni Ritz vetor of
AZmW †

m with respet to range(Wm), the following relation holds (see De�nition (2.1))
(AZmW †

mWm)H (AZmW †
myj − θjyj) = 0whih is equivalent to

ZH
mAH (AZmpj − θjWmpj) = 0. (3.29)Due to (3.21) and (3.23) there exists a nonsingular matrix X ∈ Cm×m that relates Zm and Z#

m

Zm = Z#
mX. (3.30)Using the last equality (3.30), the harmoni Ritz relation (3.29) now beomes

XHZ#
m

H
AH (AZ#

mXpj − θjWmpj) = 0.From Lemma 3.3 and relation (3.30) we dedue
XHZ#

m

H
AH (AZ#

mXpj − θjM
(i)−1

Wm
Zmpj) = 0,

XHZ#
m

H
AH (AZ#

mXpj − θjM
(i)#

V #
m

−1
Z#

mXpj) = 0,where we have used expliitly the assumption on the equivalent preonditioning matrix obtainedat the end of the i-th yle i.e. M
(i)
Wm

= M
(i)#

V #
m

. Next, the appliation of Lemma 3.2 leads to
XHZ#

m

H
AH (AZ#

mV #
m

H
V #

m Xpj − θjV
#
m Xpj) = 0. (3.31)Sine X is nonsingular the last equality proves that V #

m Xpj is a harmoni Ritz vetor of AZ#
mV #

m
Hwith respet to range(V #

m ) assoiated to the Ritz value θj . From relations (3.29) and (3.31) wededue that the harmoni Ritz vetors an be hosen to be equal and orrespond to the sameharmoni Ritz values. In this ase they notably satisfy the following equality
∀j ∈ {1, · · · , k}, V #

m Xpj = Wmpj i.e. p#
j = Xpj. (3.32)We will then denote Y = Y #

k = Yk the k harmoni Ritz vetors omputed in either FGCRO-DRor FGMRES-DR. We assume that the harmoni Ritz values θj (1 ≤ j ≤ k) are non zero.



11Part IIa - Steps 6a to 10a, 6b to 10b. We show that at the end of steps 10a and 10b thefollowing relations hold: range(Vk+1) = range(V #
k+1) = range([Y, r

(i)
0 /‖r

(i)
0 ‖]). This result will helpus to prove the existene of the matrix Q̂′ introdued in relation (3.24).FGCRO-DR. AZmpj − θjWmpj ∈ range(Vm+1) is orthogonal to AZm due to the de�nition ofthe harmoni Ritz information (3.29). Sine r

(i)
0 ∈ range(Vm+1) is the non zero optimum residualat the i-th yle, we have (AZm)Hr

(i)
0 = 0. Thus there exists a oe�ient αj ∈ C suh that
AZmpj − θjWmpj = αjr

(i)
0 . (3.33)Using AZm = Vm+1H̄m and QR = H̄mPk we dedue

Vm+1H̄mpj = θjWmpj + αjr
(i)
0

Vm+1Q R = Y diag(θ1, . . . , θk) + r
(i)
0 αTwhere α = [α1, . . . , αk] ∈ Ck×1. This leads to

VkR = Y diag(θ1, . . . , θk) + r
(i)
0 αT

[
Vk, r

(i)
0 /‖r

(i)
0 ‖

]
=

[
Y, r

(i)
0 /‖r

(i)
0 ‖

] [ diag(θ1, . . . θk)R−1 0k×1

‖r
(i)
0 ‖αT R−1 1

]
. (3.34)This relation leads to the following result

range(Vk+1) = range([Y, r
(i)
0 /‖r

(i)
0 ‖]). (3.35)Similarly Wk+1 = [Wk,

r
(i)
0

‖r
(i)
0 ‖

] an be written as, using Y = WmPk

[Wk, r
(i)
0 /‖r

(i)
0 ‖] = [WmPkR−1,

r
(i)
0

‖r
(i)
0 ‖

]

= [Y R−1, r
(i)
0 /‖r

(i)
0 ‖]

= [Y, r
(i)
0 /‖r

(i)
0 ‖]

[
R−1 0k×1

01×k 1

]
. (3.36)From relations (3.36) and (3.35) we dedue that

range(Wk+1) = range(Vk+1). (3.37)This last result also proves that range(Wm) = range(Vm) at the end of the yle.FGMRES-DR. Using suessively the relations of steps 8b and 6b and r
(i)
0 = V #

m+1(c
# −

H̄#
my#∗), we dedue

V #
k+1R

# = V #
m+1Q

#R#

= V #
m+1

[[
P#

k

01×k

]
c# − H̄#

my#∗

]

= [V #
m P#

k , r
(i)
0 ].From the main result of Part I (V #

m P#
k = Y ) we �nally obtain

V #
k+1R

# = [Y, r
(i)
0 ] = [Y, r

(i)
0 /‖r

(i)
0 ‖]

[
Ik 0k×1

01×k ‖r
(i)
0 ‖

]
. (3.38)Sine R# is nonsingular we dedue that

range(V #
k+1) = range([Y, r

(i)
0 /‖r

(i)
0 ‖]). (3.39)Sine both Vk+1 and V #

k+1 have orthonormal olumns we dedue from (3.35) and (3.39) that thereexists a unitary matrix Q̂′ suh that
Vk+1 = V #

k+1Q̂
′ (3.40)whih proves the relation proposed in equation (3.24).



12 Part IIb - Steps 6a to 10a, 6b to 10b. We show that at the end of steps 10a and 10b the fol-lowing relations hold: range(Zk+1) = range(Z#
k+1). This result will help us to prove the existeneof the matrix X̂ ′ introdued in relation (3.25).FGCRO-DR. ConerningZk+1 = [Zk, zk+1], there exists a nonsingular matrixM

(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

∈

C
n×n (see Lemma 3.1) suh that

Zk+1 = M
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Wk, r
(i)
0 /‖r

(i)
0 ‖].If T ∈ C(k+1)×(k+1) denotes the following triangular matrix

T =

[
R 0k×1

01×k 1

]

Zk+1T an be written as
Zk+1T = M

(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Wk, r
(i)
0 /‖r

(i)
0 ‖] T

Zk+1T = M
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖]. (3.41)where the last equality results from (3.36).FGMRES-DR. Similarly from Lemma 3.2, Z#

k+1 an be expressed as
Z#

k+1 = M
(i+1)#

V #
k+1

V #
k+1where M

(i+1)#

V #
k+1

∈ Cn×n is nonsingular (see Lemma 3.1). If T # ∈ C(k+1)×(k+1) denotes the followingtriangular matrix
T # = R#

[
Ik 0k×1

01×k 1/‖r
(i)
0 ‖

]

Z#
k+1T

# an be expressed as
Z#

k+1T
# = M

(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖] (3.42)thanks to the relation (3.38). Relations (3.41) and (3.42) haraterize Zk+1T and Z#

k+1T
# withrespet to [Y, r

(i)
0 /‖r

(i)
0 ‖]. We an further improve this result by showing the following equality
M

(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖] = M

(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖]. (3.43)Lemma 3.3 and Lemma 3.2 respetively give us two useful relations forM
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖]and M

(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖] i.e.

M
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖] = [M

(i)
Wm

Y, M
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖)] (3.44)

M
(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖] = [M

(i)#

V #
m

Y, M
(i+1)
k+1

#
(r

(i)
0 /‖r

(i)
0 ‖)]. (3.45)Thus we investigate the relation between M

(i)
Wm

Y and M
(i)#

V #
m

Y . Using suessively relation (3.32),
Wk = WmPkR−1, Lemma 3.3, Zk = ZmPkR−1, relation (3.30) and �nally Lemma 3.2 the following



13development an be made
M

(i)
Wm

Y = M
(i)
Wm

WmPk

M
(i)
Wm

Y = M
(i)
Wm

WkR

M
(i)
Wm

Y = ZkR

M
(i)
Wm

Y = ZmPk

M
(i)
Wm

Y = Z#
mXPk

M
(i)
Wm

Y = M
(i)#

V #
m

V #
m XPk

M
(i)
Wm

Y = M
(i)#

V #
m

Y. (3.46)The fat that idential (possibly nonlinear) preonditioning operators are used in steps 10a and10b of Algorithm 1 (see relation (3.1)) allows us to write
M

(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖) = M

(i+1)
k+1

#
(r

(i)
0 /‖r

(i)
0 ‖). (3.47)Relations (3.46) and (3.47) �nally show the relation (3.43). Consequently from relations (3.41),(3.42) and (3.43) we dedue that there exists a nonsingular matrix X̂ ′ ∈ C(k+1)×(k+1) suh that

Zk+1 = Z#
k+1X̂

′. (3.48)This proves the relation proposed in equation (3.25). Sine T and T # are both triangular, we notethat X̂ ′ = T #T−1 is also triangular.Part IIIa - Steps 10a and 10b. We �rst show that v#
k+2 = vk+2 by expressing these two quan-tities in funtion of r

(i)
0 and Y .FGCRO-DR. The Arnoldi relation (step 10a) yields vk+2 = v̄k+2/||v̄k+2||, where v̄k+2 = (In −

vk+1v
H
k+1)(In − VkV H

k )AM
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖). Sine r

(i)
0 is the optimum residual at the i-th yle,i.e. (AZm)Hr

(i)
0 = 0 we have

PH
k (AZm)Hr

(i)
0 = 0,

(Vm+1H̄mPk)Hr
(i)
0 = 0,

RHV H
k r

(i)
0 = 0.This shows that V H

k vk+1 = 0 sine R is nonsingular. Therefore (In − vk+1v
H
k+1) and (In − VkV H

k )ommute and from Part IIa of the proof, the following expression an be derived
v̄k+2 = ΠV ⊥

k+1
AM

(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖) = Π

[Y,r
(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖). (3.49)FGMRES-DR. The following expression for v#

k+2 = v̄#
k+2/||v̄

#
k+2|| is obtained using Lemma 3.5

v̄#
k+2 = (In − V #

k+1V
#H
k+1 )AM

(i+1)
k+1 (v#

k+1) = Π
[Y,r

(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (ΠY ⊥r

(i)
0 /‖ΠY ⊥r

(i)
0 ‖). (3.50)Due to the assumption (3.15) of Theorem 3.6 we dedue from (3.49) and (3.50) that v̄k+2 =

η v̄#
k+2 with η positive and therefore vk+2 = v#

k+2.Part IIIb - Steps 10a and 10b. In this part we ontinue the analysis of the Arnoldi proedurewith �exible preonditioning and show that vk+2+j = v#
k+2+j for j = 1, . . . , m − k − 1.For the ase j = 1, we introdue v̄k+3 and v̄#

k+3 suh that vk+3 = v̄k+3/||v̄k+3|| and v#
k+3 =

v̄#
k+3/||v̄

#
k+3||. The appliation of the Arnoldi proedure in both algorithms leads to

v̄k+3 = (In − vk+2v
H
k+2)(In − Vk+1V

H
k+1) AM

(i+1)
k+2 (v̄k+2)

v̄#
k+3 = (In − v#

k+2v
#H
k+2)(In − V #

k+1V
#H
k+1 ) AM

(i+1)
k+2 (v̄#

k+2).



14Thus from Parts II and IIIa of the proof we obtain that vk+3 and v#
k+3 are equal. The proof anthen be ompleted by indution.Results from Parts II and III justify the relation (3.26) i.e. [vk+2, · · · , vm+1] = [v#

k+2, · · · , v#
m+1].Consequently from Lemma 3.2, Lemma 3.4 and relation (3.1) we dedue the relation (3.27). This�nally shows the main relations (3.16) and (3.17) of Theorem 3.6 that are satis�ed at the end ofthe i + 1-th yle.3.3.1. First onsequene of Theorem 3.6. Corollary 3.7. If the same �exible preon-ditioning operators are used in both Arnoldi proedures (steps 10a and 10b of Algorithm 1) and ifat eah yle i there exists a real-valued positive oe�ient ηi suh that

Π
[Y,r

(i−1)
0 /‖r

(i−1)
0 ‖]⊥

AM
(i)
k+1(ΠY ⊥r

(i−1)
0 /‖ΠY ⊥r

(i−1)
0 ‖) = ηi Π

[Y,r
(i−1)
0 /‖r

(i−1)
0 ‖]⊥

AM
(i)
k+1(r

(i−1)
0 /‖r

(i−1)
0 ‖),FGCRO-DR and FGMRES-DR are algebraially equivalent.Proof. We have already emphasized that M

(0)
Wm

= M
(0)#

V #
m

in relation (3.3). In Theorem 3.6 wehave analyzed the i + 1-th yle of both algorithms assuming that M
(i)
Wm

= M
(i)#

V #
m

. First we haveproved in Part IIb the relation (3.43) and seondly in Parts IIIa and IIIb that [vk+2, · · · , vm] =

[v#
k+2, · · · , v#

m] and [zk+2, · · · , zm] = [z#
k+2, · · · , z#

m] respetively. Consequently the same equivalentpreonditioner matrix is obtained at the end of the i + 1-th yle i.e. M
(i+1)
Wm

and M
(i+1)#

V #
m

an behosen equal. We dedue that FGCRO-DR and FGMRES-DR are algebraially equivalent.3.3.2. About GCRO-DR and GMRES-DR. We propose a seond onsequene of Theo-rem 3.6 analyzed now with a �xed preonditioning matrix M . Before, a straightforward reformu-lation of Lemma 3.3 and Lemma 3.2 is proposed in this ontext.Lemma 3.8. When a �xed right-preonditioning matrix M is used in FGCRO-DR, Zm and
Wm satisfy

Zm = MWm. (3.51)Proof. The appliation of FGMRES(m) in the initialization phase (step 3 in Algorithm 2)leads to Zm = MVm when a �xed preonditioning matrix M is used. Thus M
(0)
Wm

= M . Supposethat at the end of the i-th yle M
(i)
Wm

= M . Sine
∀j, k + 1 ≤ j ≤ m, M

(i+1)
j = M,we obtain from Lemma 3.3 that Zm = M

(i+1)
Wm

Wm = [MWk, MWm−k] = MWm i.e. M
(i+1)
Wm

and
M an be hosen equal.Lemma 3.9. When a �xed right-preonditioning matrix M is used in FGMRES-DR, Z#

m and
V #

m satisfy
Z#

m = MV #
m . (3.52)Proof. The proof follows the same steps as in Lemma 3.8 substituting M

(i)#

V #
m

for M
(i)
Wm

.The next orollary details an important result related to the GCRO-DR and GMRES-DRmethods.Corollary 3.10. When a �xed right preonditioner is used, the GCRO-DR and GMRES-DRmethods skethed in Algorithm 1 are unonditionally algebraially equivalent.Proof. We denote M the �xed right preonditioning operator. Exploiting partial results shownin Part IIa allows us to derive the following relation that holds during the i + 1-th yle:
AMY = Y diag(θ1, . . . , θk) + r

(i)
0 αT .



15Thus
Π

[Y,r
(i)
0 ]⊥

AMY = 0. (3.53)From Part IIIa we know that
v̄k+2 = Π

[Y,r
(i)
0 ]⊥

AMr
(i)
0 . (3.54)Due to (3.53) we dedue the following development

v̄k+2 = Π
[Y,r

(i)
0 ]⊥

AM(r
(i)
0 − Y Y †r

(i)
0 ),

v̄k+2 = Π
[Y,r

(i)
0 ]⊥

AMΠY ⊥r
(i)
0 ,

v̄k+2 = v̄#
k+2.By indution it is possible to dedue the rest of the proof regarding v̄k+j , j > 2. Using range(V #

k+1) =
range(Vk+1) obtained in Part IIa we dedue that

range(V #
m ) = range(Vm) = range(Wm). (3.55)From relation (3.55), Lemma 3.8 and Lemma 3.9 we dedue that
range(Z#

m) = range(Zm).Consequently the minimization problem min ‖r
(i)
0 − AZmy‖ leads to the same solution for bothalgorithms at eah yle: GCRO-DR and GMRES-DR skethed in Algorithm 1 are thus unondi-tionally algebraially equivalent.4. Variants of FGCRO-DR. We explore variants of FGCRO-DR that only di�er in theformulation of the generalized eigenvalue problem for the harmoni Ritz information. Their om-putational ost is detailed arefully and their behaviour with respet to �xed preonditioning is�nally investigated.4.1. Derivation and algorithms. In Setion 2.3 the de�ation proedure relied on the use of

k harmoni Ritz vetors of AZmW †
m with respet to range(Wm), where Wm satis�es the propertyshown in Lemma 3.3. It is however possible to derive other variants of FGCRO-DR by hoosingdi�erently the way the harmoni Ritz information is seleted. Indeed at eah yle, Zm and Vmare also available and it seems natural to exploit this feature. Thus variants of FGCRO-DR anbe dedued by omputing either k harmoni Ritz vetors of AZmZ†

m with respet to range(Zm)or k harmoni Ritz vetors of AZmV H
m with respet to range(Vm). We summarize the di�erentvariants in Algorithm 2 with the same notations as in Algorithm 1. Strategy A orresponds tothe algorithm �rst presented in [18℄. As far as we know, Strategies B and C are new. We notethat Strategy C has been introdued in Setion 2.3 and equivalene with FGMRES-DR has beendisussed in Setion 3. The harmoni Ritz formulation of Strategy B has been inspired by step 5bof Algorithm 1.4.2. Computational ost. We �rst detail the omputational ost related to the harmoniRitz information (step 5 of Algorithm 2) sine this is the main di�erene between the proposedstrategies.4.2.1. Harmoni Ritz information.Strategy A. The generalized eigenvalue problem of Strategy A presented in Algorithm 2 is

(AZm)H (AZm)y = θ(AZm)HZmy,where θ ∈ C and y ∈ Cm. Using the Arnoldi-like relation (2.3) it an be written as
H̄H

m H̄my = θH̄H
mV H

m+1Zmy.



16Algorithm 2 Flexible GCRO-DR(m, k) algorithms: strategies A, B and C.1: hoose m, k, tol and x02: r0 = b− Ax0, β = ‖r0‖, v1 = r0/β, i← 03: Flexible GMRES(m) yields H̄m, Zm, Vm+1 suh that AZm = Vm+1H̄m, y∗ = arg min
y∈Cm

‖c − H̄my‖,
c = βe1, x

(0)
0 = x0 + Zmy∗, r

(0)
0 = b−Ax

(0)
0 = Vm+1(c− H̄my∗), Wm = Vm (only for Strategy C)4: while ‖r(i)

0 ‖ > ‖b‖ × tol do i← i + 15: Compute k eigenvetors of the generalized eigenvalue problem Dy = θEy and store them in Pk.Strategy A
• D = ZH

mAHAZm

• E = ZH
mAHZm

• Yk = ZmPk

Strategy B
• D = ZH

mAHAZm

• E = ZH
mAHVm

• Yk = VmPk

Strategy C
• D = ZH

mAHAZm

• E = ZH
mAHWm

• Yk = WmPk6: Q R = H̄mPk7: Wk = WmPkR−1 (only for Strategy C)8: Vk = Vm+1Q9: Zk = ZmPkR−110: Apply m − k �exible preonditioned Arnoldi steps with (In − VkVk
H)A and vk+1 =

r
(i−1)
0 /‖r

(i−1)
0 ‖ suh that (In − VkVk

H)A
ˆ

zk+1, . . . , zm
˜

=
ˆ

vk+1, . . . , vm+1
˜

H̄m−k with
zj =M

(i)
j (vj)11: d∗ = arg min
d∈Zm

‖r
(i−1)
0 − Ad‖, x

(i)
0 = x

(i−1)
0 + d∗, r

(i)
0 = b−Ax

(i)
012: Wm =

ˆ

WmPkR−1 Vm(1 : n, k + 1 : m)
˜ (only for Strategy C)13: end whileThe omputation of H̄H

m H̄m is heap sine it only involves a matrix of size (m + 1) × m, where
m is supposed to be small with respet to the problem size n. A blok form for V H

m+1Zm an befound as
V H

m+1 Zm =

[
V H

k Zk V H
k Zm−k

V H
m−k+1Zk V H

m−k+1Zm−k

]
. (4.1)Thanks to steps 8 and 9 in Algorithm 2, V H

k Zk an be also written as
(V H

k Zk)(i) = QH (V H
m+1Zm)(i−1) PkR−1where the supersript is related to the yle index. Thus storing V H

m+1Zm at the end of eah yleallows us to ompute at a heap ost a k × k blok of V H
m+1Zm for the next yle. Computing theother bloks of V H

m+1Zm require 2n(m − k + 1)m + 2nk(m− k) operations.Strategy B. Similarly the generalized eigenproblem an be written as
H̄H

m H̄my = θH̄H
mV H

m+1Vmy. (4.2)Exploiting the fat that Vm+1 has orthonormal olumns �nally leads to the generalized eigenprob-lem
H̄H

m H̄my = θH̄H
m

[
y

01×1

]
, (4.3)whih involves only a matrix of size (m + 1) × m.Strategy C. The orresponding generalized eigenvalue problem an be written as

H̄H
m H̄my = θH̄H

mV H
m+1Wmy. (4.4)Sine Wm = [Wk+1, vk+2, · · · , vm] (step 12 of Algorithm 2) a new form for V H

m+1Wm an be foundas
V H

m+1Wm =




V H

k+1 Wk+1 0(k+1)×(m−k−1)

0(m−k−1)×(k+1) Im−k−1

01×(k+1) 01×(m−k−1)



 . (4.5)



17The struture of the (k + 1) × (k + 1) blok V H
k+1 Wk+1 is as follows

V H
k+1 Wk+1 =

[
V H

k Wk V H
k wk+1

vH
k+1 Wk vH

k+1 wk+1

]
=

[
V H

k Wk 0k×1

vH
k+1 Wk 1

]
.Thanks to steps 7 and 8 in Algorithm 2, V H

k Wk is a k × k matrix that satis�es the followingrelation
(V H

k Wk)(i) = QH (V H
m+1Wm)(i−1) PkR−1where the supersript is related to the yle index. Thus storing the (m +1)×m matrix V H

m+1Wmat the end of eah yle an be used to slightly redue the ost of omputing the new matrix
V H

m+1Wm. It is then su�ient to ompute vH
k+1 Wk at a ost of 2nk operations. Comparing (4.1)and (4.5) reveals that Strategy C requires less operations than Strategy A for omputing the pairof matries of the generalized eigenvalue problem. Nevertheless Strategy C requires the additionalstorage of Wk i.e. k additional vetors of length n (step 7 of Algorithm 2).4.2.2. Cost of a yle. We summarize in Table 4.1 the main omputational osts assoi-ated with eah step of the three strategies proposed in Algorithm 2. An Arnoldi method basedon the modi�ed Gram-Shmidt proedure has been assumed1. We have only inluded the ostsproportional to the size of the original problem n whih is supposed to be muh greater than mand k. These osts exlude the ost related to both matrix-vetor produts and preonditioningoperations.Step Strategy A Strategy B Strategy C5 2n(m − k + 1)m+ - 2nk

2nk(m− k)6 - - -7 - - 2nmk8 2n(m + 1)k 2n(m + 1)k 2n(m + 1)k9 2nmk 2nmk 2nmk10 (4nk + n)(m − k)+ (4nk + n)(m − k)+ (4nk + n)(m − k)+
2n(m − k)(m − k + 1)+ 2n(m − k)(m − k + 1)+ 2n(m − k)(m − k + 1)+
3n(m − k) 3n(m − k) 3n(m − k)Total CB + 2n(m2 − k2 + m) CB CB + 2n(k + mk)Table 4.1Computational ost of a yle detailed for eah strategy and for eah step of a given yle of Algorithm 2.This exludes the ost of matrix-vetor operations and preonditioning operations. The total ost of Strategy B is

CB = 2n((m + k)2 − 2k2 + 3m− 2k).As remarked in Setion 4.2.1 Strategy B involves the lowest omputational ost among the threevariants. Conerning Strategy A and Strategy C it is then interesting to analyze the orrespondingadditional osts versus m and k. As a �rst illustration Table 4.2 details three di�erent ases i.e.
k = 1, k = m/2 and k = m − 1. When k = 1 we remark that Strategy A is the most expensiveone. This is mainly due to the onstrution of V H

m+1 Zm in step 5 of Algorithm 2. The additionalost is of order O(nm2). For the ase k = m − 1 we note that the additional ost for Strategy C -now the most expensive one - also behaves as O(nm2).4.3. Preonditioning. Although the primary fous of this paper is on �exible methods, wepropose now two omments on Strategies A, B and C when a nonvariable preonditioner is used.In this setting we note that Strategy A orresponds to the method originally proposed by Parks etal. in [26℄.1Step 10: during this step the ation of (In − VkV H
k ) requires Pm

j=k+1(4nk + n) operations, the Arnoldimethod based on modi�ed Gram-Shmidt requires Pm
j=k+1

Pj
i=k+1(4n) operations whereas norm omputationand normalization ost Pm

j=k+1(3n) operations.
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k Strategy A Strategy B Strategy C
1 C

(1)
B + 2n(m2 + m − 1) C

(1)
B = 2n(m2 + 5m − 4) C

(1)
B + 2n(m + 1)

m/2 C
(m/2)
B + 2n(3m2/4 + m) C

(m/2)
B = 2n(7m2/4 + 2m) C

(m/2)
B + 2n(m2/2 + m/2)

m − 1 C
(m−1)
B + 2n(3m− 1) C

(m−1)
B = 2n(2m2 + m + 1) C

(m−1)
B + 2n(m2 − 1)Table 4.2Computational ost of a yle for k = 1, k = m/2 and k = m− 1. C

(k)
B denotes the ost of Strategy B when kharmoni Ritz vetors are used in the de�ation proedure.4.3.1. Behaviour in ase of no preonditioning. When no preonditioning ours, wehave the following relation Zm = Wm thanks to Lemma 3.8. Thus Strategies A and C are equivalentin this ase. Sine Strategy C is algebraially equivalent to GMRES-DR (Corollary 3.10), wededue that Strategy A is also algebraially equivalent to GMRES-DR. This shows a remark madeby Parks et al. in [26, page 1657℄. We refer the reader to Table 5.1 in Setion 5 for a numerialillustration. We note that the equivalene between Strategy A and GMRES-DR does not holdwhen preonditioning ours as will be shown in Setion 4.3.2.4.3.2. Behaviour in ase of �xed preonditioning. Suppose that a �xed preonditioner

M is used as a right preonditioner for the solution of (2.1). A desirable feature is that applyingthe Krylov subspae method either on A with right preonditioner M or on Ã = AM without anypreonditioner leads to the same iterates when the same right-hand side is onsidered. We all thisproperty right-preonditioning invariane. We note that GMRES(m) with right-preonditioningsatis�es this property. The appliation of GMRES(m) in the initialization phase (step 3 in Algo-rithm 2) leads to the relation Zm = MVm when a �xed right-preonditioner is used. Table 4.3ollets the di�erent formulations of the �rst generalized eigenvalue problem, where we have usedthe Zm = MVm relation expliitly.Strategy Fixed preonditioning matrix M Equivalent matrix Ã = AMA (AMVm)H(AMVm)y = θ (AMVm)HMVmy (ÃVm)H(ÃVm)y = θ (ÃVm)HMVmyB (AMVm)H(AMVm)y = θ (AMVm)HVmy (ÃVm)H(ÃVm)y = θ (ÃVm)HVmyC (AMVm)H(AMVm)y = θ (AMVm)HWmy (ÃVm)H(ÃVm)y = θ (ÃVm)HWmyTable 4.3Formulations of the �rst generalized eigenvalue problem when a �xed right-preonditioning matrix M is used(enter) and when an equivalent preonditioned matrix Ã = AM is used (right) for strategies A, B and C.From Table 4.3 it an be suspeted that Strategy A is not right-preonditioning invariant sinethis property is not satis�ed during the �rst yle of the method. A numerial illustration is givenin Figure 4.1. In Setion 4.2 the generalized eigenvalue problems of Strategies B and C ((4.2)and (4.4) respetively) only involve H̄m, Vm+1 or Wm i.e. quantities that are preonditioninginvariant. This is on�rmed in Figures 4.2 and 4.3, where - as expeted - Strategies B and C areright-preonditioning invariant.5. Numerial experiments. We present numerial experiments for a spei� lass of prob-lems from quantum hromodynamis (QCD). This area is subjet to ative researh to designrobust and e�ient subspae methods for the e�ient approximation of f(A) b, where f is a fun-tion de�ned on the spetrum of A [16, 38℄. Methods based on variable preonditioning [8℄ havebeen proven e�ient when onsidering the sign funtion. Reently adaptive algebrai multigridmethods [5, 6℄ have been also proposed for the solution of suh nearly singular and highly disor-dered physial systems. We fous here on the solution of a single linear system and investigate thebehaviour of various �exible methods with de�ated restarting.5.1. Lattie quantum hromodynamis. Quantum hromodynamis [7℄ is the fundamen-tal theory explaining how neutrons and protons are bound inside nulei and how their onstituents
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FGCRO−DR(6,2) on the equivalent matrix

FGCRO−DR(6,2) with right preconditioning

Fig. 4.1. Strategy A of FGCRO-DR. Behaviour in ase of �xed preonditioning. Convergene history ofFGCRO-DR(6,2) on the equivalent preonditioned system AMφ = b and on the original system Ax = b withright preonditioning matrix M . A ∈ C400×400 is here a nonsingular sparse random triangular matrix and Jaobipreonditioning is onsidered. The right-hand side b is a random vetor of unit norm.
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FGCRO−DR(6,2) on the equivalent matrix

Prec FGCRO−DR(6,2) with right preconditioning

Fig. 4.2. Strategy B of FGCRO-DR. Behaviour in ase of �xed preonditioning. Convergene history ofFGCRO-DR(6,2) on the equivalent preonditioned system AMφ = b and on the original system Ax = b with rightpreonditioning matrix M . The same linear systems as in Figure 4.1 are onsidered here.- quarks and gluons - interat. Numerial simulations on a four-dimensional hyperube spae-timelattie are most often onsidered as a unique way to solve QCD ab initio [37℄. The Wilson fermionmatrix - representing periodi nearest neighbour oupling - has the following blok struture after
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FGCRO−DR(6,2) on the equivalent matrix

FGCRO−DR(6,2) with right preconditioning

Fig. 4.3. Strategy C of FGCRO-DR. Behaviour in ase of �xed preonditioning. Convergene history ofFGCRO-DR(6,2) on the equivalent preonditioned system AMφ = b and on the original system Ax = b with rightpreonditioning matrix M . The same linear systems as in Figure 4.1 are onsidered here.a red-blak (also named odd-even) ordering of the lattie points [15℄
A = In − κ

[
0n/2×n/2 Db

Dr 0n/2×n/2

]
=

[
In/2 −κDb

−κDr In/2

] (5.1)where the hopping parameter κ is a real valued positive parameter. The Wilson fermion matrix
A ∈ Cn×n is a sparse, omplex non-Hermitian matrix. It is positive de�nite as long as 0 ≤ κ < κc.Physially interesting ases are for κ lose to the ritial parameter κc. As a model problem we haveused the matrix onf5.0_0014x4.1000.mtx submitted by B. Medeke and publily available from theMatrix Market olletion2. This sparse matrix of order 3072 ontains 39 nonzero elements per row.The numerial tests were performed on a personal omputer running Linux (Intel Dual Core, 2.13Ghz with 2 GB of memory) using Matlab version 7.1 (release 14).5.1.1. Solution of the QCD redued system. QCD omputations rely on the use of odd-even preonditioning that aims at exploiting the blok struture presented in (5.1). Denoting L and
U the stritly lower and triangular parts of A respetively, this odd-even tehnique is equivalentto apply SSOR preonditioning to the original linear system Ax = b as

(In − L)−1A(In − U)−1y = (In − L)−1b with y = (In − U)x. (5.2)This leads to the following linear system
[

In/2 0n/2×n/2

0n/2×n/2 In/2 − κ2DrDb

] [
yr

yb

]
=

[
br

bb + κDrbr

]
. (5.3)Thanks to this deoupling, physiists fous on developing e�ient methods for the numerial solu-tion of the redued system

(In/2 − κ2DrDb)yb = bb + κDrbr (5.4)whih an be also seen as the Shur omplement system of (5.1). Consequently we will nextompare di�erent numerial methods for the solution of the redued system (5.4). The right-handside b is hosen as the �rst Cartesian basis vetor of Cn. A zero initial iterate is onsidered as aninitial guess and all solvers are required to redue the true residual to 1.0 × 10−12.
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κ = 0.200 κ = 0.202 κ = 0.204 κ = 0.206GMRES(20) 330 418 550 770GMRES-DR(20,16) 268 304 334 376GCRO-DR(20,16) Strategy A 268 304 334 376GCRO-DR(20,16) Strategy B 274 310 340 394GCRO-DR(20,16) Strategy C 268 304 334 376FGMRES(20) 226 328 430 532FGMRES-DR(20,16) 176 220 242 264FGCRO-DR(20,16) Strategy A 176 198 220 264FGCRO-DR(20,16) Strategy B 176 198 242 286FGCRO-DR(20,16) Strategy C 176 198 242 264Table 5.1Total number of matrix-vetor produts required to solve the QCD linear system (5.4) for di�erent values of κ.In Table 5.1 we ollet the total number of matrix-vetor produts ourring in the di�erentmethods for four di�erent linear systems orresponding to inreasing values of κ. We give bothunpreonditioned and preonditioned onvergene results, where all the methods minimize over asubspae of dimension 20 in eah yle. For the variants related to de�ated restarting we have�xed the value of k to 16 and seleted the eigenvetors related to the k smallest eigenvalues inmodulus. In the �rst �ve lines of Table 5.1 we have inluded results related to GMRES, GMRESwith de�ated restarting and GCRO with de�ated restarting. We note that de�ated restartingleads to a dramati improvement with respet to standard restarting. This behaviour has beenalready observed in [22℄ for appliations in QCD. Strategies A and C lead to the same number ofmatrix-vetor produts as for GMRES-DR. This is due to the equivalene disussed in Setion 4.3.1.Indeed it has been heked that the three methods produe iterates that are equal up to the mahinepreision at eah restart. Figure 5.1 shows that Π

[Yk,r
(i−1)
0 /‖r

(i−1)
0 ‖]⊥

AΠY ⊥

k
r
(i−1)
0 /‖ΠY ⊥

k
r
(i−1)
0 ‖ and

Π
[Yk,r

(i−1)
0 /‖r
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C these global osts - related toStrategies A, B and C respetively.The lowest omputational ost obtained orresponds to k = 13, k = 14 and k = 16 forStrategies A, B and C respetively. A relatively large number of harmoni Ritz values is thusrequired to yield an e�ient method. This is in agreement with previous numerial experiments[22℄. Bold values in eah line of Table 5.3 orrespond to the lowest omputational ost among thethree strategies for a given value of k. It an be notied that most often a given strategy is moreinteresting on a ertain range of harmoni Ritz values. The interest of the three strategies has beendemonstrated on this appliation in QCD, sine the optimal ost for eah strategy (20047, 22120,
21728 for Strategies A, B and C respetively) only di�er by less than 10%. In addition, when k
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k #Mvp Cg

A/(2n) #Mvp Cg
B/(2n) #Mvp Cg

C/(2n)1 507 40405 410 32420 507 400072 390 31314 390 30898 390 309403 370 29785 370 29374 370 294374 350 28252 432 34244 350 279325 330 26715 407 32326 330 264256 310 25174 382 30406 310 249167 290 23629 357 28484 290 234058 270 22080 394 31396 270 218929 307 24973 364 29080 307 2482310 282 23026 334 26762 282 2291611 257 21075 304 24442 304 2467312 274 22396 274 22120 274 2237213 244 20047 281 22682 281 2295514 278 22686 278 22462 278 2275615 265 21655 292 23566 265 2177516 264 21556 286 23108 264 2172817 260 21219 294 23740 277 2277118 262 21346 286 23122 274 2256419 323 26071 358 28742 316 25865Table 5.3Number of matrix-vetor produts #Mvp and normalized global omputational ost of Strategies A, B and Cwhen solving the QCD linear system (5.4) for κ = 0.206 and for a variable number of harmoni Ritz values k. Caseof a �exible preonditioner.varies, Strategy A is the best on six ases, Strategy B on �ve ases and Strategy C on eight ases,indiating again the potential of eah of these approahes.6. Conlusion and perspetives. In this paper we have studied a new minimum residualnorm subspae method with de�ated restarting that allows �exible preonditioning based on theGCRO subspae method. The resulting method named FGCRO-DR has been presented togetherwith FGMRES-DR, a reently proposed algorithm of the same family but based on the GMRESsubspae method. A theoretial omparison analysis of both algorithms has been performed inSetion 3. Theorem 3.6 also proves the algebrai equivalene of GMRES-DR and GCRO-DR whena �xed preonditioner is used. Furthermore three variants of the new algorithm - that only di�erin the formulation of the generalized eigenvalue problem for the harmoni Ritz information - havebeen introdued and analyzed in Setion 5. Numerial experiments on a hallenging appliationin quantum hromodynamis have shown the interest of these new variants when solving a givenlinear system.We have restrited the presentation to the ase of a linear system with a single right-handside. In [26℄ reusing seleted subspaes in GCRO-DR - in the ase of �xed preonditioning - hasbeen proved e�ient when solving sequene of linear systems where both the left- or right-handsides ould hange. A natural perspetive ould be thus to investigate the numerial propertiesof FGCRO-DR in this setting. This seems to be espeially appealing for appliations related toe.g. stohasti �nite element methods [12, 36℄ in three dimensions where variable preonditioningusing approximate solvers has to be usually onsidered. When all right-hand sides are availablesimultaneously and when the matrix is �xed, blok subspae methods may be also suitable. Thusa perspetive ould be to propose a blok variant of FGCRO-DR.Aknowledgments. The partiipation of the �rst author in the initial preparation of thisartile was guaranteed thanks to grant CNPq-473420/2007-4, oordinated by Professor NelsonMaulan. The �rst author would like to thank the warm welome he reeived at CERFACS, inthe Parallel Algorithms Team led by Iain S. Du�, during his sabbatial leave where this work wasompleted.
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