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The talk to be presented is about the domain of mathematical computation

which extends beyond modern calculus and classical analysis when numbers are
not restricted to belong to a commutative field. It describes the dynamics of com-
plexification, resulting in an endless remorphing of the computational landscape.
Nonlinear computation weaves a colourful tapestry always in a state of becom-
ing. In the process, some meta-principles emerge which guide the autonomous
evolution of mathematical computation. These organic principles are essential
keys to analyze very large numerical simulations of unstable phenomena: they
lie at the heart of the new theory of Qualitative Computing.

What is Qualitative Computing? It is the newly developed branch of math-
ematical analysis which looks specifically at how the laws of classical analy-
sis (Euler-Cauchy-Riemann) are modified when mathematical computation does
not take place in a commutative field. Most analysis text books do not consider
numbers beyond R or C, with respective dimension(s) 1 or 2. However, there are
important practical domains where such an approach is too limited. For example,
the quaternions which form a noncommutative field H of numbers with 4 real
dimensions are the language of Maxwell’s electromagnetism, and of special rela-
tivity. In the booming field of numerical linear algebra, the basic “numbers” are
often taken to be square matrices which belong to a noncommutative associative
algebra (over R or C). This is an essential key to the successes of modern numer-
ical software packages like Lapack and Scalapack used worldwide for intensive
computer simulations in high tech industries.



The general consensus among mathematicians and physicists at the end of
the 19th century was that complex numbers – C is the algebraic closure of
R – were good enough for every day science. Scientists feared that one could
only lose computing power by dropping such properties for multiplication as
commutativity or associativity, which were viewed then as essential. F. Klein and
Lord Kelvin fiercely attacked Hamilton’s quaternions. But theoretical physics
has clearly vindicated Hamilton’s non commutative field in the 20th century
by adopting Clifford algebras Ck, k ≥ 3, C2 = H. However, such algebras –
heavily used in physics and algebraic geometry – cannot exploit the power of
multiplication to its fullest for intrinsic reasons related to their being associative.

Therefore one wonders: does a family of multiplicative algebras Ak exist,
which does not hinder the computing capabilities of multiplication?

Amazingly enough, the answer is yes. It consists of the little-known Dickson
algebras Ak of dimension 2k, k ≥ 0 (with Ak = Ck for k ≤ 2), where the
multiplication is defined recursively, being nonassociative for k ≥ 3. At the
dawn of the 20th century, vectors of dimension 2k in Ak, k ≥ 2, have been called
hypercomplex numbers (Hurwitz, Dickson). And accordingly, computation in Ak,
k ≥ 2, was called hypercomputation.

The talk will show the extent to which hypercomputation in Ak, k ≥ 3,
is unconventional, plagued/blessed as it is by computing paradoxes signaling a
clash between local (linear) and global (non linear) computation. An important
source of paradoxes is found in the act of measurement. Let us consider the
multiplication map defined by a 6= 0, that is La : x 7→ a × x, which is a linear
map in Ak. For k ≤ 3, La has for unique singular value the euclidean norm
‖a‖ > 0; but for k ≥ 4, there can exist 2k−3 distinct singular values ≥ 0 which
differ from ‖a‖. Moreover the results of the Singular Value Decomposition (if
computed inductively) may depend on the computational route, and may even
be hypercomplex and uncountable! This is one of the surprises that the Funda-
mental Theorem of Algebra keeps in store when set in noncommutative algebras.
The internal clockwork of hypercomputation is guided in part by such measures
which modify the local 3D-geometry defined at a. This results in an expanded
logic which provides an arithmetic basis for the emergence of simplexity in life’s
complex processes, and in highly unstable phenomena.

The computational journey into nonlinearity in the framework of Dickson
algebras is endless. At every level k ≥ 4, one gets new vistas, each richer than
before. We offer glimpses of the ever changing territory. New computational prin-
ciples emerge at each level k ≥ 2 which may supersede some others valid at a
lower level k′ < k. For example, if we drop commutativity in H (k = 2) then the
discrete can emerge from the continuous by exponentiation (a generalization of
eniπ/2 = in). Without associativity (k ≥ 3), there are several different ways to
compute the multiplicative measures of vectors which may agree only partially
with each other. This creates paradoxes and new options as well. As a rule, the
emergence of paradoxes goes hand in hand with an increase in the freedom of
choice. This freedom of choice provides a rational basis for the many fuzzy phe-
nomena encountered in experimental sciences at a small scale: they are currently



attributed to randomness, as in statistical physics, quantum mechanics, or ge-
netic mutation. However, the proverbial God (i.e. the computing spirit) does not
play dice in mathematical computation, but rather offers an ever richer variety
of computational options to choose from. Hypercomputation supports the old
adage: “Variety is the spice of life.”

Caveat. The words “hypercomputation”, “computability” and “complexity, com-

plexification” are used in their classical mathematical sense. They should not be con-

fused with the same words used in Computer Science. In this specific context, the words

applied to programs for Turing machines acquire a meaning which differs greatly from

the mathematical one.

The emergence of new mathematical concepts under the evolution pressure of
mathematical computing is a recurring phenomenon since Antiquity. For exam-
ple, irrational numbers, zero and its inverse ∞, negative numbers and complex
numbers were finally accepted by our ancestors only after much anguish, inner
turmoil and heated debate. Qualitative Computing has been the driving force
behind the evolution of mathematical logic from the beginnings, when Pythago-
ras, and Euclid presented the first known incompleteness result, the proof of the
irrationality of

√
2. It is a fact of experience that the classical logic of Aristotle

is too limited to capture the dynamics of nonlinear computation. Mathematics
provides us with the missing tool, an organic logic (based on {R, C,∞}) which
is tailored on the dynamics of nonlinearity. This organic logic can tame the
computing paradoxes stemming from measurements in the absence of associa-
tivity; it represents the internal clockwork of computation. It makes full use of
the computing potential of rings of numbers with 1,2,4 and 8 dimensions. One
salient feature is that the cooperation of results by Fermat, Euler, Riemann and
Sierpiński explains the autonomous complex dynamics of the Picard iteration to
solve x = rf(x), where f : R → R is continous and r is a real parameter. The
necessity to limit the frame of interpretation to 3 dimensions at most brings to
light some mechanisms by which computation turns the complex into the simple
without reduction.

A detailed technical presentation is provided in the speaker’s book “Qualita-

tive Computing: a computational journey into nonlinearity”, currently in press
at World Scientific, Singapore.
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