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A FLEXIBLE GENERALIZED CONJUGATE RESIDUAL METHOD WITHINNER ORTHOGONALIZATION AND DEFLATED RESTARTINGL. M. CARVALHO∗, S. GRATTON† , R. LAGO‡ , AND X. VASSEUR§Abstra
t.This work is 
on
erned with the development and study of a minimum residual norm subspa
e method basedon the Generalized Conjugate Residual method with inner Orthogonalization (GCRO) method that allows �exiblepre
onditioning and de�ated restarting for the solution of non-symmetri
 or non-Hermitian linear systems. Firstwe re
all the main features of Flexible Generalized Minimum Residual with de�ated restarting (FGMRES-DR), are
ently proposed algorithm of the same family but based on the GMRES method. Next we introdu
e the newinner-outer subspa
e method named FGCRO-DR. A theoreti
al 
omparison of both algorithms is then made inthe 
ase of �exible pre
onditioning. It is proved that FGCRO-DR and FGMRES-DR are algebrai
ally equivalentif a 
ollinearity 
ondition is satis�ed. Furthermore we introdu
e three variants of FGCRO-DR that only di�er inthe formulation of the generalized eigenvalue problem for the harmoni
 Ritz pair information and investigate theirmain properties. Finally we demonstrate the e�e
tiveness of the algorithms on a 
hallenging appli
ation in quantum
hromodynami
s.Key words. �exible or inner-outer Krylov subspa
e methods, variable pre
onditioning, de�ation, iterativesolverAMS subje
t 
lassi�
ations. 65F10, 65N22, 15A061. Introdu
tion. In re
ent years, several authors studied inner-outer Krylov subspa
e meth-ods that allow variable pre
onditioning for the iterative solution of large sparse linear systems ofequations. One of the �rst papers des
ribing a subspa
e method with variable pre
onditioning isdue to Axelsson and Vassilevski who proposed the Generalized Conjugate Gradient method [2℄.See also [1, Se
tion 12.3℄ for additional referen
es. Sin
e then, numerous methods have been pro-posed to address the symmetri
, non-symmetri
 or non-Hermitian 
ases; these in
lude FlexibleConjugate Gradient [23℄, Flexible GMRES (FGMRES) [27℄, Flexible QMR [34℄ and GMRESR [39℄among others. This 
lass of methods is required when pre
onditioning with a di�erent (possiblynonlinear) operator at ea
h iteration of a subspa
e method is 
onsidered. This notably o

urswhen adaptive pre
onditioners using information obtained from previous iterations [3, 14℄ are usedor when inexa
t solutions of the pre
onditioning system using e.g. adaptive 
y
ling strategy inmultigrid [24℄ or approximate interior solvers in domain de
omposition methods [35, Se
tion 4.3℄are 
onsidered. The latter situation is frequent when solving very large systems of linear equationsresulting from the dis
retization of partial di�erential equations in three dimensions. Thus �exibleKrylov subspa
e methods have gained a 
onsiderable interest in the past years and are subje
t toboth theoreti
al and numeri
al studies [31℄. We refer the reader to [32, Se
tion 10℄ for additional
omments on �exible methods.When non variable pre
onditioning is 
onsidered, the full GMRES method [30℄ is often 
hosenfor the solution of non-symmetri
 or non-Hermitian linear systems be
ause of its robustness and itsminimum residual norm property [29℄. Nevertheless to 
ontrol both the memory requirements andthe 
omputational 
ost of the orthogonalization s
heme, restarted GMRES is preferred; it 
orre-sponds to a s
heme where the maximal dimension of the approximation subspa
e is �xed. It meansin pra
ti
e that the orthonormal basis built is thrown away. Sin
e some information is dis
arded atthe restart, the 
onvergen
e may stagnate and is expe
ted to be slower 
ompared to full GMRES.Nevertheless to retain the 
onvergen
e rate a number of te
hniques have been proposed; they fallin the 
lass of augmented and de�ated methods; see e.g. [4, 10, 11, 19, 28℄. De�ated methods
ompute spe
tral information at a restart and use this information to improve the 
onvergen
e ofthe subspa
e method. One of the most re
ent pro
edure based on a de�ation approa
h is GMRESwith de�ated restarting (GMRES-DR) [21℄. This method redu
es to restarted GMRES when no
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2de�ation is applied, but may provide a mu
h faster 
onvergen
e than restarted GMRES for well
hosen de�ation spa
es as des
ribed in [21℄.Quite re
ently a new minimum residual norm subspa
e method based on GMRES allowingde�ated restarting and variable pre
onditioning has been proposed in [17℄. It mainly attemptedto 
ombine the numeri
al features of GMRES with de�ated restarting and the �exibility propertyof FGMRES. Numeri
al experiments have shown the e�
ien
y of Flexible GMRES with de�atedrestarting (FGMRES-DR) on both a
ademi
 and industrial examples. In this paper we study anew minimum residual norm subspa
e method based on the Generalized Conjugate Method withinner Orthogonalization (GCRO) [9℄ allowing de�ated restarting and variable pre
onditioning. Itis named Flexible Generalized Conjugate Residual Method with Inner Orthogonalization and De-�ated Restarting (FGCRO-DR) and 
an be viewed as an extension of GCRO-DR [26℄ to the 
aseof variable pre
onditioning. A major advantage of FGCRO-DR over FGMRES-DR is its ability tosolve sequen
e of linear systems (where both the left- and right-hand sides 
ould 
hange) throughre
y
ling [26℄. Although important this latter issue is not addressed in the paper and we 
on
en-trate on the 
ase of a single linear system. In [26℄ Parks et al. mentioned that GCRO-DR andGMRES-DR were algebrai
ally equivalent i.e. both methods produ
e the same iterates in exa
tarithmeti
 when solving the same given linear system starting from the same initial guess. Whenvariable pre
onditioning is 
onsidered, it seems therefore natural to ask whether FGCRO-DR andFGMRES-DR 
ould be also algebrai
ally equivalent. We address this question in this paper andthe main theoreti
al developments that are proposed will help us to answer this question. The main
ontributions of the paper are then twofold. First we prove that FGCRO-DR and FGMRES-DR
an be 
onsidered as algebrai
ally equivalent if a 
ollinearity 
ondition between two 
ertain ve
torsis satis�ed at ea
h 
y
le. When 
onsidering non variable pre
onditioning, these theoreti
al devel-opments will also allow us to show the un
onditional algebrai
 equivalen
e between GCRO-DR andGMRES-DR that was stated without proof in [26℄. Se
ondly we extend the initial framework ofFGCRO-DR and introdu
e three variants of FGCRO-DR that only di�er in the formulation of thegeneralized eigenvalue problem for the harmoni
 Ritz information. While one of them 
orrespondsto the method brie�y des
ribed in [18℄, the two others are new to the best of our knowledge. Weanalyze their 
orresponding main properties and show their respe
tive interest in an appli
ation inquantum 
hromodynami
s, where variable pre
onditioning is required.This paper is organized as follows. In Se
tion 2 we introdu
e the general ba
kground of thisstudy. We brie�y re
all the main properties of FGMRES-DR and then introdu
e the FGCRO-DRmethod both from a mathemati
al and algorithmi
 points of view. Se
tion 3 is mainly devoted tothe analysis of both �exible methods. Therein we show that both methods 
an be algebrai
allyequivalent in the �exible 
ase if a 
ertain 
ollinearity 
ondition is satis�ed at ea
h 
y
le. In Se
tion4 we propose three variants of FGCRO-DR, highlight noteworthy di�eren
es and �nally 
omparetheir respe
tive 
omputational 
osts. Furthermore we demonstrate the e�e
tiveness of the threealgorithms on a 
hallenging appli
ation in quantum 
hromodynami
s in Se
tion 5. Finally we drawsome 
on
lusions and perspe
tives in Se
tion 6.2. Flexible Krylov methods with restarting.2.1. General setting.Notation. Throughout this paper we denote ‖.‖ the Eu
lidean norm, Ik ∈ Ck×k the identitymatrix of dimension k and 0i×j ∈ Ci×j the zero re
tangular matrix with i rows and j 
olumns.Given N ∈ Cn×m ΠN⊥ = In−N N † will represent the orthogonal proje
tor onto range(N)⊥, where
† refers to the Moore-Penrose pseudoinverse operation. Finally given Zm = [z1, · · · , zm] ∈ Cn×m,we will usually de
ompose Zm into two submatri
es de�ned as Zk = [z1, · · · , zk] ∈ C

n×k and
Zm−k = [zk+1, · · · , zm] ∈ Cn×(m−k).Setting. We fo
us on minimum residual norm based subspa
e methods that allow �exiblepre
onditioning for the iterative solution of

Ax = b, A ∈ C
n×n, x, b ∈ C

n (2.1)given an initial ve
tor x0 ∈ Cn. In this paper A is supposed to be nonsingular. Flexible methodsrefer to a 
lass of methods where the pre
onditioner is allowed to vary at ea
h iteration. We refer



3the reader to e.g. [32℄ for a general introdu
tion on Krylov subspa
e methods and to [32, Se
tion10℄ and [29, Se
tion 9.4℄ for a review on �exible methods. The minimum residual norm GMRESmethod [30℄ has been extended by Saad [27℄ to allow variable pre
onditioning. The resultingalgorithm known as FGMRES(m) relies on the Arnoldi relation
AZm = Vm+1H̄m, (2.2)where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) has orthonormal 
olumns and H̄m ∈ C(m+1)×m is upperHessenberg. We denote Mj the pre
onditioning operator at iteration j and remark that Mj maybe a nonlinear pre
onditioning fun
tion. We will then denoteMj(v) the a
tion ofMj on a ve
tor v.In (2.2), the 
olumns of Vm+1 form an orthonormal basis of the subspa
e spanned by the followingve
tors

{r0, Az1, · · · , Azm} with r0 = b − Ax0whereas Zm = [z1, · · · , zm] and Vm = [v1, · · · , vm] are related by
Zm = [M1(v1), · · · ,Mm(vm)] with v1 =

r0

‖r0‖
.The minimization problem min ‖b − Ax‖ is then solved as

xm = x0 + Zmy∗,where y∗ is the solution of the following least-squares problem of size (m + 1) × m

y∗ = argminy∈Cm‖r0 − AZmy‖ = argminy∈Cm‖‖r0‖ e1 − H̄my‖,where e1 denotes the �rst 
anoni
al ve
tor of C
m+1. Flexible subspa
e methods with restartingare based on a pro
edure where the 
onstru
tion of the subspa
e is stopped after a 
ertain numberof steps (denoted by m in this paper with m < n). The method is then restarted mainly to 
ontrolboth the memory requirements and the 
ost of the orthogonalization s
heme. In FGMRES(m) therestarting 
onsists in taking as an initial guess the past iterate xm asso
iated with the smallestresidual norm.The main fo
us of this paper is to present minimum residual norm subspa
e methods withde�ated restarting that allow �exible pre
onditioning. De�ated restarting aims at determining anapproximation subspa
e of dimension m as a dire
t sum of two subspa
es of smaller dimension,where one of these subspa
es will 
ontain relevant spe
tral information that will be kept for thenext 
y
le. We refer the reader to e.g. [28℄ and [32, Se
tion 9℄ for a review on augmented andde�ated methods. Flexible methods with de�ated restarting will notably satisfy the following�exible Arnoldi relation

AZm = Vm+1H̄m with V H
m+1 Vm+1 = Im+1, (2.3)where H̄m ∈ C(m+1)×m is not ne
essarily of upper Hessenberg form. In this paper we 
all thisrelation a �exible Arnoldi-like relation due to its similarity to relation (2.2).Stagnation and breakdown. We refer the reader to [31, Se
tion 6℄ for general 
omments anda detailed dis
ussion on the possibility of both breakdown and stagnation in �exible inner-outerKrylov subspa
e methods. Although important, these issues are not addressed in this paper andwe assume that no breakdown o

urs in the inner-outer subspa
e methods that will be proposed.2.2. Flexible GMRES with de�ated restarting. A number of te
hniques have been pro-posed to 
ompute spe
tral information at a restart and use this information to improve the 
onver-gen
e rate of the Krylov subspa
e methods; see, e.g., [19, 20, 21, 28℄. These te
hniques have beenex
lusively developed in the 
ase of a �xed pre
onditioner. Among others GMRES-DR is one ofthose methods. It fo
uses on removing (or de�ating) the eigenvalues of smallest magnitude. A fullsubspa
e of dimension k, k < m (and not only the approximate solution with minimum residual



4norm) is now retained at the restart and the su

ess of this approa
h has been demonstrated onmany a
ademi
 examples [19℄. Approximations of eigenvalues of smallest magnitude are obtainedby 
omputing harmoni
 Ritz pairs of A with respe
t to a 
ertain subspa
e [21℄. We present herea de�nition of a harmoni
 Ritz pair equivalent to the one introdu
ed in [25, 33℄; it will be of keyimportan
e when de�ning appropriate de�ation strategies.Definition 2.1. Harmoni
 Ritz pair. Consider a subspa
e U of C
n. Given B ∈ C

n×n, θ ∈ Cand y ∈ U , (θ, y) is a harmoni
 Ritz pair of B with respe
t to U if and only if
By − θ y ⊥ B Uor equivalently, for the 
anoni
al s
alar produ
t,

∀w ∈ range(B U) wH (By − θ y) = 0.We 
all y a harmoni
 Ritz ve
tor asso
iated with the harmoni
 Ritz value θ.As in the 
ase of �xed pre
onditioning, de�ated restarting may also improve the 
onvergen
erate of �exible subspa
e methods. In [17℄ a de�ated restarting pro
edure has been proposed for theFGMRES algorithm. The i-th 
y
le of the resulting algorithm 
alled FGMRES-DR is now brie�ydes
ribed and we denote r
(i−1)
0 = b−Ax

(i−1)
0 the residual obtained at the end of the previous 
y
le.Based on the Arnoldi-like relation (2.3), the de�ation pro
edure proposed in [17, Proposition1℄ relies on the use of k harmoni
 Ritz ve
tors Yk = VmPk of AZmV H

m with respe
t to range(Vm),where Yk ∈ Cn×k and Pk ∈ Cm×k. Next, the QR fa
torization of the following (m + 1) × (k + 1)matrix
[[

Pk

01×k

]
V H

m+1 r
(i−1)
0

]
=

[[
Pk

01×k

]
c − H̄my∗

] with r
(i−1)
0 = Vm+1(c − H̄my∗)is performed. This allows us to 
ompute new matri
es Zk ∈ Cn×k, Vk+1 ∈ Cn×(k+1) and H̄k ∈

C
(k+1)×k su
h that

A Zk = Vk+1 H̄k,

V H
k+1 Vk+1 = Ik+1,

range([Yk, r
(i−1)
0 ]) = range(Vk+1)where H̄k is a (k + 1) × k re
tangular matrix. FGMRES-DR then 
arries out m − k Arnoldisteps with �exible pre
onditioning and starting ve
tor vk+1 while maintaining orthogonality to Vkleading to

A [zk+1, · · · , zm] = [vk+1, · · · , vm+1] H̄m−k and V H
m+1 Vm+1 = Im+1.We note that H̄m−k ∈ C(m−k+1)×(m−k) is upper Hessenberg. At the end of the i-th 
y
le this givesthe �exible Arnoldi-like relation

A Zm = Vm+1 H̄m,where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) and H̄m ∈ C(m+1)×m. We note that H̄m is no more upperHessenberg due to the leading dense (k + 1) × k submatrix H̄k. At the end of the i-th 
y
le, anapproximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual norm ‖b−A(x

(i−1)
0 +Zmy)‖over the spa
e x

(i−1)
0 + range(Zm), the 
orresponding residual being r

(i)
0 = b − Ax

(i)
0 , with r

(i)
0 ∈

range(Vm+1). We refer the reader to [17℄ for the 
omplete derivation of the method and numeri
alexperiments showing the e�
ien
y of FGMRES-DR on both a
ademi
 and industrial examples.



52.3. Flexible GCRO with de�ated restarting. GCRO-DR [26℄ - a 
ombination of GMRES-DR and GCRO - is a Krylov subspa
e method that allows de�ated restarting and subspa
e re
y
lingsimultaneously. This latter feature is parti
ularly interesting when solving sequen
es of linear sys-tems with possibly di�erent left- or right-hand sides. As pointed out in [26℄, GCRO-DR is attra
tivebe
ause any subspa
e may be re
y
led. In this paper we restri
t the presentation to the 
ase of asingle linear system as proposed in (2.1).GCRO and GCRO-DR belong to the family of inner-outer methods [1, Ch. 12℄ where theouter iteration is based on GCR, a minimum residual norm method proposed by Eisenstat, Elmanand S
hultz [13℄. To this end GCR maintains a 
orre
tion subspa
e spanned by range(Zm) and anapproximation subspa
e spanned by range(Vm), where Zm, Vm ∈ Cn×m satisfy
A Zm = Vm,

V H
m Vm = Im.The optimal solution of the minimization problem min ‖b−Ax‖ over the subspa
e x0 +range(Zm)is then found as xm = x0 + Zm V H

m r0. Consequently rm = b − A xm satis�es
rm = r0 − Vm V H

m r0 = ΠV ⊥
m

r0, rm ⊥ range(Vm).In [9℄ de Sturler proposed an improvement to GMRESR [39℄, an inner-outer method based onGCR in the outer part and GMRES in the inner part respe
tively. He suggested that the inneriteration takes pla
e in a subspa
e orthogonal to the outer Krylov subspa
e. In this inner iterationthe proje
ted residual equation
(In − Vm V H

m )Az = (In − Vm V H
m )rm

(In − Vm V H
m )Az = rmis solved only approximately. If a minimum residual norm subspa
e method is used in the inneriteration to solve this proje
ted residual linear system, the residual over both the inner and outersubspa
es would be minimized. This leads to the GCRO (Generalized Conjugate Residual methodwith inner Orthogonalization) Krylov subspa
e method [9℄. Numeri
al experiments [9℄ indi
ate thatthe resulting method may perform better than inner-outer methods (without orthogonalizations)in some 
ases.The GCRO method with de�ated restarting (named GCRO-DR) based on harmoni
 Ritz valueinformation has been proposed in [26℄. An approximate invariant subspa
e is used for de�ationfollowing 
losely the GMRES-DR method. We refer the reader to [26℄ for a des
ription of thismethod, algorithms and implementation details. We present now a new variant of GCRO-DR thatallows �exible pre
onditioning by explaining the di�erent steps o

urring during the i-th 
y
le.Again we denote r

(i−1)
0 = b − Ax

(i−1)
0 the residual obtained at the end of the previous 
y
le.We suppose that a �exible Arnoldi-like relation of type (2.3) holds. As in Se
tion 2.2 animportant point is to spe
ify whi
h harmoni
 Ritz information is sele
ted. Given a 
ertain matrix

Wm ∈ Cn×m, to be spe
i�ed later on, the de�ation pro
edure relies on the use of k harmoni
 Ritzve
tors Yk = WmPk of AZmW †
m with respe
t to range(Wm), where Yk ∈ Cn×k and Pk ∈ Cm×k.

Wm will notably satisfy a property detailed in Lemma 3.3 and we point out that the 
al
ulationof W †
m is not needed in the pra
ti
al implementation of the algorithm (see further dis
ussion inSe
tion 4.2.1). Next, the QR fa
torization of the m × k matrix H̄mPk is performed. This allowsus to obtain new matri
es Zk, Vk ∈ Cn×k su
h that

A Zk = Vk,

V H
k Vk = Ik,by using information related to the QR fa
torization and the �exible Arnoldi relation (2.3) ex
lu-sively. Then the inner iteration is based on the approximate solution of

(In − Vk V H
k )Az = (In − Vk V H

k )r
(i−1)
0 = r

(i−1)
0 .



6For that purpose FGCRO-DR then 
arries out m − k steps of the Arnoldi method with �exiblepre
onditioning leading to
(In − VkV H

k ) A [zk+1, · · · , zm] = [vk+1, · · · , vm+1] H̄m−k

(In − VkV H
k ) A Zm−k = Vm−k+1 H̄m−kwith vk+1 = r

(i−1)
0 /||r

(i−1)
0 ‖. At the end of the 
y
le this gives the �exible Arnoldi-like relation

A [Zk, Zm−k] = [Vk, Vm−k+1]

[
Ik V H

k A Zm−k

0m−k+1×k H̄m−k

]

A Zm = Vm+1 H̄m,where Zm ∈ Cn×m, Vm+1 ∈ Cn×(m+1) and H̄m ∈ C(m+1)×m. At the end of the i-th 
y
le, an ap-proximate solution x
(i)
0 ∈ Cn is then found by minimizing the residual norm ‖b−A(x

(i−1)
0 +Zmy)‖over the spa
e x

(i−1)
0 + range(Zm), the 
orresponding residual being r

(i)
0 = b − Ax

(i)
0 , with r

(i)
0 ∈

range(Vm+1).2.4. Algorithms. Details of the FGCRO-DRmethod are given in Algorithm 1, where Matlab-like notations are adopted (for instan
e in step 7b, Q(1 : m, 1 : k) denotes the submatrix made ofthe �rst m rows and �rst k 
olumns of matrix Q). For the sake of 
ompleteness the FGMRES-DR algorithm has been also des
ribed with notations 
hosen as 
lose as possible to FGCRO-DRto make a 
ode 
omparison as easy as possible. Con
erning Algorithm 1 we make the following
omments:
• As dis
ussed later the 
omputation of W †

m in step 5a is not required thanks to the de�nitionof the harmoni
 Ritz pair (see De�nition 2.1).
• As pointed out by Morgan [21℄ and Parks et al. [26℄ we might have to adjust k during thealgorithm to in
lude both the real and imaginary parts of 
omplex eigenve
tors.
• Although notations are similar in steps 6a and 6b, we remark that the respe
tive orthogonaland triangular fa
tors do not have the same dimensions. In FGCRO-DR Q ∈ C(m+1)×kand R ∈ Ck×k, whereas Q ∈ C(m+1)×(k+1) and R ∈ C(k+1)×(k+1) in the FGMRES-DRalgorithm.
• The matri
es Zk and Vk (su
h that AZk = Vk and V H

k Vk = Ik) are obtained in steps 8aand 9a (see also Lemma 3.4).
• In steps 10a and 10b M

(i)
j denotes the possibly nonlinear pre
onditioning operator atiteration j during the i-th 
y
le.

• In step 11b Bk×m−k ∈ Ck×(m−k) results from the orthogonalization of [vk+2, · · · , vm+1]against Vk+1.
• In FGMRES-DR the 
omputation of the residual at the end of the 
y
le (step 14) 
anbe performed at a 
heaper 
ost. Indeed it 
an be shown that r0 = Vk+1(c − H̄my∗) [17,Proposition 3℄.3. Analysis of FGMRES-DR and FGCRO-DR. We 
ompare now the �exible variantsof GMRES-DR and GCRO-DR introdu
ed in Se
tions 2.2 and 2.3 respe
tively. In the following weuse the supers
ript # to denote quantities related to the FGMRES-DR algorithm e.g. Y #

k denotethe set of harmoni
 Ritz ve
tors 
omputed in the FGMRES-DR algorithm. When analyzing bothalgorithms we will suppose that identi
al pre
onditioning operators are used in steps 10a and 10brespe
tively i.e.
∀i, ∀j ∈ {k + 1, · · · , m}, M

(i)
j (.) = M

(i)
j

#
(.) . (3.1)3.1. Equivalent pre
onditioning matrix. Lemma 3.1. Equivalent pre
onditioning ma-trix. Suppose that Vp = [v1, · · · , vp] ∈ Cn×p and Zp = [M1(v1), · · · ,Mp(vp)] ∈ Cn×p obtainedduring a 
y
le of a �exible method with (standard or de�ated) restarting (with 1 ≤ p ≤ m < n) areboth of full rank i.e. range(Vp) = range(Zp) = p. We will then denote MVp

∈ Cn×n a nonsingularequivalent pre
onditioning matrix de�ned as
Zp = MVp

Vp. (3.2)



7Algorithm 1 Flexible GCRO-DR(m, k) and Flexible GMRES-DR(m, k)1: 
hoose m, k, tol and x02: r0 = b− Ax0, β = ‖r0‖, v1 = r0/β, c = βe1, i← 03: Apply FGMRES(m) to obtain H̄m, Zm, Vm+1 su
h that AZm = Vm+1H̄m, y∗ = arg min
y∈Cm

‖c − H̄my‖,
x
(0)
0 = x0 + Zmy∗, r

(0)
0 = b−Ax

(0)
0 = Vm+1(c− H̄my∗), Wm = Vm4: while ‖r(i)

0 ‖ > ‖b‖ × tol do i← i + 1FGCRO-DR5a: Compute k harmoni
 Ritz ve
-tors of AZmW †
m with respe
t to

range(Wm) and store them in Yk.De�ne Pk su
h that Yk = WmPk.6a: Q R = H̄mPk7a: Wk = WmPkR−18a: Vk = Vm+1Q9a: Zk = ZmPkR−110a: Apply m − k �exible pre-
onditioned Arnoldi stepswith (In − VkVk
H)A and

vk+1 = r
(i−1)
0 /‖r

(i−1)
0 ‖ su
h that

(In − VkVk
H)A

ˆ

zk+1, . . . , zm
˜

=
ˆ

vk+1, . . . , vm+1
˜

H̄m−k with
zj =M

(i)
j (vj )11a: Set H̄m =

»

Ik V H
k AZm−k

0m−k+1×k H̄m−k

–yielding A
ˆ

z1, . . . , zm
˜

=
ˆ

v1, . . . , vm+1
˜

H̄mand de�ne Wm =
ˆ

Wk Vm(1 : n, k + 1 : m)
˜

FGMRES-DR5b: Compute k harmoni
 Ritz ve
-tors of AZmV H
m with respe
t to

range(Vm) and store them in Yk.De�ne Pk su
h that Yk = VmPk.6b: QR =

»»

Pk

01×k

–

c− H̄my∗

–7b: H̄k = Q HH̄mQ( 1 : m , 1 : k)8b: Vk+1 = Vm+1Q9b: Zk = ZmQ( 1 : m , 1 : k)10b: Apply m − k �exible pre
on-ditioned Arnoldi steps with
A and vk+1 while main-taining orthogonality to Vksu
h that A

ˆ

zk+1, . . . , zm
˜

=
ˆ

vk+1, . . . , vm+1
˜

H̄m−kwith zj = M
(i)
j (vj ) and

V H
m+1 Vm+1 = Im+111b: Set H̄m =

»»

H̄k

0m−k×k

– »

Bk×m−k

H̄m−k

––yielding A
ˆ

z1, . . . , zm
˜

=
ˆ

v1, . . . , vm+1
˜

H̄m12: y∗ = arg min
y∈Cm

‖c− H̄my‖ with c = V H
m+1r

(i−1)
013: x

(i)
0 = x

(i−1)
0 + Zmy∗14: r

(i)
0 = b− Ax

(i)
015: end whileSu
h a matrix represents the a
tion of the nonlinear operators Mj on the set of ve
tors vj (with

j = 1, · · · , p). It 
an be 
hosen e.g. as MVp
= [Zp Zp][Vp Vp]

−1 where Zp (respe
tively Vp) denotesan orthogonal 
omplement of Zp (respe
tively Vp) in Cn.3.2. Relations between Zm and Wm and Z#
m and V #

m . We denote M
(0)
Wm

and M
(0)

V #
m

theequivalent pre
onditioning matri
es used in the initialization phase of both algorithms (step 3 inAlgorithm 1). With this notation we remark that the following relations hold
Zm = M

(0)
Wm

Wm = Z#
m = M

(0)

V #
m

V #
m . (3.3)We �rst analyze the relation between Z#

m and V #
m .Lemma 3.2. At the end of the i-th 
y
le of the FGMRES-DR method Z#

m and V #
m satisfy

Z#
m = M

(i)

V #
m

#
V #

m = [M
(i−1)#

V #
m

V #
k , M

(i)#

V #
m−k

V #
m−k]. (3.4)Proof.The initialization phase leads to the relation Z#

m = M
(0)

V #
m

V #
m . We suppose that at the endof the i − 1th 
y
le the following relation holds: Z#

m = M
(i−1)

V #
m

#
V #

m . The orthogonal fa
tor
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Q# ∈ C(m+1)×(k+1) obtained in step 6b 
an be de
omposed as follows

Q# =
[
Q#

k ρ
]

=

[[
Q̄

01×k

]
ρ

] (3.5)where Q#
k ∈ C(m+1)×k, ρ ∈ Cm+1 and Q̄ ∈ Cm×k. At step 9b of the i-th 
y
le Z#

k is de�ned as
Z#

k = Z#
mQ̄ = M

(i−1)

V #
m

#
V #

m Q̄ = M
(i−1)

V #
m

#
V #

k .The proof is then 
ompleted sin
e Z#
m−k = [M

(i)#
k+1 (v#

k+1), · · · ,M
(i)
m

#
(v#

m)] = M
(i)#

V #
m−k

V #
m−k at theend of step 10b.The next lemma details a relation between Zm and Wm that is satis�ed in the FGCRO-DRmethod.Lemma 3.3. At the end of the i-th 
y
le of the FGCRO-DR method Zm and Wm satisfy

Zm = M
(i)
Wm

Wm = [M
(i−1)
Wm

Wk, M
(i)
Wm−k

Wm−k]. (3.6)Proof. The initialization phase leads to the relation Zm = M
(0)
Wm

Wm. We suppose that at theend of the i− 1th 
y
le the following relation holds: Zm = M
(i−1)
Wm

Wm. At step 9a of the i-th 
y
le
Zk is de�ned as

Zk = ZmPkR−1

= M
(i−1)
Wm

WmPkR−1

= M
(i−1)
Wm

Wk.The proof is then 
ompleted sin
e Zm−k = [M
(i)
k+1(wk+1), · · · ,M

(i)
m (wm)] = M

(i)
Wm−k

Wm−k at theend of step 11a.Lemma 3.2 and 3.3 show that Z#
m, V #

m , Zm and Wm satisfy a similar relation that will play a
entral role in Se
tion 3.3. We investigate next the relation between Zm and Vm.Lemma 3.4. At the end of the i-th 
y
le of the FGCRO-DR method Zm and Vm satisfy
[AZk, Zm−k] = [Vk, M

(i)
Vm−k

Vm−k]. (3.7)Proof. Due to the Arnoldi-like relation (2.3), AZk 
an be also written as
AZk = AZmPkR−1 (3.8)

= Vm+1H̄mPkR−1 (3.9)
= Vm+1Q (3.10)
= Vk. (3.11)The proof is then 
ompleted sin
e Zm−k = [M

(i)
k+1(vk+1), · · · ,M

(i)
m (vm)] = M

(i)
Vm−k

Vm−k at the endof step 11a.We 
on
lude this se
tion by presenting a te
hni
al lemma related to the FGMRES-DR method.Lemma 3.5. During the i-th 
y
le of the FGMRES-DR method, v#
k+1 satis�es the followingrelation

v#
k+1 = v̄#

k+1/||v̄
#
k+1|| with v̄#

k+1 = Π[Y #
k

]⊥r
(i−1)#
0 (3.12)where r

(i−1)#
0 = b − Ax

(i−1)#
0 denotes the residual obtained at the end of the (i − 1)-th 
y
le.Proof. In (3.5) ρ ∈ Cm+1 is de�ned as

ρ =
ρ̄

||ρ̄||
with ρ̄ = (Im+1 − Q#

k Q#H
k )(c# − H̄#

my#∗). (3.13)



9A 
onsequen
e of the representation of Q#
k in (3.5) is that the matrix V #

m+1Q
#
k 
an be written as

V #
m+1Q

#
k = V #

m Q̄. (3.14)Using (3.13) and (3.14) we obtain
v̄#

k+1 = V #
m+1ρ̄ = r

(i−1)#
0 − V #

m+1Q
#
k Q#

k

H
V #H

m+1V
#
m+1(c

# − H̄#
my#∗).

v̄#
k+1 = r

(i−1)#
0 − V #

m Q̄Q̄HV #H
m V #

m+1(c
# − H̄#

my#∗).Sin
e V #
m Q̄ has orthonormal 
olumns this last expression now be
omes

v̄#
k+1 = r

(i−1)#
0 − V #

m Q̄(V #
m Q̄)Hr

(i−1)#
0 = Π[V #

m Q̄]⊥r
(i−1)#
0 .Sin
e Q̄ is the orthogonal fa
tor of the QR de
omposition of P#

k , we have the following relation
range(V #

m P#
k ) = range(V #

m Q̄).Sin
e by de�nition Y #
k = V #

m P#
k the proof is then 
ompleted.3.3. Analysis of the FGMRES-DR and FGCRO-DRmethods (Algorithm 1). Lemma3.3 has already des
ribed an important property satis�ed by Wm in the FGCRO-DR method pro-posed in Algorithm 1. We will analyze further the relation between the FGMRES-DR and FGCRO-DR methods. The next theorem states that the two �exible methods generate the same iterates inexa
t arithmeti
 under some 
onditions involving notably two ve
tors.Theorem 3.6.We denote r

(i)
0 = b − Ax

(i)
0 the residual obtained at the end of the i-th 
y
le of the FGCRO-DR method (see step 14 of Algorithm 1). We suppose that Lemma 3.1 holds and that the sameequivalent pre
onditioning matrix is obtained at the end of the i-th 
y
le of both FGCRO-DR andFGMRES-DR algorithms i.e. M

(i)
Wm

= M
(i)#

V #
m

. Under this assumption the harmoni
 Ritz ve
tors
Y #

k and Yk 
an be 
hosen equal during the i + 1-th 
y
le. If in addition there exists a real-valuedpositive 
oe�
ient η su
h that
Π

[Yk,r
(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (ΠY ⊥

k
r
(i)
0 /‖ΠY ⊥

k
r
(i)
0 ‖) = η Π

[Yk,r
(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖) (3.15)in the FGCRO-DR algorithm, then both algorithms generate the same iterates in exa
t arithmeti
and

range(Vm+1) = range(V #
m+1), (3.16)

range(Zm) = range(Z#
m), (3.17)with

Vm+1 = [V #
k+1Q̂, vk+2, · · · , vm+1], V #

m+1= [V #
k+1, vk+2, · · · , vm+1], (3.18)

Zm = [Z#
k+1X̂, zk+2, · · · , zm], Z#

m = [Z#
k+1, zk+2, · · · , zm], (3.19)where Q̂ ∈ C(k+1)×(k+1) is a unitary matrix and X̂ ∈ C(k+1)×(k+1) is a nonsingular triangularmatrix.Proof. The whole proof is performed in three parts assuming that we analyze the i + 1-th
y
le of ea
h algorithm. Suppose that at the beginning of the i + 1-th 
y
le (step 4) there exista unitary matrix Q̂ ∈ C(k+1)×(k+1) and a nonsingular matrix X̂ ∈ C(k+1)×(k+1) su
h that thefollowing relations hold

Vk+1 = V #
k+1Q̂, (3.20)

Zk+1 = Z#
k+1X̂, (3.21)

[vk+2, · · · , vm+1] =
[
v#

k+2, · · · , v#
m+1

]
, (3.22)

[zk+2, · · · , zm] =
[
z#

k+2, · · · , z#
m

]
. (3.23)



10We will then prove the existen
e of a unitary matrix Q̂′ ∈ C(k+1)×(k+1) and of a nonsingular matrix
X̂ ′ ∈ C

(k+1)×(k+1) su
h that at the end of the i + 1-th 
y
le
Vk+1 = V #

k+1Q̂
′, (3.24)

Zk+1 = Z#
k+1X̂

′, (3.25)
[vk+2, · · · , vm+1] =

[
v#

k+2, · · · , v#
m+1

]
, (3.26)

[zk+2, · · · , zm] =
[
z#

k+2, · · · , z#
m

]
. (3.27)Regarding FGCRO-DR we assume that at the beginning of the i + 1-th 
y
le (step 4)

range(Wm) = range(Vm). (3.28)We will also prove that relation (3.28) holds at the end of the i + 1-th 
y
le. Note that rela-tions (3.16), (3.17) and (3.28) are obviously satis�ed before the �rst 
y
le, be
ause steps 1 to 3are identi
al in both algorithms yielding Vm+1 = V #
m+1, Zm = Z#

m and Wm = Vm. Finally a
onsequen
e of (3.20), (3.22), (3.21) and (3.23) is that the residual of the linear system Ax = b inboth algorithms are equal at the beginning of the i + 1-th 
y
le i.e. r
(i)
0 = r

(i)#
0 . We will denote r0this residual for ease of notation.Part I - Steps 5a and 5b. In this part, we prove that we 
an 
hoose Y #

k = Yk with Yk =

WmPk = V #
m P#

k .FGCRO-DR. Let yj = Wmpj be the j-th 
olumn of Yk. Sin
e yj is a harmoni
 Ritz ve
tor of
AZmW †

m with respe
t to range(Wm), the following relation holds (see De�nition (2.1))
(AZmW †

mWm)H (AZmW †
myj − θjyj) = 0whi
h is equivalent to

ZH
mAH (AZmpj − θjWmpj) = 0. (3.29)Due to (3.21) and (3.23) there exists a nonsingular matrix X ∈ Cm×m that relates Zm and Z#

m

Zm = Z#
mX. (3.30)Using the last equality (3.30), the harmoni
 Ritz relation (3.29) now be
omes

XHZ#
m

H
AH (AZ#

mXpj − θjWmpj) = 0.From Lemma 3.3 and relation (3.30) we dedu
e
XHZ#

m

H
AH (AZ#

mXpj − θjM
(i)−1

Wm
Zmpj) = 0,

XHZ#
m

H
AH (AZ#

mXpj − θjM
(i)#

V #
m

−1
Z#

mXpj) = 0,where we have used expli
itly the assumption on the equivalent pre
onditioning matrix obtainedat the end of the i-th 
y
le i.e. M
(i)
Wm

= M
(i)#

V #
m

. Next, the appli
ation of Lemma 3.2 leads to
XHZ#

m

H
AH (AZ#

mV #
m

H
V #

m Xpj − θjV
#
m Xpj) = 0. (3.31)Sin
e X is nonsingular the last equality proves that V #

m Xpj is a harmoni
 Ritz ve
tor of AZ#
mV #

m
Hwith respe
t to range(V #

m ) asso
iated to the Ritz value θj . From relations (3.29) and (3.31) wededu
e that the harmoni
 Ritz ve
tors 
an be 
hosen to be equal and 
orrespond to the sameharmoni
 Ritz values. In this 
ase they notably satisfy the following equality
∀j ∈ {1, · · · , k}, V #

m Xpj = Wmpj i.e. p#
j = Xpj. (3.32)We will then denote Y = Y #

k = Yk the k harmoni
 Ritz ve
tors 
omputed in either FGCRO-DRor FGMRES-DR. We assume that the harmoni
 Ritz values θj (1 ≤ j ≤ k) are non zero.



11Part IIa - Steps 6a to 10a, 6b to 10b. We show that at the end of steps 10a and 10b thefollowing relations hold: range(Vk+1) = range(V #
k+1) = range([Y, r

(i)
0 /‖r

(i)
0 ‖]). This result will helpus to prove the existen
e of the matrix Q̂′ introdu
ed in relation (3.24).FGCRO-DR. AZmpj − θjWmpj ∈ range(Vm+1) is orthogonal to AZm due to the de�nition ofthe harmoni
 Ritz information (3.29). Sin
e r

(i)
0 ∈ range(Vm+1) is the non zero optimum residualat the i-th 
y
le, we have (AZm)Hr

(i)
0 = 0. Thus there exists a 
oe�
ient αj ∈ C su
h that
AZmpj − θjWmpj = αjr

(i)
0 . (3.33)Using AZm = Vm+1H̄m and QR = H̄mPk we dedu
e

Vm+1H̄mpj = θjWmpj + αjr
(i)
0

Vm+1Q R = Y diag(θ1, . . . , θk) + r
(i)
0 αTwhere α = [α1, . . . , αk] ∈ Ck×1. This leads to

VkR = Y diag(θ1, . . . , θk) + r
(i)
0 αT

[
Vk, r

(i)
0 /‖r

(i)
0 ‖

]
=

[
Y, r

(i)
0 /‖r

(i)
0 ‖

] [ diag(θ1, . . . θk)R−1 0k×1

‖r
(i)
0 ‖αT R−1 1

]
. (3.34)This relation leads to the following result

range(Vk+1) = range([Y, r
(i)
0 /‖r

(i)
0 ‖]). (3.35)Similarly Wk+1 = [Wk,

r
(i)
0

‖r
(i)
0 ‖

] 
an be written as, using Y = WmPk

[Wk, r
(i)
0 /‖r

(i)
0 ‖] = [WmPkR−1,

r
(i)
0

‖r
(i)
0 ‖

]

= [Y R−1, r
(i)
0 /‖r

(i)
0 ‖]

= [Y, r
(i)
0 /‖r

(i)
0 ‖]

[
R−1 0k×1

01×k 1

]
. (3.36)From relations (3.36) and (3.35) we dedu
e that

range(Wk+1) = range(Vk+1). (3.37)This last result also proves that range(Wm) = range(Vm) at the end of the 
y
le.FGMRES-DR. Using su

essively the relations of steps 8b and 6b and r
(i)
0 = V #

m+1(c
# −

H̄#
my#∗), we dedu
e

V #
k+1R

# = V #
m+1Q

#R#

= V #
m+1

[[
P#

k

01×k

]
c# − H̄#

my#∗

]

= [V #
m P#

k , r
(i)
0 ].From the main result of Part I (V #

m P#
k = Y ) we �nally obtain

V #
k+1R

# = [Y, r
(i)
0 ] = [Y, r

(i)
0 /‖r

(i)
0 ‖]

[
Ik 0k×1

01×k ‖r
(i)
0 ‖

]
. (3.38)Sin
e R# is nonsingular we dedu
e that

range(V #
k+1) = range([Y, r

(i)
0 /‖r

(i)
0 ‖]). (3.39)Sin
e both Vk+1 and V #

k+1 have orthonormal 
olumns we dedu
e from (3.35) and (3.39) that thereexists a unitary matrix Q̂′ su
h that
Vk+1 = V #

k+1Q̂
′ (3.40)whi
h proves the relation proposed in equation (3.24).



12 Part IIb - Steps 6a to 10a, 6b to 10b. We show that at the end of steps 10a and 10b the fol-lowing relations hold: range(Zk+1) = range(Z#
k+1). This result will help us to prove the existen
eof the matrix X̂ ′ introdu
ed in relation (3.25).FGCRO-DR. Con
erningZk+1 = [Zk, zk+1], there exists a nonsingular matrixM

(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

∈

C
n×n (see Lemma 3.1) su
h that

Zk+1 = M
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Wk, r
(i)
0 /‖r

(i)
0 ‖].If T ∈ C(k+1)×(k+1) denotes the following triangular matrix

T =

[
R 0k×1

01×k 1

]

Zk+1T 
an be written as
Zk+1T = M

(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Wk, r
(i)
0 /‖r

(i)
0 ‖] T

Zk+1T = M
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖]. (3.41)where the last equality results from (3.36).FGMRES-DR. Similarly from Lemma 3.2, Z#

k+1 
an be expressed as
Z#

k+1 = M
(i+1)#

V #
k+1

V #
k+1where M

(i+1)#

V #
k+1

∈ Cn×n is nonsingular (see Lemma 3.1). If T # ∈ C(k+1)×(k+1) denotes the followingtriangular matrix
T # = R#

[
Ik 0k×1

01×k 1/‖r
(i)
0 ‖

]

Z#
k+1T

# 
an be expressed as
Z#

k+1T
# = M

(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖] (3.42)thanks to the relation (3.38). Relations (3.41) and (3.42) 
hara
terize Zk+1T and Z#

k+1T
# withrespe
t to [Y, r

(i)
0 /‖r

(i)
0 ‖]. We 
an further improve this result by showing the following equality
M

(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖] = M

(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖]. (3.43)Lemma 3.3 and Lemma 3.2 respe
tively give us two useful relations forM
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖]and M

(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖] i.e.

M
(i+1)

[Wk,r
(i)
0 /‖r

(i)
0 ‖]

[Y, r
(i)
0 /‖r

(i)
0 ‖] = [M

(i)
Wm

Y, M
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖)] (3.44)

M
(i+1)#

V #
k+1

[Y, r
(i)
0 /‖r

(i)
0 ‖] = [M

(i)#

V #
m

Y, M
(i+1)
k+1

#
(r

(i)
0 /‖r

(i)
0 ‖)]. (3.45)Thus we investigate the relation between M

(i)
Wm

Y and M
(i)#

V #
m

Y . Using su

essively relation (3.32),
Wk = WmPkR−1, Lemma 3.3, Zk = ZmPkR−1, relation (3.30) and �nally Lemma 3.2 the following



13development 
an be made
M

(i)
Wm

Y = M
(i)
Wm

WmPk

M
(i)
Wm

Y = M
(i)
Wm

WkR

M
(i)
Wm

Y = ZkR

M
(i)
Wm

Y = ZmPk

M
(i)
Wm

Y = Z#
mXPk

M
(i)
Wm

Y = M
(i)#

V #
m

V #
m XPk

M
(i)
Wm

Y = M
(i)#

V #
m

Y. (3.46)The fa
t that identi
al (possibly nonlinear) pre
onditioning operators are used in steps 10a and10b of Algorithm 1 (see relation (3.1)) allows us to write
M

(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖) = M

(i+1)
k+1

#
(r

(i)
0 /‖r

(i)
0 ‖). (3.47)Relations (3.46) and (3.47) �nally show the relation (3.43). Consequently from relations (3.41),(3.42) and (3.43) we dedu
e that there exists a nonsingular matrix X̂ ′ ∈ C(k+1)×(k+1) su
h that

Zk+1 = Z#
k+1X̂

′. (3.48)This proves the relation proposed in equation (3.25). Sin
e T and T # are both triangular, we notethat X̂ ′ = T #T−1 is also triangular.Part IIIa - Steps 10a and 10b. We �rst show that v#
k+2 = vk+2 by expressing these two quan-tities in fun
tion of r

(i)
0 and Y .FGCRO-DR. The Arnoldi relation (step 10a) yields vk+2 = v̄k+2/||v̄k+2||, where v̄k+2 = (In −

vk+1v
H
k+1)(In − VkV H

k )AM
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖). Sin
e r

(i)
0 is the optimum residual at the i-th 
y
le,i.e. (AZm)Hr

(i)
0 = 0 we have

PH
k (AZm)Hr

(i)
0 = 0,

(Vm+1H̄mPk)Hr
(i)
0 = 0,

RHV H
k r

(i)
0 = 0.This shows that V H

k vk+1 = 0 sin
e R is nonsingular. Therefore (In − vk+1v
H
k+1) and (In − VkV H

k )
ommute and from Part IIa of the proof, the following expression 
an be derived
v̄k+2 = ΠV ⊥

k+1
AM

(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖) = Π

[Y,r
(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (r

(i)
0 /‖r

(i)
0 ‖). (3.49)FGMRES-DR. The following expression for v#

k+2 = v̄#
k+2/||v̄

#
k+2|| is obtained using Lemma 3.5

v̄#
k+2 = (In − V #

k+1V
#H
k+1 )AM

(i+1)
k+1 (v#

k+1) = Π
[Y,r

(i)
0 /‖r

(i)
0 ‖]⊥

AM
(i+1)
k+1 (ΠY ⊥r

(i)
0 /‖ΠY ⊥r

(i)
0 ‖). (3.50)Due to the assumption (3.15) of Theorem 3.6 we dedu
e from (3.49) and (3.50) that v̄k+2 =

η v̄#
k+2 with η positive and therefore vk+2 = v#

k+2.Part IIIb - Steps 10a and 10b. In this part we 
ontinue the analysis of the Arnoldi pro
edurewith �exible pre
onditioning and show that vk+2+j = v#
k+2+j for j = 1, . . . , m − k − 1.For the 
ase j = 1, we introdu
e v̄k+3 and v̄#

k+3 su
h that vk+3 = v̄k+3/||v̄k+3|| and v#
k+3 =

v̄#
k+3/||v̄

#
k+3||. The appli
ation of the Arnoldi pro
edure in both algorithms leads to

v̄k+3 = (In − vk+2v
H
k+2)(In − Vk+1V

H
k+1) AM

(i+1)
k+2 (v̄k+2)

v̄#
k+3 = (In − v#

k+2v
#H
k+2)(In − V #

k+1V
#H
k+1 ) AM

(i+1)
k+2 (v̄#

k+2).



14Thus from Parts II and IIIa of the proof we obtain that vk+3 and v#
k+3 are equal. The proof 
anthen be 
ompleted by indu
tion.Results from Parts II and III justify the relation (3.26) i.e. [vk+2, · · · , vm+1] = [v#

k+2, · · · , v#
m+1].Consequently from Lemma 3.2, Lemma 3.4 and relation (3.1) we dedu
e the relation (3.27). This�nally shows the main relations (3.16) and (3.17) of Theorem 3.6 that are satis�ed at the end ofthe i + 1-th 
y
le.3.3.1. First 
onsequen
e of Theorem 3.6. Corollary 3.7. If the same �exible pre
on-ditioning operators are used in both Arnoldi pro
edures (steps 10a and 10b of Algorithm 1) and ifat ea
h 
y
le i there exists a real-valued positive 
oe�
ient ηi su
h that

Π
[Y,r

(i−1)
0 /‖r

(i−1)
0 ‖]⊥

AM
(i)
k+1(ΠY ⊥r

(i−1)
0 /‖ΠY ⊥r

(i−1)
0 ‖) = ηi Π

[Y,r
(i−1)
0 /‖r

(i−1)
0 ‖]⊥

AM
(i)
k+1(r

(i−1)
0 /‖r

(i−1)
0 ‖),FGCRO-DR and FGMRES-DR are algebrai
ally equivalent.Proof. We have already emphasized that M

(0)
Wm

= M
(0)#

V #
m

in relation (3.3). In Theorem 3.6 wehave analyzed the i + 1-th 
y
le of both algorithms assuming that M
(i)
Wm

= M
(i)#

V #
m

. First we haveproved in Part IIb the relation (3.43) and se
ondly in Parts IIIa and IIIb that [vk+2, · · · , vm] =

[v#
k+2, · · · , v#

m] and [zk+2, · · · , zm] = [z#
k+2, · · · , z#

m] respe
tively. Consequently the same equivalentpre
onditioner matrix is obtained at the end of the i + 1-th 
y
le i.e. M
(i+1)
Wm

and M
(i+1)#

V #
m


an be
hosen equal. We dedu
e that FGCRO-DR and FGMRES-DR are algebrai
ally equivalent.3.3.2. About GCRO-DR and GMRES-DR. We propose a se
ond 
onsequen
e of Theo-rem 3.6 analyzed now with a �xed pre
onditioning matrix M . Before, a straightforward reformu-lation of Lemma 3.3 and Lemma 3.2 is proposed in this 
ontext.Lemma 3.8. When a �xed right-pre
onditioning matrix M is used in FGCRO-DR, Zm and
Wm satisfy

Zm = MWm. (3.51)Proof. The appli
ation of FGMRES(m) in the initialization phase (step 3 in Algorithm 2)leads to Zm = MVm when a �xed pre
onditioning matrix M is used. Thus M
(0)
Wm

= M . Supposethat at the end of the i-th 
y
le M
(i)
Wm

= M . Sin
e
∀j, k + 1 ≤ j ≤ m, M

(i+1)
j = M,we obtain from Lemma 3.3 that Zm = M

(i+1)
Wm

Wm = [MWk, MWm−k] = MWm i.e. M
(i+1)
Wm

and
M 
an be 
hosen equal.Lemma 3.9. When a �xed right-pre
onditioning matrix M is used in FGMRES-DR, Z#

m and
V #

m satisfy
Z#

m = MV #
m . (3.52)Proof. The proof follows the same steps as in Lemma 3.8 substituting M

(i)#

V #
m

for M
(i)
Wm

.The next 
orollary details an important result related to the GCRO-DR and GMRES-DRmethods.Corollary 3.10. When a �xed right pre
onditioner is used, the GCRO-DR and GMRES-DRmethods sket
hed in Algorithm 1 are un
onditionally algebrai
ally equivalent.Proof. We denote M the �xed right pre
onditioning operator. Exploiting partial results shownin Part IIa allows us to derive the following relation that holds during the i + 1-th 
y
le:
AMY = Y diag(θ1, . . . , θk) + r

(i)
0 αT .



15Thus
Π

[Y,r
(i)
0 ]⊥

AMY = 0. (3.53)From Part IIIa we know that
v̄k+2 = Π

[Y,r
(i)
0 ]⊥

AMr
(i)
0 . (3.54)Due to (3.53) we dedu
e the following development

v̄k+2 = Π
[Y,r

(i)
0 ]⊥

AM(r
(i)
0 − Y Y †r

(i)
0 ),

v̄k+2 = Π
[Y,r

(i)
0 ]⊥

AMΠY ⊥r
(i)
0 ,

v̄k+2 = v̄#
k+2.By indu
tion it is possible to dedu
e the rest of the proof regarding v̄k+j , j > 2. Using range(V #

k+1) =
range(Vk+1) obtained in Part IIa we dedu
e that

range(V #
m ) = range(Vm) = range(Wm). (3.55)From relation (3.55), Lemma 3.8 and Lemma 3.9 we dedu
e that
range(Z#

m) = range(Zm).Consequently the minimization problem min ‖r
(i)
0 − AZmy‖ leads to the same solution for bothalgorithms at ea
h 
y
le: GCRO-DR and GMRES-DR sket
hed in Algorithm 1 are thus un
ondi-tionally algebrai
ally equivalent.4. Variants of FGCRO-DR. We explore variants of FGCRO-DR that only di�er in theformulation of the generalized eigenvalue problem for the harmoni
 Ritz information. Their 
om-putational 
ost is detailed 
arefully and their behaviour with respe
t to �xed pre
onditioning is�nally investigated.4.1. Derivation and algorithms. In Se
tion 2.3 the de�ation pro
edure relied on the use of

k harmoni
 Ritz ve
tors of AZmW †
m with respe
t to range(Wm), where Wm satis�es the propertyshown in Lemma 3.3. It is however possible to derive other variants of FGCRO-DR by 
hoosingdi�erently the way the harmoni
 Ritz information is sele
ted. Indeed at ea
h 
y
le, Zm and Vmare also available and it seems natural to exploit this feature. Thus variants of FGCRO-DR 
anbe dedu
ed by 
omputing either k harmoni
 Ritz ve
tors of AZmZ†

m with respe
t to range(Zm)or k harmoni
 Ritz ve
tors of AZmV H
m with respe
t to range(Vm). We summarize the di�erentvariants in Algorithm 2 with the same notations as in Algorithm 1. Strategy A 
orresponds tothe algorithm �rst presented in [18℄. As far as we know, Strategies B and C are new. We notethat Strategy C has been introdu
ed in Se
tion 2.3 and equivalen
e with FGMRES-DR has beendis
ussed in Se
tion 3. The harmoni
 Ritz formulation of Strategy B has been inspired by step 5bof Algorithm 1.4.2. Computational 
ost. We �rst detail the 
omputational 
ost related to the harmoni
Ritz information (step 5 of Algorithm 2) sin
e this is the main di�eren
e between the proposedstrategies.4.2.1. Harmoni
 Ritz information.Strategy A. The generalized eigenvalue problem of Strategy A presented in Algorithm 2 is

(AZm)H (AZm)y = θ(AZm)HZmy,where θ ∈ C and y ∈ Cm. Using the Arnoldi-like relation (2.3) it 
an be written as
H̄H

m H̄my = θH̄H
mV H

m+1Zmy.



16Algorithm 2 Flexible GCRO-DR(m, k) algorithms: strategies A, B and C.1: 
hoose m, k, tol and x02: r0 = b− Ax0, β = ‖r0‖, v1 = r0/β, i← 03: Flexible GMRES(m) yields H̄m, Zm, Vm+1 su
h that AZm = Vm+1H̄m, y∗ = arg min
y∈Cm

‖c − H̄my‖,
c = βe1, x

(0)
0 = x0 + Zmy∗, r

(0)
0 = b−Ax

(0)
0 = Vm+1(c− H̄my∗), Wm = Vm (only for Strategy C)4: while ‖r(i)

0 ‖ > ‖b‖ × tol do i← i + 15: Compute k eigenve
tors of the generalized eigenvalue problem Dy = θEy and store them in Pk.Strategy A
• D = ZH

mAHAZm

• E = ZH
mAHZm

• Yk = ZmPk

Strategy B
• D = ZH

mAHAZm

• E = ZH
mAHVm

• Yk = VmPk

Strategy C
• D = ZH

mAHAZm

• E = ZH
mAHWm

• Yk = WmPk6: Q R = H̄mPk7: Wk = WmPkR−1 (only for Strategy C)8: Vk = Vm+1Q9: Zk = ZmPkR−110: Apply m − k �exible pre
onditioned Arnoldi steps with (In − VkVk
H)A and vk+1 =

r
(i−1)
0 /‖r

(i−1)
0 ‖ su
h that (In − VkVk

H)A
ˆ

zk+1, . . . , zm
˜

=
ˆ

vk+1, . . . , vm+1
˜

H̄m−k with
zj =M

(i)
j (vj)11: d∗ = arg min
d∈Zm

‖r
(i−1)
0 − Ad‖, x

(i)
0 = x

(i−1)
0 + d∗, r

(i)
0 = b−Ax

(i)
012: Wm =

ˆ

WmPkR−1 Vm(1 : n, k + 1 : m)
˜ (only for Strategy C)13: end whileThe 
omputation of H̄H

m H̄m is 
heap sin
e it only involves a matrix of size (m + 1) × m, where
m is supposed to be small with respe
t to the problem size n. A blo
k form for V H

m+1Zm 
an befound as
V H

m+1 Zm =

[
V H

k Zk V H
k Zm−k

V H
m−k+1Zk V H

m−k+1Zm−k

]
. (4.1)Thanks to steps 8 and 9 in Algorithm 2, V H

k Zk 
an be also written as
(V H

k Zk)(i) = QH (V H
m+1Zm)(i−1) PkR−1where the supers
ript is related to the 
y
le index. Thus storing V H

m+1Zm at the end of ea
h 
y
leallows us to 
ompute at a 
heap 
ost a k × k blo
k of V H
m+1Zm for the next 
y
le. Computing theother blo
ks of V H

m+1Zm require 2n(m − k + 1)m + 2nk(m− k) operations.Strategy B. Similarly the generalized eigenproblem 
an be written as
H̄H

m H̄my = θH̄H
mV H

m+1Vmy. (4.2)Exploiting the fa
t that Vm+1 has orthonormal 
olumns �nally leads to the generalized eigenprob-lem
H̄H

m H̄my = θH̄H
m

[
y

01×1

]
, (4.3)whi
h involves only a matrix of size (m + 1) × m.Strategy C. The 
orresponding generalized eigenvalue problem 
an be written as

H̄H
m H̄my = θH̄H

mV H
m+1Wmy. (4.4)Sin
e Wm = [Wk+1, vk+2, · · · , vm] (step 12 of Algorithm 2) a new form for V H

m+1Wm 
an be foundas
V H

m+1Wm =




V H

k+1 Wk+1 0(k+1)×(m−k−1)

0(m−k−1)×(k+1) Im−k−1

01×(k+1) 01×(m−k−1)



 . (4.5)



17The stru
ture of the (k + 1) × (k + 1) blo
k V H
k+1 Wk+1 is as follows

V H
k+1 Wk+1 =

[
V H

k Wk V H
k wk+1

vH
k+1 Wk vH

k+1 wk+1

]
=

[
V H

k Wk 0k×1

vH
k+1 Wk 1

]
.Thanks to steps 7 and 8 in Algorithm 2, V H

k Wk is a k × k matrix that satis�es the followingrelation
(V H

k Wk)(i) = QH (V H
m+1Wm)(i−1) PkR−1where the supers
ript is related to the 
y
le index. Thus storing the (m +1)×m matrix V H

m+1Wmat the end of ea
h 
y
le 
an be used to slightly redu
e the 
ost of 
omputing the new matrix
V H

m+1Wm. It is then su�
ient to 
ompute vH
k+1 Wk at a 
ost of 2nk operations. Comparing (4.1)and (4.5) reveals that Strategy C requires less operations than Strategy A for 
omputing the pairof matri
es of the generalized eigenvalue problem. Nevertheless Strategy C requires the additionalstorage of Wk i.e. k additional ve
tors of length n (step 7 of Algorithm 2).4.2.2. Cost of a 
y
le. We summarize in Table 4.1 the main 
omputational 
osts asso
i-ated with ea
h step of the three strategies proposed in Algorithm 2. An Arnoldi method basedon the modi�ed Gram-S
hmidt pro
edure has been assumed1. We have only in
luded the 
ostsproportional to the size of the original problem n whi
h is supposed to be mu
h greater than mand k. These 
osts ex
lude the 
ost related to both matrix-ve
tor produ
ts and pre
onditioningoperations.Step Strategy A Strategy B Strategy C5 2n(m − k + 1)m+ - 2nk

2nk(m− k)6 - - -7 - - 2nmk8 2n(m + 1)k 2n(m + 1)k 2n(m + 1)k9 2nmk 2nmk 2nmk10 (4nk + n)(m − k)+ (4nk + n)(m − k)+ (4nk + n)(m − k)+
2n(m − k)(m − k + 1)+ 2n(m − k)(m − k + 1)+ 2n(m − k)(m − k + 1)+
3n(m − k) 3n(m − k) 3n(m − k)Total CB + 2n(m2 − k2 + m) CB CB + 2n(k + mk)Table 4.1Computational 
ost of a 
y
le detailed for ea
h strategy and for ea
h step of a given 
y
le of Algorithm 2.This ex
ludes the 
ost of matrix-ve
tor operations and pre
onditioning operations. The total 
ost of Strategy B is

CB = 2n((m + k)2 − 2k2 + 3m− 2k).As remarked in Se
tion 4.2.1 Strategy B involves the lowest 
omputational 
ost among the threevariants. Con
erning Strategy A and Strategy C it is then interesting to analyze the 
orrespondingadditional 
osts versus m and k. As a �rst illustration Table 4.2 details three di�erent 
ases i.e.
k = 1, k = m/2 and k = m − 1. When k = 1 we remark that Strategy A is the most expensiveone. This is mainly due to the 
onstru
tion of V H

m+1 Zm in step 5 of Algorithm 2. The additional
ost is of order O(nm2). For the 
ase k = m − 1 we note that the additional 
ost for Strategy C -now the most expensive one - also behaves as O(nm2).4.3. Pre
onditioning. Although the primary fo
us of this paper is on �exible methods, wepropose now two 
omments on Strategies A, B and C when a nonvariable pre
onditioner is used.In this setting we note that Strategy A 
orresponds to the method originally proposed by Parks etal. in [26℄.1Step 10: during this step the a
tion of (In − VkV H
k ) requires Pm

j=k+1(4nk + n) operations, the Arnoldimethod based on modi�ed Gram-S
hmidt requires Pm
j=k+1

Pj
i=k+1(4n) operations whereas norm 
omputationand normalization 
ost Pm

j=k+1(3n) operations.
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k Strategy A Strategy B Strategy C
1 C

(1)
B + 2n(m2 + m − 1) C

(1)
B = 2n(m2 + 5m − 4) C

(1)
B + 2n(m + 1)

m/2 C
(m/2)
B + 2n(3m2/4 + m) C

(m/2)
B = 2n(7m2/4 + 2m) C

(m/2)
B + 2n(m2/2 + m/2)

m − 1 C
(m−1)
B + 2n(3m− 1) C

(m−1)
B = 2n(2m2 + m + 1) C

(m−1)
B + 2n(m2 − 1)Table 4.2Computational 
ost of a 
y
le for k = 1, k = m/2 and k = m− 1. C

(k)
B denotes the 
ost of Strategy B when kharmoni
 Ritz ve
tors are used in the de�ation pro
edure.4.3.1. Behaviour in 
ase of no pre
onditioning. When no pre
onditioning o

urs, wehave the following relation Zm = Wm thanks to Lemma 3.8. Thus Strategies A and C are equivalentin this 
ase. Sin
e Strategy C is algebrai
ally equivalent to GMRES-DR (Corollary 3.10), wededu
e that Strategy A is also algebrai
ally equivalent to GMRES-DR. This shows a remark madeby Parks et al. in [26, page 1657℄. We refer the reader to Table 5.1 in Se
tion 5 for a numeri
alillustration. We note that the equivalen
e between Strategy A and GMRES-DR does not holdwhen pre
onditioning o

urs as will be shown in Se
tion 4.3.2.4.3.2. Behaviour in 
ase of �xed pre
onditioning. Suppose that a �xed pre
onditioner

M is used as a right pre
onditioner for the solution of (2.1). A desirable feature is that applyingthe Krylov subspa
e method either on A with right pre
onditioner M or on Ã = AM without anypre
onditioner leads to the same iterates when the same right-hand side is 
onsidered. We 
all thisproperty right-pre
onditioning invarian
e. We note that GMRES(m) with right-pre
onditioningsatis�es this property. The appli
ation of GMRES(m) in the initialization phase (step 3 in Algo-rithm 2) leads to the relation Zm = MVm when a �xed right-pre
onditioner is used. Table 4.3
olle
ts the di�erent formulations of the �rst generalized eigenvalue problem, where we have usedthe Zm = MVm relation expli
itly.Strategy Fixed pre
onditioning matrix M Equivalent matrix Ã = AMA (AMVm)H(AMVm)y = θ (AMVm)HMVmy (ÃVm)H(ÃVm)y = θ (ÃVm)HMVmyB (AMVm)H(AMVm)y = θ (AMVm)HVmy (ÃVm)H(ÃVm)y = θ (ÃVm)HVmyC (AMVm)H(AMVm)y = θ (AMVm)HWmy (ÃVm)H(ÃVm)y = θ (ÃVm)HWmyTable 4.3Formulations of the �rst generalized eigenvalue problem when a �xed right-pre
onditioning matrix M is used(
enter) and when an equivalent pre
onditioned matrix Ã = AM is used (right) for strategies A, B and C.From Table 4.3 it 
an be suspe
ted that Strategy A is not right-pre
onditioning invariant sin
ethis property is not satis�ed during the �rst 
y
le of the method. A numeri
al illustration is givenin Figure 4.1. In Se
tion 4.2 the generalized eigenvalue problems of Strategies B and C ((4.2)and (4.4) respe
tively) only involve H̄m, Vm+1 or Wm i.e. quantities that are pre
onditioninginvariant. This is 
on�rmed in Figures 4.2 and 4.3, where - as expe
ted - Strategies B and C areright-pre
onditioning invariant.5. Numeri
al experiments. We present numeri
al experiments for a spe
i�
 
lass of prob-lems from quantum 
hromodynami
s (QCD). This area is subje
t to a
tive resear
h to designrobust and e�
ient subspa
e methods for the e�
ient approximation of f(A) b, where f is a fun
-tion de�ned on the spe
trum of A [16, 38℄. Methods based on variable pre
onditioning [8℄ havebeen proven e�
ient when 
onsidering the sign fun
tion. Re
ently adaptive algebrai
 multigridmethods [5, 6℄ have been also proposed for the solution of su
h nearly singular and highly disor-dered physi
al systems. We fo
us here on the solution of a single linear system and investigate thebehaviour of various �exible methods with de�ated restarting.5.1. Latti
e quantum 
hromodynami
s. Quantum 
hromodynami
s [7℄ is the fundamen-tal theory explaining how neutrons and protons are bound inside nu
lei and how their 
onstituents
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FGCRO−DR(6,2) on the equivalent matrix

FGCRO−DR(6,2) with right preconditioning

Fig. 4.1. Strategy A of FGCRO-DR. Behaviour in 
ase of �xed pre
onditioning. Convergen
e history ofFGCRO-DR(6,2) on the equivalent pre
onditioned system AMφ = b and on the original system Ax = b withright pre
onditioning matrix M . A ∈ C400×400 is here a nonsingular sparse random triangular matrix and Ja
obipre
onditioning is 
onsidered. The right-hand side b is a random ve
tor of unit norm.
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FGCRO−DR(6,2) on the equivalent matrix

Prec FGCRO−DR(6,2) with right preconditioning

Fig. 4.2. Strategy B of FGCRO-DR. Behaviour in 
ase of �xed pre
onditioning. Convergen
e history ofFGCRO-DR(6,2) on the equivalent pre
onditioned system AMφ = b and on the original system Ax = b with rightpre
onditioning matrix M . The same linear systems as in Figure 4.1 are 
onsidered here.- quarks and gluons - intera
t. Numeri
al simulations on a four-dimensional hyper
ube spa
e-timelatti
e are most often 
onsidered as a unique way to solve QCD ab initio [37℄. The Wilson fermionmatrix - representing periodi
 nearest neighbour 
oupling - has the following blo
k stru
ture after
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FGCRO−DR(6,2) on the equivalent matrix

FGCRO−DR(6,2) with right preconditioning

Fig. 4.3. Strategy C of FGCRO-DR. Behaviour in 
ase of �xed pre
onditioning. Convergen
e history ofFGCRO-DR(6,2) on the equivalent pre
onditioned system AMφ = b and on the original system Ax = b with rightpre
onditioning matrix M . The same linear systems as in Figure 4.1 are 
onsidered here.a red-bla
k (also named odd-even) ordering of the latti
e points [15℄
A = In − κ

[
0n/2×n/2 Db

Dr 0n/2×n/2

]
=

[
In/2 −κDb

−κDr In/2

] (5.1)where the hopping parameter κ is a real valued positive parameter. The Wilson fermion matrix
A ∈ Cn×n is a sparse, 
omplex non-Hermitian matrix. It is positive de�nite as long as 0 ≤ κ < κc.Physi
ally interesting 
ases are for κ 
lose to the 
riti
al parameter κc. As a model problem we haveused the matrix 
onf5.0_0014x4.1000.mtx submitted by B. Medeke and publi
ly available from theMatrix Market 
olle
tion2. This sparse matrix of order 3072 
ontains 39 nonzero elements per row.The numeri
al tests were performed on a personal 
omputer running Linux (Intel Dual Core, 2.13Ghz with 2 GB of memory) using Matlab version 7.1 (release 14).5.1.1. Solution of the QCD redu
ed system. QCD 
omputations rely on the use of odd-even pre
onditioning that aims at exploiting the blo
k stru
ture presented in (5.1). Denoting L and
U the stri
tly lower and triangular parts of A respe
tively, this odd-even te
hnique is equivalentto apply SSOR pre
onditioning to the original linear system Ax = b as

(In − L)−1A(In − U)−1y = (In − L)−1b with y = (In − U)x. (5.2)This leads to the following linear system
[

In/2 0n/2×n/2

0n/2×n/2 In/2 − κ2DrDb

] [
yr

yb

]
=

[
br

bb + κDrbr

]
. (5.3)Thanks to this de
oupling, physi
ists fo
us on developing e�
ient methods for the numeri
al solu-tion of the redu
ed system

(In/2 − κ2DrDb)yb = bb + κDrbr (5.4)whi
h 
an be also seen as the S
hur 
omplement system of (5.1). Consequently we will next
ompare di�erent numeri
al methods for the solution of the redu
ed system (5.4). The right-handside b is 
hosen as the �rst Cartesian basis ve
tor of Cn. A zero initial iterate is 
onsidered as aninitial guess and all solvers are required to redu
e the true residual to 1.0 × 10−12.
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κ = 0.200 κ = 0.202 κ = 0.204 κ = 0.206GMRES(20) 330 418 550 770GMRES-DR(20,16) 268 304 334 376GCRO-DR(20,16) Strategy A 268 304 334 376GCRO-DR(20,16) Strategy B 274 310 340 394GCRO-DR(20,16) Strategy C 268 304 334 376FGMRES(20) 226 328 430 532FGMRES-DR(20,16) 176 220 242 264FGCRO-DR(20,16) Strategy A 176 198 220 264FGCRO-DR(20,16) Strategy B 176 198 242 286FGCRO-DR(20,16) Strategy C 176 198 242 264Table 5.1Total number of matrix-ve
tor produ
ts required to solve the QCD linear system (5.4) for di�erent values of κ.In Table 5.1 we 
olle
t the total number of matrix-ve
tor produ
ts o

urring in the di�erentmethods for four di�erent linear systems 
orresponding to in
reasing values of κ. We give bothunpre
onditioned and pre
onditioned 
onvergen
e results, where all the methods minimize over asubspa
e of dimension 20 in ea
h 
y
le. For the variants related to de�ated restarting we have�xed the value of k to 16 and sele
ted the eigenve
tors related to the k smallest eigenvalues inmodulus. In the �rst �ve lines of Table 5.1 we have in
luded results related to GMRES, GMRESwith de�ated restarting and GCRO with de�ated restarting. We note that de�ated restartingleads to a dramati
 improvement with respe
t to standard restarting. This behaviour has beenalready observed in [22℄ for appli
ations in QCD. Strategies A and C lead to the same number ofmatrix-ve
tor produ
ts as for GMRES-DR. This is due to the equivalen
e dis
ussed in Se
tion 4.3.1.Indeed it has been 
he
ked that the three methods produ
e iterates that are equal up to the ma
hinepre
ision at ea
h restart. Figure 5.1 shows that Π

[Yk,r
(i−1)
0 /‖r

(i−1)
0 ‖]⊥

AΠY ⊥

k
r
(i−1)
0 /‖ΠY ⊥

k
r
(i−1)
0 ‖ and

Π
[Yk,r

(i−1)
0 /‖r

(i)
0 ‖]⊥

Ar
(i−1)
0 /‖r

(i−1)
0 ‖ are 
ollinear as stated in Corollary 3.10. We also remark thatthis 
ollinearity property does not hold for the pairs of ve
tors (AΠY ⊥

k
r
(i−1)
0 , Ar

(i−1)
0 /‖r

(i−1)
0 ‖) and

(ΠY ⊥

k
r
(i−1)
0 , r

(i−1)
0 ) respe
tively.We dis
uss next the 
ase of �exible methods. We 
onsider the following algorithms: FGMRES,FGMRES with de�ated restarting and the three di�erent strategies related to FGCRO-DR pre-sented in Se
tion 4. As a variable pre
onditioner we 
onsider four iterations of unpre
onditionedGMRES. We 
an noti
e that �exible variants with de�ated restarting lead to additional redu
-tions in terms of matrix-ve
tor produ
ts. Variants of FGCRO-DR are most often as e�
ient asFGMRES-DR, if not better. Thus the interest of the new algorithm FGCRO-DR has been shownalready in the 
ase of a single linear system on this appli
ation. Furthermore one primary advan-tage of FGCRO-DR is its ability to handle the solution of linear systems given in sequen
e. Weplan to illustrate this feature in a future resear
h. For this spe
i�
 
hoi
e of m and k parameters,the lowest total number of matrix-ve
tor produ
ts always 
orresponds to Strategy A. As shown inTable 5.2 the ve
tors Π

[Yk,r
(i−1)
0 ]⊥

AM
(i)
k+1(ΠY ⊥

k
r
(i−1)
0 ) and Π

[Yk,r
(i−1)
0 ]⊥

AM
(i)
k+1(r

(i−1)
0 ) obtained inStrategy C are not 
ollinear. This might explain why Strategy C and FGMRES-DR(20,16) are notalgebrai
ally equivalent in this 
ase.5.1.2. Computational 
ost of Strategies A, B and C. We detail now the behaviourof Strategies A, B and C when a variable pre
onditioning is 
onsidered with a �xed value ofthe restart parameter m = 20 and k varying. We sele
t the 
ase of κ = 0.206 whi
h is themost 
hallenging as shown in Table 5.1. Table 5.3 
olle
ts the total number of matrix-ve
torprodu
ts and the normalized global 
omputational 
ost of ea
h strategy for varying k su
h that

1 ≤ k ≤ m − 1. To produ
e a fair 
omparison between the three strategies this global 
ostin
ludes both the 
ost detailed in Se
tion 4.2.2 and the one related to matrix-ve
tor produ
ts2http://math.nist.gov/MatrixMarket/data/mis
/q
d/q
d.html
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Fig. 5.1. 1 − cos(α), 1 − cos(β), 1 − cos(γ) with α =

∠ ( Π
[Yk,r

(i−1)
0 /‖r

(i−1)
0 ‖]⊥

AΠY ⊥

k
r
(i−1)
0 /‖r

(i−1)
0 ‖, Π

[Yk,r
(i−1)
0 ]⊥

Ar
(i−1)
0 ) (
ir
le), β =

∠ ( AΠY ⊥

k
r
(i−1)
0 , Ar

(i−1)
0 /‖r

(i−1)
0 ‖) (square) and γ = ∠ ( ΠY ⊥

k
r
(i−1)
0 , r
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0 ) (x-mark) 
omputed at ea
h
y
le i of FGCRO-DR(20,16) Strategy C obtained during the 
onvergen
e history. Case of no pre
onditioning and

κ = 0.200.Cy
le κ = 0.200 κ = 0.202 κ = 0.204 κ = 0.206i cos(α) cos(α) cos(α) cos(α)1 0.97351791374476 0.95990773398568 0.95010035729778 0.928072151313522 0.95508546906640 0.93164336826626 0.91315357530771 0.867340978575043 0.98489849221921 0.97991760584828 0.96982159718869 0.959124596478264 0.96879881841919 0.97624255588142 0.96968106888483 0.938325383123475 0.93545030140439 0.94039492520401 0.92709902729626 0.883706266746176 0.96724690697981 0.97051191983231 0.90407615323902 0.897060634882417 0.97170523764768 0.98690054632099 0.98036433795137 0.948432682862968 0.94566451575530 0.97935681716533 0.984296491008019 0.96995038021057 0.9942707476959910 0.96271377917353 0.9434294213570611 0.90360537717426Table 5.2Cosinus of α = ∠ ( Π
[Yk,r

(i−1)
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AM
(i)
k+1(ΠY ⊥

k
r
(i−1)
0 ), Π

[Yk,r
(i−1)
0 ]⊥

AM
(i)
k+1(r

(i−1)
0 )) 
omputed at ea
h 
y
leof Strategy C of FGCRO-DR(20,16) obtained during the 
onvergen
e history. Case of a �exible pre
onditioner.and pre
onditioning operations. We will denote Cg

A, Cg
B and Cg

C these global 
osts - related toStrategies A, B and C respe
tively.The lowest 
omputational 
ost obtained 
orresponds to k = 13, k = 14 and k = 16 forStrategies A, B and C respe
tively. A relatively large number of harmoni
 Ritz values is thusrequired to yield an e�
ient method. This is in agreement with previous numeri
al experiments[22℄. Bold values in ea
h line of Table 5.3 
orrespond to the lowest 
omputational 
ost among thethree strategies for a given value of k. It 
an be noti
ed that most often a given strategy is moreinteresting on a 
ertain range of harmoni
 Ritz values. The interest of the three strategies has beendemonstrated on this appli
ation in QCD, sin
e the optimal 
ost for ea
h strategy (20047, 22120,
21728 for Strategies A, B and C respe
tively) only di�er by less than 10%. In addition, when k
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k #Mvp Cg

A/(2n) #Mvp Cg
B/(2n) #Mvp Cg

C/(2n)1 507 40405 410 32420 507 400072 390 31314 390 30898 390 309403 370 29785 370 29374 370 294374 350 28252 432 34244 350 279325 330 26715 407 32326 330 264256 310 25174 382 30406 310 249167 290 23629 357 28484 290 234058 270 22080 394 31396 270 218929 307 24973 364 29080 307 2482310 282 23026 334 26762 282 2291611 257 21075 304 24442 304 2467312 274 22396 274 22120 274 2237213 244 20047 281 22682 281 2295514 278 22686 278 22462 278 2275615 265 21655 292 23566 265 2177516 264 21556 286 23108 264 2172817 260 21219 294 23740 277 2277118 262 21346 286 23122 274 2256419 323 26071 358 28742 316 25865Table 5.3Number of matrix-ve
tor produ
ts #Mvp and normalized global 
omputational 
ost of Strategies A, B and Cwhen solving the QCD linear system (5.4) for κ = 0.206 and for a variable number of harmoni
 Ritz values k. Caseof a �exible pre
onditioner.varies, Strategy A is the best on six 
ases, Strategy B on �ve 
ases and Strategy C on eight 
ases,indi
ating again the potential of ea
h of these approa
hes.6. Con
lusion and perspe
tives. In this paper we have studied a new minimum residualnorm subspa
e method with de�ated restarting that allows �exible pre
onditioning based on theGCRO subspa
e method. The resulting method named FGCRO-DR has been presented togetherwith FGMRES-DR, a re
ently proposed algorithm of the same family but based on the GMRESsubspa
e method. A theoreti
al 
omparison analysis of both algorithms has been performed inSe
tion 3. Theorem 3.6 also proves the algebrai
 equivalen
e of GMRES-DR and GCRO-DR whena �xed pre
onditioner is used. Furthermore three variants of the new algorithm - that only di�erin the formulation of the generalized eigenvalue problem for the harmoni
 Ritz information - havebeen introdu
ed and analyzed in Se
tion 5. Numeri
al experiments on a 
hallenging appli
ationin quantum 
hromodynami
s have shown the interest of these new variants when solving a givenlinear system.We have restri
ted the presentation to the 
ase of a linear system with a single right-handside. In [26℄ reusing sele
ted subspa
es in GCRO-DR - in the 
ase of �xed pre
onditioning - hasbeen proved e�
ient when solving sequen
e of linear systems where both the left- or right-handsides 
ould 
hange. A natural perspe
tive 
ould be thus to investigate the numeri
al propertiesof FGCRO-DR in this setting. This seems to be espe
ially appealing for appli
ations related toe.g. sto
hasti
 �nite element methods [12, 36℄ in three dimensions where variable pre
onditioningusing approximate solvers has to be usually 
onsidered. When all right-hand sides are availablesimultaneously and when the matrix is �xed, blo
k subspa
e methods may be also suitable. Thusa perspe
tive 
ould be to propose a blo
k variant of FGCRO-DR.A
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