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Abstract

We report on careful implementations of seven algorithms for solv-
ing the problem of finding a maximum transversal of a sparse matrix.
We analyse the algorithms and discuss the design choices. To the best
of our knowledge, this is the most comprehensive comparison of max-
imum transversal algorithms based on augmenting paths. Previous
papers with the same objective either do not have all the algorithms
discussed in this paper or they used non-uniform implementations from
different researchers. We use a common base to implement all of the
algorithms and compare their relative performance on a wide range of
graphs and matrices. We systematize, develop and use several ideas for
enhancing performance. One of these ideas improves the performance
of one of the existing algorithms in most cases, sometimes significantly.
So much so that we use this as the eighth algorithm in comparisons.

1 Introduction

We study algorithms for the permutation of a sparse square matrix A of
order n so that the diagonal of the permuted matrix is zero free. This has
many applications; our main motivation arises in linear system solution in
which such a zero-free diagonal is found to enable the subsequent identi-
fication of irreducible blocks. Finding such a permutation corresponds to
the classical topic of finding a maximum cardinality matching in a bipar-
tite graph. In a bipartite graph, a subset M of edges is called a matching
if any vertex is incident on at most one edge in M. Consider a bipartite
graph GA = (VR ∪ VC , E) corresponding to a given sparse matrix A where
the vertex sets VR and VC correspond to the rows and the columns of A,
respectively, so that for i ∈ VR and j ∈ VC , the edge (i, j) ∈ E exist iff
aij 6= 0. A zero-free diagonal in an n × n sparse matrix corresponds to a
matching of cardinality n in GA. Such matchings containing all the vertices
of a bipartite graph are called perfect, and the corresponding diagonal in
the associated matrix is called a transversal. Clearly not all matrices have
a transversal; in which case one looks for a permutation with the maximum
number of nonzero diagonal entries.

There are a number of algorithms that can be used to find maximum
matchings in bipartite graphs. The first aim of our paper is to review those
algorithms. We have implemented seven existing algorithms that are de-
scribed in Table 1. We give the distinguishing features of each algorithm in
the second column. These features will be more fully discussed in Section 3
where we consider each algorithm in detail. It suffices, for the moment, to
note that all these algorithms start from a given, possibly empty, match-
ing and increase the cardinality of the matching by finding and exploiting
augmenting paths (see Section 2). The seven algorithms differ only in the
way the augmenting paths are found. We note that these seven algorithms
cover essentially all methods based on augmenting paths for the maximum
cardinality bipartite matching. We carefully implement all the algorithms
with unified data structures, and fine tune each one to improve its per-
formance. Some of these algorithms are available from different sources;
however their implementation is far from uniform. They are implemented
in different programming languages, have different data structures; some of
them include techniques to speed up the computations while some others are
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Table 1: Eight maximum cardinality bipartite matching algorithms are im-
plemented in this work. The first seven are from the literature with slight
enhancements. DFS and BFS denote the well known depth and breadth
first search techniques, respectively.
Algorithm Description Complexity
DFSB Based on DFS. Quite common in software

libraries, for example dmperm in Matlab [9]
and MC21 in HSL

O(nτ)

BFSB Based on BFS. Also quite common, see the
algorithm FF in [26]

O(nτ)

MC21A DFS+Lookahead [10] O(nτ)
PF Disjoint DFSs [29] O(nτ)
HK Shortest disjoint augmenting paths [20] O(

√
nτ)

HKDW HK+Disjoint DFS [12] O(
√

nτ)
ABMP Combined DFS and BFS [1] Min. of O(

√
nτ) and

O(n1.5
√

τ/ log n)
PF+ A simple modification of PF (this paper) O(nτ)

discussed and implemented without those techniques. We try to incorporate
all the known techniques into the seven algorithms. We believe that without
this sort of uniformity, comparisons between different algorithms would not
necessarily be fair and the computational results would not necessarily be
conclusive. We provide a large set of experiments on which we evaluate the
algorithms. We conclude for example that the DFS based implementations
given in the table can have an unexpectedly long execution time compared
to the others.

In this paper, we also propose a simple modification of the PF algorithm.
With this modification, the PF algorithm becomes much less sensitive to the
order of the augmenting path searches. We refer to this alternative as PF+

throughout the text. When this modification helps, the execution time of PF
reduces significantly; when it does not help, the execution time can increase,
but only by a little. Besides, we also improve the implementation of HKDW
and make it faster than the one implemented by Duff and Wiberg [12].

In addition to the exact algorithms listed above, there are several fast
heuristics which can be used to generate a large initial matching quickly prior
to the execution of the main algorithm. The simplest of these, SGM, is quite
commonly used, see, e.g., [10] (included as MC21 in the HSL Mathematical
Software Library, available at http://www.hsl.rl.ac.uk/) and the max-
imum cardinality bipartite matching algorithms in LEDA [26]. However,
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there are more sophisticated and better heuristics such as the Karp-Sipser
heuristic, KSM [21], the minimum-degree heuristic MDM [23, 25] and some oth-
ers proposed by Langguth et al. [23]. We implement and use SGM, KSM and
MDM as the jump-start routines in our experiments.

Although previous studies that compare the performance of some of the
algorithms in this paper exist [8, 10, 12, 26, 23, 29, 31], we think that they
are not conclusive because of the following two reasons: first, all previous
studies, except [23], use either a simple greedy approach (much like SGM)
or none as the jump-start routine. Second, as also stated by Langguth
et al., the algorithms were implemented by different researchers in differ-
ent programming languages, with different data structures, and hence their
comparison is not necessarily fair.

The organization of the paper is as follows. We present background
material in the next section. The exact algorithms and the proposed modi-
fication of PF are described in Section 3 and the heuristics are discussed in
Section 4. Section 5 gives the experimental results. We discuss the results
further and make some concluding remarks in Section 6.

2 Background and notation

In a bipartite graph G = (V1 ∪ V2, E) a subsetM of E is called a matching
if a vertex in V = V1∪V2 is incident to at most one edge inM. A matching
M is called maximal, if no other matching M′ ⊃ M exists. A maximal
matching M is called maximum if |M| ≥ |M′| for every matching M′

where |M| is the cardinality of M. Furthermore, if |M| = |V1| = |V2|, M
is called a perfect (complete) matching. Note that a perfect matchingM is
maximum (hence maximal) and each vertex in V is incident to exactly one
edge in M. The deficiency of a matching M is the difference between the
maximum matching cardinality and |M|. A good discussion on matching
theory can be found in Lovasz and Plummer’s book [24].

Let M be a matching in G. A vertex v ∈ V is matched (by M) if it
is incident on an edge in M; otherwise, it is unmatched. A path in G is
M-alternating if its edges alternate between those in M and those not in
M. AnM-alternating path P is calledM-augmenting if the start and end
vertices of P are both unmatched. The following theorem is the underlying
principle of the maximum cardinality matching algorithms discussed in this
paper.

Theorem 2.1 (Berge [6]) Let G be a graph (bipartite or not) and M a
matching in G. Then M is of maximum cardinality if and only if there is
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no M-augmenting path in G.

Following Theorem 2.1, several algorithms have been proposed for the
maximum matching problem. Essentially, algorithms based on augmenting
paths follow the same pattern: given a possibly empty matching M, the
algorithm searches for an M-augmenting path P. If none exists then the
algorithm stops since the matching is maximum. Otherwise, the alternating
path P is used to increase the cardinality ofM by settingM =M⊕E(P)
where ⊕ is the symmetric difference of two sets and E(P) is the edge set of
a path P. How they find this augmenting path and other implementation
details are what differentiates the algorithms based on augmenting paths,
both in theory and in practice.

We use the following notation. The vertex sets VR and VC are the rows
and columns, respectively, of a given m× n sparse matrix A where without
loss of generality m ≥ n. Hence we have |VR| = m and |VC | = n. For a
square matrix, we use n to denote its order. The number of nonzeros in the
matrix, or the number of edges in the bipartite graph is denoted by τ .

There is a one to one correspondence between a zero-free diagonal in a
(permuted) square sparse matrix A and a perfect matching in the associated
bipartite graph GA. Let M be a perfect matching in GA. Then one can
find an n×n permutation matrix Q such that Qji = 1 iff row i and column
j are matched inM so that the matrix AQ has a zero-free diagonal. If A is
not square orM has a cardinality ℓ < n, then one can find two permutation
matrices P and Q which permute the matched rows and columns to the first
ℓ positions. After these permutations M becomes a perfect matching for
the ℓ × ℓ principal submatrix of PAQ and therefore can be used to obtain
a zero-free diagonal for that submatrix.

3 Matching algorithms based on augmenting paths

We start by mentioning the common data structures for the implementation
of the algorithms. The first two structures are for the pattern of the sparse
matrix and the matching itself.

In all the algorithms that we review, the pattern of a sparse matrix is
stored in either the compressed column storage (CCS) or compressed row
storage (CRS) formats, or both. These are well known storage formats for
sparse matrices (see, for example, [11, Section 2.7]). Consider an m × n
sparse matrix A with τ nonzeros. In CCS, the pattern of A is stored in two
arrays:
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• rids[1, . . . , τ ]: stores the row index of each nonzero entry. The nonze-
ros in a column are stored consecutively.

• cptrs[1, . . . , n + 1]: stores the location of the first nonzero of each
column in array rids. In particular the row indices of the nonzeros in
column j are stored in rids[cptrs[j], . . . , cptrs[j + 1] − 1]. Note that
cptrs[n + 1] = τ + 1.

The CRS of a matrix A is the CCS of its transpose and vice versa. In CRS,
there are again two arrays cids and rptrs, with functions similar to those of
the above. Both formats may be necessary for an efficient implementation
of some of the algorithms. We will specify which storage format is required
for each of the eight algorithms that we implement.

The matching is stored in two arrays. The array rmatch[1, . . . , m] stores
the index of the columns matched to the rows; rmatch[i] = j if row i is
matched to column j, otherwise rmatch[i] = −1. The array cmatch[1, . . . , n]
stores the dual information similarly.

As stated in Theorem 2.1, a matchingM is maximum if and only if there
is noM-augmenting path. Maximum cardinality matching algorithms based
on augmenting paths exploit this fact and use graph search techniques to
find an augmenting path if it exists. These algorithms mainly use depth
first search (DFS), breadth first search (BFS) or a combination of these.
We will organize the algorithms into these three classes and describe the
implementation details.

The way the DFS and BFS procedures are used is also common to all
eight algorithms. Both of the search procedures are started from an un-
matched row or an unmatched column (depending on the algorithm). Then
from a vertex, some of the edges are allowed to be traversed. For example,
if a search is started from an unmatched column, then at any column vertex
only the edges that are not in the matching are allowed, whereas at any row
vertex only a matching edge is allowed, if any. If we reach a row vertex with
no matching edge, we have found an augmenting path. During a search with
DFS or BFS, each vertex is visited only once, hence the search constructs
a tree containing alternating paths and possibly, an augmenting path. Such
a tree is called an alternating search tree. If a search is started from an
unmatched column then, when the search finds a matched row, the search
immediately continues from the column matched to that row.

For maximum transversal algorithms, a desired property is robustness.
We call an algorithm robust if its performance is not highly sensitive to per-
mutations of the input graph. A permutation only relabels the vertices of
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a graph and therefore it affects only the order in which the vertices are vis-
ited. In such cases, the running time of the algorithm should not drastically
change. We provide the following table for the matrix Hamrle3 from the
University of Florida sparse matrix collection. We run the eight algorithms
on the matrix itself and on random permutations of it. We investigate three
types of random permutations: rows are permuted (PA), columns are per-
muted (AQ), both rows and columns are permuted (PAQ). For a robust
algorithm, the runtime should not change dramatically. However, as seen in
the table below, quite amazingly almost all the algorithms are highly sensi-
tive to the permutations, with PF+ and HKDW more robust than the others.

permutation DFSB BFSB MC21A PF PF+ HK HKDW ABMP

A 267.3 117.0 5.4 0.1 2.6 0.8 0.3 47.8
AQ 291.6 20.5 238.8 101.9 11.1 74.0 44.3 241.7
PA 601.0 204.2 324.7 18.7 17.7 2.9 2.8 18.2

PAQ 296.2 78.4 129.3 51.7 48.9 106.0 67.3 76.2

The execution times given in the table are the averages for ten different ran-
dom permutations (for example the times in row AQ of the table correspond
to the average runtime for ten different column permutations). Further ex-
periments of this sort can be found in Section 5. Of course, it is all very
well for an algorithm to be robust but we are primarily concerned with its
efficiency, that is having an algorithm with fast execution.

3.1 Algorithms based on breadth-first search

BFS based algorithms can be implemented to start either from the columns
or the rows. We choose to start from the columns as we are assuming,
without loss of generality, that there are less columns than rows. If this is
not the case, we can work with the transposed matrix.

In a BFS based matching algorithm, BFSB, the unmatched column ver-
tices are processed in a particular order (normally from 1 to n). While
processing an unmatched column vertex c, a BFS is started from c to find
an unmatched row while building the corresponding alternating tree. If an
unmatched row r is found (one with the shortest distance to the column ver-
tex c), the matching is augmented using the unique alternating path between
c and r in the alternating search tree, and the algorithm proceeds to the
next unmatched column vertex. If the BFS terminates without finding an
unmatched row, then the starting column vertex c remains unmatched and
there is no perfect matching. The algorithm then proceeds to the next col-
umn to start a BFS. Figure 1 shows a sample search tree where the root is an
unmatched column c. For this example, the BFS stops when the unmatched
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row r is found with the corresponding augmenting path c, r3, c3, r6, c6, r.
The levels of the vertices (their depth in the search tree) are also given in
Figure 1.

Figure 1: A BFS tree constructed from finding alternating paths from an
unmatched column vertex c. The edges in the matching are shown as thick
lines and those that do not belong to the tree are shown as dashed.

To implement BFSB, we need a queue of size n and another array of size
m to mark the rows as visited. Note that, since we begin with an unmatched
column ci, we only put columns in the queue. This works because of the
nature of an alternating tree. That is, we start with a queue containing an
unmatched column ci and repeat the following until the queue is empty or
an augmenting path found: we dequeue a column cj and traverse all of its
adjacent rows. For each row rk in this set, if rk is unmatched we use the
corresponding augmenting path to increase the size of the matching and stop
the current search process. Otherwise, if rk is matched and unvisited, it is
marked as visited, i.e., the corresponding entry of the visited array is set to
i, and the column matched to rk is enqueued. This process is called a BFSB

phase. For each unmatched column in the matrix, this phase is repeated
consecutively so the efficiency might depend on the ordering of the columns.
Since the complexity of a phase is O(τ), and since there are n columns, the
total time complexity of the algorithm is O(nτ).

The queue and visited arrays are sufficient to perform a BFS from an
unmatched column c. However, when an augmenting path is found, we need
to find the path by going backwards in the tree. To be able to do this
efficiently, we also use another array of size m to store the parent column
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for the visited rows in the search tree. Hence, in addition to the space
used to store the matrix structure and matching information, an efficient
implementation of the BFS based algorithm requires n + 2m more space.
Note that for the BFS, we only need to reach the adjacent rows of the
columns. Hence storing the matrix only in the CCS format is sufficient for
this algorithm.

In our implementation, we incorporated a pruning heuristic (also imple-
mented in practice by Setubal [31]1) which may reduce the execution time
when the matrix is rank deficient, i.e., when the corresponding graph does
not contain a perfect matching. When a BFS is unsuccessful, we can prune
all rows and columns visited during this BFS so that any future BFS will
not visit them. This pruning is possible since the edges in the alternating
search tree cannot be modified by any further augmentations—there is no
augmenting path passing through these vertices. Note that the array queue
is of size n. Hence we have enough space to keep all of the visited columns
during a search. We do not put rows into the queue since for a row, we can
use only the matching edge. Therefore, after an unsuccessful BFS, we can
prune these columns and their matched rows. To prune a row, we set its
visited entry to n + 1 and do not visit such rows during subsequent BFSs.

To guarantee that a vertex is visited only once during a BFS, we modify
the corresponding entry in the visited array (similar techniques are quite
common in sparse matrix folklore). That is, when the algorithm is searching
for an augmenting path for an unmatched column ci, if a row r is visited we
set visited(r) = i and visit a row r only if visited(r) < i. Hence we initialize
the visited array once before starting the BFSs so that visited(r) = −1 for
all r ∈ VR, and do not reset it for every BFS.

The additional space required by the matching algorithm can be reduced
to n + m by using the parent array to check if a row has been visited. A
straightforward implementation achieves that by resetting the parent array
to −1. On the other hand, a different approach avoids the reset operation
after each augmentation and uses a distinct value for each BFS from the
unmatched columns. A simple implementation of this approach assigns the
parent column of a row r as parent(r) = c′+n×i where c′ ∈ {0, . . . , n−1} is
equal to c−1 for the c th column and i is the number of augmentations done
so far. Note that these calculations can result in overflows if not implemented
carefully. Hence to check if a row r is visited or not, it is sufficient to check if
⌊parent(r)/n⌋ = i or not, and the id of the parent column can be obtained by

1We do not know if the BFS algorithm used by Langguth et al. employs a pruning
scheme since the algorithm is not public and not described in detail [23].
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(parent(r) mod n)+1. Note that such techniques can be used in practice to
reduce the memory requirement of the algorithms described in this section.
However, these techniques may slightly increase the execution times; we
favour the runtime in our implementations and so do not incorporate these
memory optimizations.

3.2 Algorithms based on depth-first search

DFS based algorithms are similar to the BFS based ones. As such, DFS
based algorithms can be implemented to start either from the columns or
the rows. We again choose to start from the columns; if there is a prefer-
ence to start from the rows, the matrix can be transposed for the following
discussion.

In a DFS based matching algorithm, the unmatched column vertices are
processed in a particular order (normally from 1 to n). For each unmatched
column, a DFS is initiated and when a column c is visited, the search path is
extended with the next unvisited row of c whereas when a row r is visited,
the search path is extended with the column matched with r. If such a
column does not exist, i.e., if r is unmatched, then the search has found
an augmenting path. During the DFS, we store the columns of the current
path in a stack of size n. When the path cannot be extended any longer,
i.e., when all of the rows of the last column c in the stack have been visited
by the current DFS, we remove c from the stack and continue with the
previous entry on the stack. We repeat this process until an augmenting
path is found or the stack is empty. This process is called a DFS phase.
Figure 2 shows the search tree constructed by the vertices and edges used
in a DFS initiated from the unmatched column c in the graph of Figure 1.
Note that, in Figure 2, after c1 is visited, before r5, all of the nodes under
alternating subtrees rooted at r2 and r4 are visited. Similarly, after c6 is
visited, the augmenting path to r is not found before visiting r9 and c9.

To implement a DFS based algorithm, in addition to the stack, we need
another array of size m to mark the visited rows. We also use an array
lastrow of size n to keep a pointer to the last visited row of each column
during a DFS. With this array, when looking for an unvisited row of the
current column c, we start the search from position (lastrow(c) + 1) in c’s
adjacency list. This allows us to avoid multiple scans of adjacency lists.
We reset lastrow(c) each time we put a column c into the stack. With
this approach, each edge is scanned just once during a phase. Hence each
DFS has O(τ) complexity and the overall complexity is O(nτ). Note that
when an unmatched row r is found in a DFS phase, the columns of the
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Figure 2: A DFS tree constructed while searching for an augmenting path
from an unmatched column node c in the graph shown in Figure 1. Matching
edges are shown with thick lines, where the edges between columns and
already visited rows are shown as dashed.
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corresponding augmenting path from c to r are already in the stack in the
reverse order. Therefore, unlike BFSB, we do not need to care about storing
information to go backwards in the search tree for augmentation. Hence our
implementation requires 2n + m additional space (or 2n since one can use
a technique similar to that in Section 3.1 and use lastrow(c) to check if the
row r, matched with column c, has been visited or not). Note that for a
DFS, we only need to reach adjacent rows of the columns. Hence storing
the matrix in the CCS format is sufficient for this algorithm.

Similar to the BFSB algorithm, we do not reset the visited array after each
DFS. Also, the pruning heuristic of Section 3.1 is implemented by putting
each popped column to the end of the stack and using this part of the stack
to prune the rows matched with these columns by modifying their visited
entries. We adapt the same ideas for avoiding resets and pruning rows for
the other DFS based or hybrid algorithms in this section.

3.2.1 MC21A: Duff’s algorithm

MC21A is a DFS based algorithm with an enhancement on the search pro-
cess [10]. Note that, in DFSB, the rows adjacent to a column are visited
according to their order in the adjacency list, even if there is an unmatched
row among them. In order to reach that unmatched row to find an augment-
ing path, a pure DFS based algorithm may need to explore a large part of
the graph and hence may be very costly. To alleviate this problem, a mech-
anism called lookahead is used [10, 19, 29]. With this mechanism, when a
column c is visited, the algorithm first checks if c has an unmatched row r in
its adjacency list, and if there is one, it uses the corresponding augmenting
path. Otherwise, it continues with the usual DFS process.

For the lookahead mechanism, we use an array of size n to store the
last checked row in the adjacency list of each column, initially pointing
to the start of the adjacency list. When a column c is visited during the
course of the overall algorithm (not a phase), lookahead(c) is incremented
until an unmatched row is found or the end of the adjacency list is reached.
The first case results in an augmenting path, and the second case tells the
algorithm that lookahead for column c is no longer needed. Note that DFSs
passing through a column c will proceed as usual. The key observation is
that a matched row will remain matched during the course of the algorithm.
Lookahead therefore adds at most O(n+τ) time to the algorithm. Hence the
complexity of MC21A is the same as that of DFSB which is O(nτ), although
lookahead improves the runtime significantly.

Note that we also use the pruning heuristic described in Section 3.1 which
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is not a part of the original implementation of MC21A by Duff [10].
In addition to the space used to store the matrix structure and matching

information, MC21A requires 3n + m additional space for the arrays stack
(size n), visited (size m), lastrow (size n) and lookahead (size n). For this
algorithm, we only need to access the rows adjacent to a column. Hence
storing the matrix in the CCS format is sufficient.

3.2.2 PF: Pothen and Fan’s algorithm

PF is similar to MC21A: it initiates DFSs from unmatched columns, uses a
lookahead mechanism in DFSs, and visits a vertex at most once in each
phase. The only difference lies in the definition of a phase. An MC21A phase
is simply a DFS from an unmatched column. On the other hand, a PF phase
performs a maximal set of vertex disjoint DFSs each starting from a different
unmatched column. Each DFS in a phase can visit only vertices that are
not already visited in the phase. Hence, whereas the total number of DFSs
in MC21A is n, each potentially taking O(n + τ) time, the number of DFSs
in a single phase of PF can be n, which still takes O(n + τ) time. In our
implementation, we maintain an array containing the unmatched columns
and, if the DFS initiated from a column c is successful, we remove c from
the unmatched array. Otherwise, c stays in the list and a DFS is initiated
from it in the next phase.

To find the matching with maximum cardinality, PF executes several
phases with a reduced set of unmatched columns until no augmenting path
is found in a phase. In the worst case, there will be one augmentation in
each phase and hence n phases. Since a vertex is visited just once in a
phase, the complexity of each phase is O(τ), and the overall complexity is
O(nτ). Similar to MC21A, the lookahead entries initially point to the start of
the adjacency list for each column, and they do not need to be reset again.
Hence the total complexity of the lookahead is again O(τ) which does not
change the overall complexity.

Note that in BFS or DFS based algorithms with the traditional phase
definition as in MC21A, when a search for an unmatched column c is unsuc-
cessful, it implies that c will remain unmatched in the maximum matching
at the end. However, in PF, an unsuccessful search from a node c does not
prove the nonexistence of an augmenting path for c since, in a phase, the
search is restricted to use only the vertices that are not visited by the pre-
vious searches performed in this phase. Hence the algorithm stops when all
the DFSs in a phase are unsuccessful. With a similar reasoning, when a DFS
is unsuccessful, we cannot prune the rows visited by the current DFS unless
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this is the first DFS of a phase or all the previous DFSs in the current phase
were unsuccessful. If this is the case, we can employ the pruning process
as in MC21A and also remove a column c from the unmatched array when
the DFS from c is unsuccessful. We incorporated this pruning mechanism
in our implementation of PF as it entails only a little overhead. The original
implementation by Pothen and Fan does not use this mechanism [29].

Similar to MC21A, PF can be implemented by using 3n + m more space
for the arrays stack (size n), visited (size m), lastrow (size n), and lookahead
(size n). In addition to these, we use an array unmatched (size n) to keep
track of the remaining unmatched columns after each PF phase. Note that
an implementation that uses the stack memory to store unmatched columns
is straightforward. However, this may increase the execution time slightly,
and we again choose performance over memory and use this additional array.
Hence the total memory requirement of our implementation is 4n + m. PF

only needs to access the adjacent rows of the columns. Hence storing the
matrix in the CCS format is sufficient.

3.2.3 PF+: A modification of PF

We have found PF to be efficient in practice, except that it is sensitive to
row and column permutations. To make it less sensitive to permutations
we propose a simple modification. This modification usually improves the
performance of PF and increases its robustness; in some cases it results in
remarkable speedups, and in all cases the overhead is negligible.

The modification we propose is to change the order of visiting the rows
in the adjacency lists of columns and to apply an alternating scheme. To
implement PF+, we count the number of PF+ phases and, during the DFSs in
an odd numbered phase, we traverse the adjacency list of a column from left
to right whereas, during an even numbered phase, we scan the adjacency
lists in the reverse order, i.e., the last row in the adjacency list is the first one
to be investigated by the DFSs. The purpose of this modification is to treat
each row in an adjacency list fairly in order to spread the search more evenly
in the graph and to find, hopefully, an unmatched row faster than usual.
Note that this modification does not increase or reduce the complexity of
PF. Also the other components of the algorithm, that is the pruning scheme,
the lookahead scheme (no need to implement two lookaheads for the two
visit orders), and the memory requirements are exactly the same in both
algorithms.
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3.3 Algorithms based on both breadth- and depth-first search

All of the algorithms described so far are based on either BFS or DFS and
have a runtime complexity of O(nτ). Here we will describe other algorithms
with better worst-case complexities which use DFS and BFS together and
the level information of the vertices obtained by the BFSs. Note that the
level of a vertex, which is its depth in a BFS tree started from an unmatched
column c, is the shortest alternating path length starting from c and ending
at that vertex.

3.3.1 HK: Hopcroft and Karp’s algorithm

HK also organizes the search for augmenting paths into phases [20]. In each
phase, the algorithm starts a BFS search from all unmatched columns to find
a set of shortest-length augmenting paths in the graph. Among those paths,
a maximal set of disjoint augmenting paths are found using a restricted DFS,
and this set of augmentations are applied to the current matching. The al-
gorithm then continues with the next phase until a maximum matching is
found. Hopcroft and Karp proved that a maximum matching is obtained af-
ter at most

√
n phases and hence HK has a theoretical complexity of O(

√
nτ).

A HK phase has two parts. It first starts with a BFS from a fictitious
vertex that has all the unmatched columns in its adjacency list. This can
be seen as a combined BFS from all unmatched columns, where the queue is
initialized with all the unmatched columns. Unlike the original BFS based
matching algorithm, the combined BFS in HK is not intended to increase
the cardinality of the current matching; it is used to assign level numbers
to the vertices. In this scheme, the unmatched columns are on level zero.
For level ℓ, the next level ℓ + 1 has the set of the vertices in the queue after
the last vertex from ℓ is processed. As an example, if level zero contains the
unmatched columns, the first level is the set of rows which are adjacent to
at least one unmatched column, and the second level is the set of columns
matched with a row in the first level. The search process continues until
an unmatched row is found at level L and all columns at level L − 1 are
processed. Note that L is the shortest augmenting path length in the graph.
The rows at level L are stored in a stack.

The second part of a phase of HK uses the level information found by
the combined BFS of the first part to find augmenting paths. In the orig-
inal description of HK, an auxiliary graph is constructed explicitly after the
combined BFS [20]. This graph contains vertices visited by the combined
BFS, and the edges (u, v) where u and v belong to adjacent levels. After
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the auxiliary graph is constructed, a DFS is initiated from each unmatched
row in level L such that each vertex in the auxiliary graph is visited once
by these DFSs. The DFSs are in the reverse direction, i.e., from level L
unmatched rows to level 0 unmatched columns, and they will find a max-
imal set of length L augmenting paths in the auxiliary graph. During the
search process, while exploring a row, an unvisited column is chosen from its
adjacency list (if there is none, the DFS backtracks as usual). On the other
hand, while visiting a column, the next visited vertex will be its matched
row, if it exists. If not, the current column is unmatched (it is in level 0).
Therefore, the DFS is terminated, and the corresponding augmenting path is
used to increase the size of the matching. After the DFS terminates (either
by finding an unmatched column for the current level L row, or by back-
tracking until a row at level L), another DFS (restricted to avoid visiting
the nodes again) is initiated from another unmatched row at level L. Except
for initiating the DFSs from the unmatched rows instead of the unmatched
columns, the second part of a HK phase is similar to a PF phase where each
vertex is visited only once.

As stated above, if a BFS is initiated from an unmatched column c,
it will find an unmatched row r where the corresponding augmenting path
between c and r is a shortest augmenting path for c. Hence, L, the maximum
assigned level in the first part, is the length of the shortest augmenting
path with respect to the current matching. Hopcroft and Karp proved the
following: (i) for any bipartite graph with maximum matching cardinality
δmax, if the cardinality of a given matching M is δmax − k, there are k
vertex disjoint M-augmenting paths; (ii) using a maximal set of vertex
disjoint shortest augmenting paths of the shortest length strictly increases
the shortest augmenting path length in the graph. These two results are
used to demonstrate a time complexity of HK as follows [20]: it is obvious
that if the cardinality of the maximum matching is smaller than

√
n, there

will be at most
√

n phases. Assume the contrary and let M be the current
matching with cardinality δ = δmax −

√
n. From the first result (i) above,

there are
√

n vertex disjoint M-augmenting paths. Hence the shortest M-
augmenting path length can be at most 2

√
n− 1. From this and the second

result (ii) above, we know that up to now, we have performed less than
√

n
phases. Since the current matching has δmax−

√
n pairs, the algorithm will

run for at most
√

n more phases. Therefore, the total number of phases
is O(

√
n) for HK. In each phase, the algorithm executes a combined BFS

and some DFSs in which each edge is used a constant number of times.
Therefore, the time spent in a phase is O(τ) and the time complexity is
O (
√

nτ).
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The HK algorithm is also interpreted as a variant of Dinic’s algorithm
proposed for maximum flow problems (see Even and Tarjan [14] for this
interpretation). Even and Tarjan proved that if an algorithm uses shortest
augmenting paths to increase the cardinality of the matching (as in HK), the
total length of all augmenting paths is at most O(n log n) [14, Theorem 5].
Note that if an augmenting path based algorithm does not use the shortest
augmenting paths, there is a possibility that an augmenting path can contain
all of the matching edges. The total length of augmenting paths through
the course of the algorithm can be O(n2).

As stated above, for the combined BFS, we put all the unmatched
columns in a queue of size n at the beginning, start the BFS and stop
after processing all the vertices in the first level L containing an unmatched
row. During the combined BFS, we put unmatched level L rows in a stack
of size m. Note that the auxiliary graph requires O(τ) memory and a signif-
icant amount of time for its construction. For this reason, as also proposed
in [12] by Duff and Wiberg, instead of an auxiliary graph, we store the level
numbers of the columns in a levels array of size n with the maximum level L,
and we use them to restrict the DFSs in the second part to make them stay
in the auxiliary graph. Hence, in a DFS when a row is visited in the second
part, the next column to be visited will be one of the unvisited columns
at the previous level. For the second part, we also use a nextcol array of
size m to scan each edge once during the DFSs. Hence, in total, we need
2n+2m memory (stack(m), queue(n), nextcol(m), levels(n)) for an efficient
implementation of an HK phase, with its two parts. To be consistent with
the previous implementations and for efficiency, we also use a visited array
of size max(m, n), to check if a row in the first part of a phase and a column
in the second part of a phase are visited or not.

For HK, we access both the adjacent rows of the columns and the ad-
jacent columns of the rows. Hence we need to store the matrix in both
CCS and CRS formats. We now propose a modification that reduces the
storage requirement of HK. Assuming that the matrix is stored only in CCS
format, in the first part, the combined BFS is executed from the unmatched
columns, and the level information is obtained. In this modification, we
obtain the level information not for the columns but for the rows, including
the unmatched rows at the highest level L. Since we have the level infor-
mation and the CCS, a DFS can be executed starting from all unmatched
columns (instead of rows) ending with the unmatched rows at the highest
level. Since this modified second part also finds a maximal set of disjoint
shortest augmenting paths, the time complexity of the algorithm remains
the same. Although this modification removes the necessity of a CRS, it
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may also increase the runtime slightly. This is because we may now visit
some vertices and use some edges in the graph through which we cannot
reach an unmatched row at the top level. Therefore, if storage is the main
issue, we can use this proposed modification to reduce the storage require-
ments of HK. Since the performance of the algorithms is our main concern,
we do not report on the version of HK optimized for memory in this way.

3.3.2 HKDW: Duff-Wiberg variant of HK

This variant of HK adds a third part to a phase of HK [12]. After augmenting
the current matching with a maximal set of shortest augmenting paths, a
restricted DFS is run from all unmatched rows to find more augmenting
paths.

Duff and Wiberg observed that, in HK, the time spent for the combined
BFS in the first part is much more than the time spent for DFSs in the
second part. To solve this problem, they proposed to increase the number
of augmentations in each phase by using extra DFSs from the remaining
unmatched rows. Similar to HK, the algorithm HKDW starts with a combined
BFS up to the lowest level L containing an unmatched row. After that it
first initiates DFSs from unmatched level L rows which only use edges in the
auxiliary graph constructed by the combined BFS. Then, in the additional
third part, more DFSs are initiated from other unmatched rows. These
additional DFSs are not restricted, and they can use all the edges in the
original graph (not only those in the auxiliary graph). However, they obey
the restriction that a vertex cannot be visited twice in a phase. To achieve
this, we use the same visited array and continue to mark the visited columns
during these later DFSs. Hence the augmenting paths found by additional
DFSs are still disjoint. This corresponds to the modification C4 in [12] and
it will be denoted as HKDW in this paper.

3.3.3 ABMP: Alt et al.’s algorithm

This algorithm by Alt et al. incorporates some techniques used in solving
maximum flow problems [17] into the Hopcroft and Karp’s algorithm [1]. It
runs in two consecutive stages. In the first stage, a set of augmentations are
performed using a sophisticated search procedure which combines BFS and
DFS. In the second stage, the algorithm calls HK to perform the remaining
augmentations. The key to this algorithm is the search procedure of the first
stage. This procedure performs augmentations (which are found by searches
from unmatched columns) while maintaining a lower bound on the length
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of an alternating path from an unmatched row to each vertex.
In the first stage, ABMP combines the BFS and DFS algorithms to increase

the size of the matching and to assign an attribute, called level, to each
vertex. The level of a vertex is slightly different from the level attribute
used in HK. For each vertex with level ℓ in ABMP, the length of the alternating
paths from any unmatched row to v is larger than or equal to ℓ. Hence the
level of a vertex v in ABMP is a lower bound on the length of a shortest
alternating path from an unmatched row to v.

At the beginning of this stage, each row and column is assigned to level
0 and 1, respectively. During the course of this stage, all rows have even
level attributes; all columns have odd level attributes; and all the unmatched
columns are in levels L and L+2 where L ≥ 1 is an integer increasing during
the course of this stage. After initializing the levels, DFSs are initiated from
unmatched columns in level L. These DFSs use the level information such
that after a level ℓ vertex v, only the adjacent vertices in level ℓ − 1 are
allowed in the current search for an augmenting path. If all such adjacent
vertices are visited and v comes out of the stack before an augmenting path
is found, its level is updated and increased by 2. In theory, the first stage
continues until the minimum level of an unmatched column is larger than
√

τ log n/n.
The second stage of the ABMP performs HK as described in Section 3.3.1.

In other words, ABMP performs augmentations with a DFS maintaining dy-
namic level information until a lower bound on the shortest augmenting path
length is reached and then switches to HK to obtain the maximum matching.

The authors proved theoretically that maintaining the level information
dynamically up to level L =

√

τ log n/n is cheaper than the BFS plus DFS
approach of HK in terms of time complexity. With this bound on L, for dense

graphs, the time complexity of ABMP becomes O
(

min(
√

nτ, n1.5
√

τ/ log n
)

.

In our implementation, as suggested by Mehlhorn and Näher [26], the first
stage continues until L > 0.1

√
n or 50L is greater than number of unmatched

columns.
Note that the initial levels in the first stage are exact if the algorithm

starts with an empty matching. That is assuming there is no isolated vertex,
the length of the shortest alternating path from an unmatched row to each
row and column is 0 and 1, respectively. However, after a good jump-start
routine, using 0 and 1 makes the algorithm slow since, for the DFSs from an
unmatched column c, the search will be unsuccessful until the level attribute
of c is equal to the shortest augmenting path length for c. Note that during
the course of the first stage, the level attributes are not exact, that is, they
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are only lower bounds. Hence the DFSs at the beginning, which use wrong
level attributes, are always unsuccessful. However, these unsuccessful DFSs
are necessary to update the level attributes. But such an update scheme may
be time consuming when the difference between the lower bounds and exact
values are large. To avoid this problem, as suggested in [31] by Setubal,
we periodically execute a global update procedure which makes the lower
bounds exact. This global update procedure is similar to the combined
BFS part of HK, however, it does not stop after the first level containing an
unmatched column but continues until the level L described in the previous
paragraph. The global update procedure is run at the beginning once and
then rerun when the total number of level updates is n since the last run.

Note that in practice, any algorithm described in this report can be used
in the second stage of ABMP to obtain the maximum cardinality matching.
As mentioned above, Alt et al. proposed to use HK to obtain a better overall
complexity. Mehlhorn and Näher suggest using BFSB in the second stage [26].
In our experiments, in addition to the original version by Alt et al., we follow
the decision in [26] and implement another version called ABMP-BFS which
uses BFSB in the second stage.

In addition to the space used to store the matrix structure and matching
information, the first stage of ABMP with the global update scheme can be
implemented by using 2n + 2m additional space for the arrays queue (size
m), visited (size m), lastrow (size n) and levels (size n). For ABMP, we need
to access the adjacent rows of the columns and the adjacent columns of the
rows. Hence we need to store the matrix in both CCS and CRS formats.

3.4 Other approaches

There are other approaches for the maximum matching problem for bipartite
graphs. We do not implement these algorithms but briefly discuss them
for completeness. The main reason for not implementing them is that, for
practical cases that we are interested in, the time complexity is not improved
theoretically (with respect to O(

√
nτ) of HK) and the algorithms are not

practical to compete with the implementation of HK discussed before.
For example, in [4], Balinski and González proposed an O(nτ)-time al-

gorithm based on a special structure known as a strong spanning tree (first
defined by Balinski as a spanning tree rooted at a row vertex that has ev-
ery column vertex of degree one as a child of the root [3]). González and
Landaeta showed that the approach originating from the concept of strong
spanning trees is related to the notion of augmenting paths[18]. By using
this relation and the ideas in [20], they proposed an O (

√
nτ) algorithm for
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the maximum matching problem.
A randomized matching algorithm with O(nw) time complexity, where

w is the exponent of the best matrix multiplication algorithm is proposed by
Mucha and Sankowski [28]. This matching algorithm generates a random
adjacency matrix A(G) from G with random nonzero entries. After that
the inverse of the matrix A−1(G) is computed. Then by using Gaussian
elimination, a matching is obtained, and the matching is shown to be a
maximum one with a high probability. Note that w > 2 and this approach is
not suitable for large sparse graphs on the grounds of memory requirements
and numerical difficulties that would arise.

There are randomized algorithms and probabilistic analyses of the max-
imum matching algorithms. Motwani analyses the HK algorithm on random
graphs (on bipartite and also on standard undirected graphs) in order to
characterize the average case behaviour of HK [27]. It is proved that, with
high probability, there exists an augmenting path of length O(log n) when
the average degree is ln(n). Hence the HK algorithm works, on the average, in
O(τ log n) time with high probability. Later, Bast et al. improve this result
where the average degree is a large enough constant bigger than or equal to
8.83 [5]. The main algorithmic tool is the construction of two alternating
trees from the end vertices of an augmenting path; one from a row vertex
and another from a column vertex. It has been shown that these trees will
meet if their lengths are of size O(log n). In [7], Chebolu et al. take the
output of the jump-start routine KSM (discussed in the next section), try
to augment it by searching paths only between a subset of the unmatched
vertices, and then use the algorithm of Bast et al. if these searches have not
found a maximum matching. It has been shown that the overall algorithm
runs in linear expected time for sparse random graphs.

Another technique is to transform the input graph such that the al-
gorithms would run fast on it. This is exemplified by Feder and Mot-
wani, where the runtime complexity of HK becomes O(τ∗

√
n)-time where

τ∗ = τ log (n2/τ)/ log n [15]. Notice that the runtime is O(τ
√

n) for practi-
cal purposes (when the graphs are sparse) and hence there is no improvement
over the standard HK.

A remarkable property of algorithm HK is that it leads to an approxima-
tion algorithm for the maximum matching problem. One can use the lemmas
and proofs by Hopcroft and Karp [20] to obtain an O(pτ) time algorithm
that finds a matching with cardinality no less than p

p+1
δmax, where δmax is

the cardinality of a maximum matching. Let us make the runtime analy-
sis of HK given in Section 3.3.1 in the reverse order. Let p be the current
number of phases, δ be the size of the current matching Then the shortest
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augmenting path length is at least 2p+1, as each phase increases this length
by at least 2; there are at most δ

p vertex disjoint augmenting paths, since we
have δ matching edges and an alternating path should contain at least p of
them. Since each augmenting path increases the cardinality of the current
matching by one, δmax can be at most δ + δ/p. One can rearrange the in-
equalities as δ ≥ (1 − 1

p+1
)δmax to see the approximation at the end of pth

phase. This remark is also made by Gabow and Tarjan [16, p. 415].

4 Some heuristics for the maximum matching prob-
lem

Several fast heuristics to jump-start maximum cardinality matching algo-
rithms have been described in the literature [29, 21, 23, 25, 31]. Here we
discuss three of these heuristics. The first one, although it is the worst
one, is probably the most frequently used heuristic in practice. The second
one is probably the most theoretically studied heuristic for the maximum
cardinality matching problem. Surprisingly, according to our experiments,
the last one is the best. These heuristics are experimentally investigated
by Magun [25] and Langguth et al. [23]. We also briefly investigate these
heuristics to see their effects on the runtime of the algorithms. Modified
and extended versions of these heuristics and experimental analysis can be
found in [25] and [23].

4.1 Simple greedy matching (SGM)

The first heuristic, Algorithm 1, is used by Pothen and Fan [29] and Duff and
Wiberg [12]. In this simple heuristic, each unmatched column is examined
in turn and matched with the first unmatched row in its adjacency list, if
there is any.

Clearly, the time complexity of the algorithm is O(n + τ). This type
of fast heuristic is very popular and is used by many software packages,
e.g., LEDA [26], and MC21A in HSL. Also it is frequently used in previous
papers that compare the performance of matching heuristics [30, 31]. A
similar greedy matching heuristic, which iteratively chooses a random edge
with two unmatched endpoints, is described by Dyer et al. [13], Korte and
Hausmann [22], and Magun [25]. Both heuristics obtain matchings with
cardinality at least δmax/2 where δmax is the cardinality of a maximum
matching. Detailed mathematical and experimental analyses of the latter
heuristic for general undirected graphs can be found in [13] and [25].
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Data: A bipartite graph G = (VR ∪ VC , E)
Result: A matching M
M← ∅;
for each unmatched u ∈ VC do

if u is adjacent to an unmatched vertex v ∈ VR then
M←M∪ {(u, v)};
G← G \ {u, v} ◮remove vertices u, v and all edges incident

on them

end

end
returnM;

Algorithm 1: Simple Greedy Matching (SGM)

4.2 Karp-Sipser greedy matching (KSM)

The second greedy heuristic is proposed by Karp and Sipser [21]. Their
key observation is that when a graph G = (V, E) has vertices of degree 1
and 2, the maximum cardinality matching problem on G can be reduced to
the maximum matching problem on a smaller graph constructed using the
following two rules.

Degree-1 reduction: If a vertex u has only one adjacent vertex v, then
there is a maximum matching M containing (u, v). In fact, let G′ =
G \ {u, v}, be the reduced graph with the vertices u and v and all
adjacent edges removed. Now, if M′ is a maximum matching for G′,
thenM =M′ ∪ {(u, v)} is a maximum matching for G.

Degree-2 reduction: Let u be a vertex with degree 2, and v and w be the
adjacent vertices. Let G′ = (G \ {u}) ∗ {v, w} where ∗{v, w} denotes
the merging of the vertices v and w. That is, these vertices are removed
from the graph and a new vertex z is inserted with the edges (z, y)
such that y 6= v, w and either (v, y) or (w, y), or both were in the
graph G \ {u}. Let z be the merged vertex and M′ be a maximum
matching for G′. A maximum matchingM for G can be obtained for
the following cases:

• z is unmatched inM′: M =M′ ∪ {(u, v)},
• (z, y) ∈M′ where (v, y) ∈ E: M =M′\{(z, y)}∪{(u, w), (v, y)},
• (z, y) ∈M′ where (v, y) /∈ E: M =M′\{(z, y)}∪{(u, v), (w, y)}.

22



By using these two reductions, Karp and Sipser proposed a cheap heuris-
tic for the maximum matching cardinality problem. When one of the reduc-
tions above is possible, the graph can be reduced immediately. Otherwise,
a vertex u with the maximum degree is chosen randomly, and it is matched
to a random adjacent unmatched vertex v, and the graph is again reduced
as G′ ← G \ {u, v}. Clearly the two reductions apply to bipartite graphs as
well.

Karp and Sipser stated that this algorithm is hard to analyse and pro-
posed a simpler algorithm which is given below as Algorithm 2. This version,
referred to as KSM, is called the Karp-Sipser heuristic in the literature, and its
performance is analysed by Aronson et al. [2] and Chebolu et al. [7]. In our
implementation of Algorithm 2, we maintain the degrees dynamically, i.e.,
when a matching (u, v) occurs we decrease the degrees of vertices adjacent
to u or v by 1.

Data: A bipartite graph G = (VR ∪ VC , E)
Result: A matching M
M← ∅;
while E is not empty do

if a degree-1 vertex u adjacent to vertex v exists then
choose the edge (u, v);

else
get a random edge (u, v) ∈ E;

end
M←M∪ {(u, v)} ;
G← G \ {u, v} ◮remove vertices u, v and all edges incident on

them

end
returnM;

Algorithm 2: Karp-Sipser Heuristic (KSM)

In the KSM heuristic, if the if statement is true the matching decision is
optimal, i.e., there exists a maximum cardinality matching in the current
graph G which contains (u, v). Hence, if all of the matching edges are
chosen inside the if statement, KSM finds the maximum cardinality matching.
Furthermore, if the matching is perfect and unique, KSM finds it, and all of
the decisions are made inside the if statement. On the other hand, because
of edges put into theM inside the else part, the algorithm may not be able
to compute a maximum cardinality matching. However, Karp and Sipser
proved that a random graph with no vertices of degree 0 or 1 tends to
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have near-perfect matchings, and Algorithm 2 tends to find one of these
matchings.

The performance of KSM-type greedy heuristics (with both degree 1 and
2 reductions) are analysed by Magun [25]. The experimental results show
that the deficiencies of the heuristics are very small. For example, in random
graphs where each possible vertex pair is included as an edge with equal
probability, when the number of vertices is 10000 and the average degree
is 3, the average deficiency of KSM is less than one. More detailed results
can be found in [25]. We also direct the user to [23] for a more recent and
comprehensive analysis of the heuristics and their effects on some of the
algorithms described in this paper.

4.3 Minimum degree matching (MDM)

The minimum degree matching heuristic first chooses an unmatched vertex
u with minimum degree [25]. The one-sided version chooses a random un-
matched vertex v in the adjacency list of u, whereas the two-sided version
chooses an unmatched row v in the adjacency list of u with the minimum
degree. Then the vertices u and v and all of the edges incident to them are
removed from the graph. The process continues until E is empty.

In [23], it is stated that the two-sided version is better than the one-sided
one. Taking this result into consideration, we implemented the two-sided
version. This two-sided minimum degree matching heuristic shown below in
Algorithm 3 uses a priority queue and has a runtime complexity of O(n+τ).

Data: A bipartite graph G = (VR ∪ VC , E)
Result: A matching M
M← ∅;
while E is not empty do

choose the vertex u with the minimum positive degree;
choose the vertex v with the minimum degree among those
adjacent to u;
M←M∪ {(u, v)} ;
G← G \ {u, v} ◮remove vertices u, v and all edges incident on

them

end
returnM;

Algorithm 3: Minimum Degree Matching Heuristic (MDM)
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4.4 Comments on the heuristics

In Algorithm 2, we need to detect the existence of both degree 1 rows and
columns and need to find the unmatched vertices in their adjacency lists. In
Algorithm 3, the vertex with the minimum degree can be either a row or a
column. Hence an efficient implementation of these two heuristics requires
the storage of the matrix and its transpose. Hence, if memory is the main
issue, SGM is preferable. However, as will be show in Section 5, using KSM or
MDM is much better than using SGM as a jump-start routine in terms of the
execution times of the matching algorithms. Hence, for our experiments, it
is no longer important whether the matching algorithms require one of CCS
or CRS, or both. However, this may not be the case where the available
memory is only sufficient for one of them.

Note that the degree-1 treatment of KSM is automatic in MDM, and hence
we can argue that MDM is an extended version of KSM. According to our
experience, MDM’s performance is better than KSM in terms of reducing the
number of unmatched vertices. There are some rare cases where reducing
the deficiency by the jump-start routine does not lead to any reduction in
the overall running time.

5 Experiments

Here we give experimental results comparing the performance of the algo-
rithms described in this paper. We test their performance with random
square matrices and matrices from real life problems. All of the experi-
ments were conducted on a 2.4 Ghz Dual Core computer, equipped with
4 GB RAM.

5.1 Data set

We adapt two random bipartite graph generators to create a set of square
random matrices:

1. rbg-u(n′, d): Let n = n′ × 105 be the size of the matrix, and d be
the desired number of nonzeros in a row/column on average. We uni-
formly choose n× d nonzeros. Therefore, each n2 potential nonzero is
present in a random matrix with the same probability. This generator
is used by Magun [25] and behaves similarly to the sprand command
of Matlab.
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2. rbg-b(n′, k, d): Let n = n′ × 105 be the size of the matrix, and d be
the desired number of nonzeros in a row/column on average. Assume
that the set of rows and columns are divided into k groups of equal
size. To create the nonzeros in a column in the ith group, we first
randomly choose the number of nonzeros in column c, denoted by
deg(c), from a binomial distribution with mean d. We then uniformly
choose deg(c) random rows from the (i−1)th through (i+1)th groups
of rows and add the corresponding nonzeros. This generator is also
used by Langguth et al. [23], Cherkassky et al. [8] and Setubal [31].

After creating the random graphs, we permute their vertices and store
the corresponding matrix in CSR and/or CSC formats. For convenience,
the row indices of nonzeros in a column are stored in increasing order in
rids, and the same is done for the column indices stored in cids.

We use some real life matrices from the University of Florida Sparse Ma-
trix Collection (http://www.cise.ufl.edu/research/sparse/matrices/).
The matrices satisfy the following properties: 105 ≤ min(m, n) ≤ 15 × 105

and furthermore 2.5 ×max(m, n) ≤ τ ≤ 7 × 106. In order to avoid bias or
skew in the data set, we choose at most six matrices from each matrix group
(there were a total of 160 groups in the collection at the time of writing).
When there are more than 6 matrices satisfying these properties in a group,
we choose those with the largest number of nonzeros. There are a total
of 107 matrices satisfying these assertions at the time of writing, where 19
of them are rectangular which are transposed, if necessary, to have m > n.
Some of them have the same pattern, and we remove the duplicates from our
test set. The names of the matrices and their groups are given in Table 2.

5.2 Performances of the greedy heuristics

We implemented the heuristics given in Algorithms 1, 2 and 3. The first
heuristic, SGM, was previously used with some of the matching algorithms
described in this paper [12, 23, 29, 31]. The KSM heuristic was experimented
and analysed extensively on its own and used as a part of some randomized
algorithms [21, 7]. The MDM heuristic is one of the best, but its effect on the
matching algorithms have not been thoroughly investigated.

Table 3 shows the performance of the heuristics within BFSB on the rbg-

u and rbg-b graphs. We conducted the same tests with other algorithms
and found that there is little difference in the relative performance of the
heuristics. Therefore, we did not put them into the table. In addition to
the execution times, similar to previous papers [23, 25], we give for each
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Table 2: Test matrices from UFL Sparse Matrix Collection used in the
experiments

Group Name Group Name Group Name

AMD G2 circuit JGD GL7d GL7d15 Ronis xenon2

Andrianov ins2 GL7d23 Rothberg cfd2

Andrianov lp1 JGD Homology ch7-9-b4 Sandia ASIC 320k

ATandT pre2 ch7-9-b5 ASIC 320ks

twotone ch8-8-b4 ASIC 680k

Barabasi NotreDame actors ch8-8-b5 Sch. IBMNA c-73

NotreDame www n4c6-b8 c-big

Botonakis FEM 3D thermal2 n4c6-b9 c-73b

thermomech TC JGD Margulies kneser 10 4 1 Sch. IBMSDS matrix 9

thermomech dM Kamvar Stanford matrix-new 3

thermomech dK Lin Lin Sch. ISEI barrier2-4

CEMW t2em McRae ecology1 barrier2-9

tmt unsym ecology2 ohne2

tmt sym Mittelmann sgpf5y6 para-4

DNVS ship 003 stormG2 1000 SNAP web-Google

shipsec1 watson 1 amazon0312

shipsec5 watson 2 amazon0505

shipsec8 neos amazon0601

FreeFieldTech mono 500Hz neos3 roadNet-PA

Freescale transient Norris lung2 roadNet-TX

GHS indef d pretok stomach TKK engine

darcy003 torso2 Tromble language

helm2d03 torso3 TSOPF FS b39 c30

mario002 Oberwolfach filter3D Um 2cubes sphere

turon m boneS01 offshore

boyd2 Pajek IMDB UTEP Dubcova3

GHS psdef ford2 PARSEC Ga10As10H30 vanHeukelum cage12

apache2 QLi crashbasis Wissgott parabolic fem

Hamm hcircuit largebasis Watson Baumann

scircuit Rajat Raj1 Yoshiyasu image interp

Hamrle Hamrle3 rajat21

HVDC hvdc2 rajat23

IBM EDA dc1 rajat24

trans4 rajat29

JGD Forest TF19 rajat30

27



Table 3: Execution times and the number of augmentations performed by
the algorithm BFSB when combined with SGM, KSM and MDM for the matrices
generated by the rbg-u and rbg-b generators. For each parameter set, the
first row shows the execution times of BSFB in seconds, whereas the second
row shows the deficiency of each heuristic. Each entry is the average of 10
runs.

Matrix SGM KSM MDM Matrix SGM KSM MDM

rbg-u(1, 3) 0.2 0.1 0.1 rbg-u(7, 3) 26.1 1.1 1.4
15019 1 0 105244 9 10

rbg-u(1, 5) 0.3 0.1 0.1 rbg-u(7, 5) 15.8 1.1 1.2
13027 4 2 91180 23 8

rbg-u(1, 10) 0.1 0.1 0.2 rbg-u(7, 10) 3.7 1.5 1.9
6906 4 0 48547 21 1

rbg-u(1, 15) 0.1 0.1 0.2 rbg-u(7, 15) 2.0 2.1 2.5
4594 4 0 32327 25 0

rbg-u(3, 3) 4.4 0.3 0.4 rbg-u(9, 3) 36.1 1.4 1.8
45055 3 4 135279 14 17

rbg-u(3, 5) 3.5 0.4 0.5 rbg-u(9, 5) 16.3 1.3 1.6
39229 5 2 117488 28 10

rbg-u(3, 10) 0.8 0.5 0.7 rbg-u(9, 10) 4.2 1.9 2.3
20806 10 1 62328 39 1

rbg-u(3, 15) 0.5 0.6 1.0 rbg-u(9, 15) 2.5 2.5 3.0
13853 10 1 41521 43 0

rbg-b(5, 1, 3) 11.8 0.5 0.6 rbg-b(5, 100, 3) 6.7 1.3 1.4
75129 3 1 75022 75 76

rbg-b(5, 1, 5) 11.0 0.6 0.9 rbg-b(5, 100, 5) 7.9 2.7 1.0
65128 2 1 65245 104 4

rbg-b(5, 1, 10) 2.1 1.0 1.4 rbg-b(5, 100, 10) 2.8 2.5 1.1
34655 5 0 34631 97 0

rbg-b(5, 1, 15) 1.1 1.1 1.8 rbg-b(5, 100, 15) 3.2 3.4 1.4
23081 7 0 23121 101 0

rbg-b(5, 40, 3) 7.1 0.5 0.7 rbg-b(5, 200, 3) 6.5 2.8 2.9
75018 18 17 74972 204 192

rbg-b(5, 40, 5) 5.8 0.8 1.0 rbg-b(5, 200, 5) 5.2 2.7 1.0
65219 20 2 65273 182 6

rbg-b(5, 40, 10) 3.5 2.3 1.2 rbg-b(5, 200, 10) 3.2 2.8 1.0
34730 57 0 34666 181 0

rbg-b(5, 40, 15) 2.2 2.3 1.7 rbg-b(5, 200, 15) 3.1 3.4 1.3
23053 44 0 23085 184 0
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heuristic its deficiency, i.e., the difference between the cardinalities of a
maximum matching and the matching obtained by the heuristic. Hence, the
smaller the deficiency, the better the heuristic. Since the SGM heuristic uses
more random decisions, it is expected that KSM and MDM will perform better
than SGM. As the experiments show, the difference between the performance
of SGM and the other heuristics is huge.

Although KSM or MDM have good performance and runtime complexity,
they are costlier to use than SGM. However, as Table 3 shows, the overheads
of KSM and MDM are insignificant when compared to the reductions in the
total execution time of the matching algorithm.

As the table shows, MDM is a better heuristic than KSM in terms deficiency.
This is expected, since MDM is an enhanced version of KSM. For graphs con-
taining only one group, such as those generated by the rbg-u generator and
those generated by the rbg-b generator with k = 1, KSM performs slightly
worse than MDM in terms of deficiency. But, for these graphs, the execution
time of BFSB using KSM is less, since KSM is also cheaper than MDM. This is
also true when the rbg-b graphs are created with the parameter d = 3.
Hence we can argue that KSM performs well when there is only one group
or the average degree is low and therefore KSM may be preferable for these
cases. On the other hand, MDM performs much better than KSM for rbg-b

graphs with k > 1.
Although MDM would be the method of choice for jump-starting the

matching algorithms, we shall use KSM and MDM to assess the relative per-
formance of the matching algorithms. This is for two reasons. First, as
seen in Table 3, KSM and MDM are considerably better than SGM as a jump-
start routine. This is in agreement with previously reported studies [23, 25].
Second, as also observed by Duff [10, p.111] and Mehlhorn and Näher [26],
using SGM and not using it, in general, are not much different for shortest
augmenting path based algorithms; in fact, the first phase of HK where one
finds augmenting paths of length one corresponds to SGM. On the other
hand, there is no comprehensive study investigating the effects of KSM and
MDM.

5.3 Performance of the algorithms

We compare the eight algorithms listed in Table 1 and discussed in Sec-
tion 3. For random instances, we run each algorithm ten times and store
the average execution time of each algorithm for each parameter set. For
real life matrices, in order to reduce the measurement errors (in some cases,
the algorithms run in less than a second), we repeat the same experiment
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ten times and store the average execution time. The relative performance
of each algorithm on a particular problem is computed by dividing the av-
erage execution time of the algorithm by the best average time for the same
problem. Then, we display these average relative values in the tables.

5.3.1 Change of the jump-start routine

Previous comparisons, which use SGM as the jump-start routine, suggest
using BFS instead of DFS while searching for augmenting paths [26, 31].
Furthermore, previous research states that ABMP performs much better than
BFS in most cases [8, 31]. In this section, we will show that changing the
jump-start routine affects the relative performance of the algorithms. In
addition, we will see the improvement of MC21A over DFSB thanks to the use
of the lookahead technique.

DFS vs. BFS As stated in Section 3.1, a search in BFSB always finds
one of the shortest augmenting paths in the graph for the corresponding
unmatched column. On the other hand, DFSB may visit a large portion of
the graph even when there is an unmatched row in the adjacency of the
unmatched column from which the DFS has been started. Employing a
lookahead scheme, MC21A alleviates this problem for all trivial paths. How-
ever, it may not solve the cases when the shortest paths are longer. Hence,
as also stated by Mehlhorn and Näher [26] and Setubal [31], we may argue
that BFSB will find augmenting paths more quickly than DFSB.

Table 4 shows the results of the experiments conducted to compare the
algorithms DFSB, BFSB and MC21A for a class of random graphs generated
by the rbg-u generator. When the algorithms are used with SGM, BFSB is
clearly the best algorithm. It is 4 to 35 times better than MC21A even with
the significant effect of the lookahead scheme which reduces the runtime of
the DFSB from almost 3 hours to 69.3 seconds for some of the cases. Note
that the impact of the lookahead increases when the number of edges in the
graph increases. This is expected since, when a column is visited during the
search, the lookahead scheme has a higher chance to find an unmatched row
if the degree of the visited column is higher.

The difference between the left half and the right half of the table is a
change in the jump-start routine. For relatively smaller random graphs with
n ≤ 3 × 105, we do not observe a difference in performance, since the KSM

heuristic leaves only 3 to 10 vertices to be matched by the algorithms later.
Note that this number is between 13000 and 45000 for the SGM heuristic.
However, even for larger matrices, when KSM is used, the execution times of
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Table 4: Comparison of DFS and BFS based algorithms, DFSB, BFSB and
MC21A using SGM and KSM as the jump-start routine. The execution times of
the algorithms are given in seconds. Each entry is an average for 10 random
matrices.

SGM KSM

Matrix DFSB BFSB MC21A DFSB BFSB MC21A

rbg-u(1, 3) 6.9 0.2 2.8 0.1 0.1 0.1
rbg-u(1, 5) 23.6 0.3 3.0 0.1 0.1 0.1
rbg-u(1, 10) 41.9 0.1 0.9 0.1 0.1 0.1
rbg-u(1, 15) 46.4 0.1 0.4 0.1 0.1 0.1
rbg-u(3, 3) 187.4 4.4 64.0 0.3 0.3 0.3
rbg-u(3, 5) 464.6 3.5 49.2 0.4 0.4 0.4
rbg-u(3, 10) 721.7 0.8 14.2 0.7 0.5 0.5
rbg-u(3, 15) 736.2 0.5 6.0 0.9 0.6 0.6
rbg-u(5, 3) 585.3 11.3 193.0 0.6 0.5 0.6
rbg-u(5, 5) 1442.5 8.7 148.5 1.1 0.7 0.9
rbg-u(5, 10) 2378.8 2.0 43.3 2.3 1.0 1.2
rbg-u(5, 15) 2486.2 1.2 19.7 3.2 1.2 1.4
rbg-u(7, 3) 1167.1 26.1 397.7 1.4 1.1 1.4
rbg-u(7, 5) 2956.2 15.8 301.1 2.5 1.1 1.3
rbg-u(7, 10) 5135.3 3.7 91.5 5.4 1.5 1.9
rbg-u(7, 15) 5396.0 2.0 41.7 9.1 2.1 2.7
rbg-u(9, 3) 1971.8 36.1 652.3 2.3 1.4 1.8
rbg-u(9, 5) 5019.9 16.3 485.0 3.6 1.3 1.6
rbg-u(9, 10) 8972.7 4.2 152.8 11.4 1.9 2.0
rbg-u(9, 15) 9667.1 2.5 69.3 17.3 2.5 2.8
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BFSB and MC21A are close because, in this case, the shortest path lengths
increase and BFSB spends more time per BFS search, especially when the
average degree is high (in which case lookahead performs better). But, as
the table shows, BFSB is still better than all simple DFS based alternatives
in terms of execution time for these sets of random graphs. Although we
still keep MC21A, due to the bad performance of DFSB, we will not consider
it as a candidate for the rest of the experiments.

Different versions of ABMP As described in Section 3.3.3, ABMP is a two
stage algorithm that uses the algorithm HK in the second stage. Although any
algorithm described in this paper can be used in the second stage, following
the decision by Mehlhorn and Näher [26, p.106], we also implemented the
version ABMP-BFS which uses BFSB in the second stage of the algorithm.
Table 5 shows the execution times of the algorithms ABMP, ABMP-BFS and
BFSB.

As Table 5 shows, when MDM is used as the jump-start routine in the
preprocessing step, the performance of the algorithms gets closer to each
other since most of the work is done by the heuristic. For this case, ABMP-BFS
is better than ABMP only for graphs containing many groups and having
small d. On the other hand, when KSM is used, ABMP-BFS is better than the
original version in general, especially when the graphs created by the rbg-b

generator contains many groups. Hence, in the following experiments, we
will use ABMP-BFS instead of ABMP.

When KSM is used, ABMP-BFS is generally better than BFSB which shows
that the first stage of the algorithm is useful in practice. On the other hand,
when MDM is used, the performances are almost equal for the graphs created
by the rbg-b generator. For the graphs created by the rbg-u generator,
the results are more interesting. While ABMP-BFS is much better than BFSB

for d = 3, it is worse for d = 5, whereas, their performances are the same
for d = 10. We observed that for the case d = 5, the first stage of ABMP-BFS
takes only a small percentage of the execution time, and hence it is not
the main reason for worse relative performance. Although the second stage
contains fewer BFS searches than BFSB, it takes more time than BFSB due
to the longer augmenting paths remaining after the first stage. This may
be expected since a BFS search from a column c takes more time when the
shortest augmenting path for c is longer.

As Tables 4 and 5 show, using a good jump-start routine in the pre-
processing step makes the performance of the algorithms very close to each
other since most of the work is done by the heuristic. Hence most of the pre-
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Table 5: Execution times of algorithms ABMP, ABMP-BFS and BFSB in seconds
combined with KSM and MDM. Each entry in the table is the average of 10
runs.

KSM MDM

Matrix ABMP ABMP-BFS BFSB ABMP ABMP-BFS BFSB

rbg-u(10, 3) 1.4 1.3 1.4 1.7 1.7 1.7
rbg-u(10, 5) 1.7 1.7 2.3 2.2 2.2 2.3
rbg-u(10, 10) 3.0 2.7 2.3 3.4 3.0 2.8
rbg-u(15, 3) 2.6 2.5 2.5 3.4 3.4 4.1
rbg-u(15, 5) 3.4 3.1 3.0 3.8 3.7 3.2
rbg-u(15, 10) 4.7 3.8 4.6 4.5 4.5 4.7
rbg-u(20, 3) 3.3 3.4 7.3 3.8 3.8 8.1
rbg-u(20, 5) 4.2 4.3 4.6 5.1 5.0 4.6
rbg-u(20, 10) 6.8 5.5 6.6 6.1 6.1 6.2

rbg-b(10, 1, 3) 1.2 1.2 1.1 1.6 1.6 1.4
rbg-b(10, 1, 5) 1.7 1.7 1.6 2.1 2.1 2.0
rbg-b(10, 1, 10) 2.2 2.0 2.5 3.1 3.0 3.3
rbg-b(10, 1, 15) 3.0 2.7 2.5 4.6 4.3 4.0
rbg-b(10, 40, 3) 1.4 1.2 1.4 1.6 1.6 1.8
rbg-b(10, 40, 5) 2.2 2.2 1.9 2.3 2.3 2.0
rbg-b(10, 40, 10) 4.4 3.7 4.6 2.9 2.9 2.9
rbg-b(10, 40, 15) 5.0 6.2 6.8 4.0 3.9 4.2
rbg-b(10, 100, 3) 3.4 2.6 2.9 3.5 2.6 3.0
rbg-b(10, 100, 5) 5.8 5.5 7.8 2.5 2.3 2.1
rbg-b(10, 100, 10) 7.8 6.7 7.6 2.6 2.6 2.6
rbg-b(10, 100, 15) 10.8 8.5 9.7 3.5 3.5 3.5
rbg-b(10, 200, 3) 7.1 4.8 6.6 7.2 5.1 5.7
rbg-b(10, 200, 5) 9.9 8.1 7.7 3.1 2.5 2.1
rbg-b(10, 200, 10) 11.1 7.2 7.7 2.4 2.4 2.4
rbg-b(10, 200, 15) 11.6 8.2 9.1 3.1 3.0 3.1
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vious studies in the literature on performance comparisons becomes obsolete
since they use the SGM heuristic.

5.3.2 Experiments with random matrices

The results of all the experiments with the graphs constructed by rbg-u

and rbg-b generators are given in Tables 6 and 7. In these tables, the
average relative performance of each algorithm is given for each generator.
These values are computed as follows. For each row in the table, we find
the algorithm with the minimum execution time t. We set the relative
performance of this algorithm for this row to be 1.0 and compute the relative
performance of the other algorithms by dividing their execution times by t.
The values in the last row are the averages of these relative performances.

As Table 6 shows, when the KSM heuristic is used, for rbg-u graphs,
BFSB is better than the DFS based alternative MC21A. However, for rbg-

b graphs with high group numbers, MC21A works much better than BFSB;
see rbg-b(10, 100, 15) and rbg-b(10, 200, 15) in the table. This is expected
because the higher the number of groups, the longer the augmenting paths
and therefore the slower the algorithm BFSB. Due to the bad relative per-
formance of MC21A for rbg-u graphs and BFSB for rbg-b graphs, we do not
suggest using them for the maximum cardinality matching problem.

The performance of HK and ABMP-BFS are comparable with HKDW and PF

for rbg-u graphs. Since ABMP-BFS is better than BFSB, we can argue that
the two-stage approach works, and the first stage of ABMP-BFS that uses
the shortest paths up to some level has a positive effect. In fact ABMP-BFS

is the best algorithm for rbg-u graphs. On the contrary, using shortest
paths for every augmentation is not a good idea especially for rbg-b graphs.
This is exemplified by HK: it uses shortest augmenting paths and its relative
performance is the worst.

As shown in Table 6, the modified versions of the algorithms work better.
That is, HKDW is better than HK for both of the random matrix generators, and
PF+ is slightly better than PF. For these experiments, the most important
modification (HKDW vs. HK) comes from Duff and Wiberg [12] since there
is only a slight algorithmic difference between PF and PF+. Even though
HK is one of the worst algorithms in terms of relative performance, HKDW,
which combines HK with PF’s multiple DFS search technique is one of the
best algorithms for this set of experiments on random graphs.

As Table 7 shows, when the MDM heuristic is used, the performance of
the algorithms get closer especially for rbg-b graphs, for which the MDM

heuristic obtains a nearly maximum matching. Hence this table does not
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Table 6: Execution times of algorithms in seconds combined with the KSM

heuristic for rbg-u and rbg-b graphs. Each entry in the table is the average
of 10 runs.

Matrix BFSB MC21A PF PF+ HK HKDW ABMP-BFS

rbg-u(10, 3) 1.4 1.7 1.4 1.4 1.8 1.5 1.3
rbg-u(10, 5) 2.3 2.9 2.3 2.2 2.5 1.9 1.7
rbg-u(10, 10) 2.3 2.9 2.3 2.3 2.7 2.6 2.7
rbg-u(15, 3) 2.5 4.2 2.6 2.4 3.8 3.2 2.5
rbg-u(15, 5) 3.0 4.7 3.2 3.1 3.4 3.0 3.1
rbg-u(15, 10) 4.6 6.6 4.5 4.2 5.3 4.1 3.8
rbg-u(20, 3) 7.3 12.9 6.0 5.5 8.0 4.0 3.4
rbg-u(20, 5) 4.6 8.5 4.6 4.2 4.9 4.5 4.3
rbg-u(20, 10) 6.6 10.7 6.5 6.4 7.2 5.8 5.5

Avg. Relative Perf. 1.2 1.9 1.2 1.1 1.4 1.1 1.0

rbg-b(7, 1, 3) 1.0 0.9 0.9 0.8 0.9 0.8 0.8
rbg-b(7, 1, 5) 1.1 1.3 1.3 1.3 1.1 1.2 1.1
rbg-b(7, 1, 10) 1.4 1.5 1.7 1.7 1.6 1.7 1.5
rbg-b(7, 1, 15) 1.7 1.8 1.8 1.8 1.9 1.9 1.7
rbg-b(7, 40, 3) 0.9 1.0 0.9 1.0 1.5 1.0 0.9
rbg-b(7, 40, 5) 1.3 1.4 1.3 1.3 1.4 1.1 1.2
rbg-b(7, 40, 10) 2.5 1.8 1.8 1.8 2.8 1.6 2.6
rbg-b(7, 40, 15) 3.4 1.7 1.6 1.6 3.3 1.7 4.2
rbg-b(7, 100, 3) 2.9 2.5 1.8 1.4 4.2 2.6 2.3
rbg-b(7, 100, 5) 3.5 1.8 1.4 1.5 3.6 1.2 2.2
rbg-b(7, 100, 10) 5.0 2.1 1.7 1.7 4.4 1.7 4.1
rbg-b(7, 100, 15) 5.7 2.0 1.7 1.7 6.5 1.7 5.3
rbg-b(7, 200, 3) 3.5 4.1 2.7 2.4 7.0 4.6 3.1
rbg-b(7, 200, 5) 6.0 2.8 1.5 1.4 7.0 1.4 4.8
rbg-b(7, 200, 10) 4.4 2.2 1.7 1.7 6.3 1.7 4.4
rbg-b(7, 200, 15) 5.7 2.3 1.9 1.9 6.8 1.7 4.7
rbg-b(10, 1, 3) 1.1 1.1 1.1 1.2 1.2 1.3 1.2
rbg-b(10, 1, 5) 1.6 1.8 1.9 1.9 1.8 1.7 1.7
rbg-b(10, 1, 10) 2.5 2.9 3.4 3.4 2.8 2.5 2.0
rbg-b(10, 1, 15) 2.5 2.4 2.3 2.4 2.8 2.8 2.7
rbg-b(10, 40, 3) 1.4 1.8 1.6 1.5 2.2 1.5 1.2
rbg-b(10, 40, 5) 1.9 1.8 1.8 1.8 2.3 1.7 2.2
rbg-b(10, 40, 10) 4.6 3.2 3.2 3.2 4.3 2.5 3.7
rbg-b(10, 40, 15) 6.8 3.2 3.1 3.1 5.5 2.7 6.2
rbg-b(10, 100, 3) 2.9 2.6 1.7 1.7 5.0 2.9 2.6
rbg-b(10, 100, 5) 7.8 3.0 1.9 1.9 5.4 1.8 5.5
rbg-b(10, 100, 10) 7.6 3.3 2.9 2.9 8.9 2.5 6.7
rbg-b(10, 100, 15) 9.7 3.3 2.8 2.8 8.5 2.6 8.5
rbg-b(10, 200, 3) 6.6 7.8 4.2 3.5 11.9 6.0 4.8
rbg-b(10, 200, 5) 7.7 3.6 2.1 2.0 9.4 2.2 8.1
rbg-b(10, 200, 10) 7.7 3.6 2.5 2.5 9.4 2.4 7.2
rbg-b(10, 200, 15) 9.1 3.3 2.5 2.5 13.3 2.5 8.2

Avg. Relative Perf. 2.2 1.4 1.1 1.1 2.5 1.2 1.9
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Table 7: Execution times of algorithms in seconds combined with the MDM

heuristic for rbg-u and rbg-b graphs. Each entry in the table is the average
of 10 runs.

Matrix BFSB MC21A PF PF+ HK HKDW ABMP-BFS

rbg-u(10, 3) 1.7 2.0 1.7 1.7 2.2 1.9 1.7
rbg-u(10, 5) 2.3 2.6 2.7 2.7 2.4 2.2 2.2
rbg-u(10, 10) 2.8 2.9 2.8 2.8 2.8 3.6 3.0
rbg-u(15, 3) 4.1 4.7 3.0 2.9 4.2 4.1 3.4
rbg-u(15, 5) 3.2 3.4 3.4 3.4 3.3 3.4 3.7
rbg-u(15, 10) 4.7 5.5 6.2 6.1 4.9 5.3 4.5
rbg-u(20, 3) 8.1 14.1 6.4 5.5 8.9 4.8 3.8
rbg-u(20, 5) 4.6 5.5 4.9 4.7 4.8 4.7 5.0
rbg-u(20, 10) 6.2 6.9 6.9 6.8 6.4 6.4 6.1

Avg. Relative Perf. 1.2 1.5 1.2 1.1 1.3 1.2 1.1

rbg-b(7, 1, 3) 1.1 1.2 1.2 1.2 1.2 1.1 1.0
rbg-b(7, 1, 5) 1.3 1.5 1.5 1.5 1.3 1.3 1.4
rbg-b(7, 1, 10) 2.1 2.2 2.4 2.4 2.1 2.5 2.1
rbg-b(7, 1, 15) 2.8 2.8 3.0 3.0 2.9 3.2 2.9
rbg-b(7, 40, 3) 1.1 1.3 1.2 1.2 1.7 1.2 1.1
rbg-b(7, 40, 5) 1.5 1.5 1.7 1.7 1.6 1.5 1.5
rbg-b(7, 40, 10) 1.9 2.0 2.0 2.0 1.9 2.1 1.9
rbg-b(7, 40, 15) 2.5 2.4 2.4 2.5 2.5 2.6 2.5
rbg-b(7, 100, 3) 2.6 2.4 1.7 1.5 3.8 2.6 2.5
rbg-b(7, 100, 5) 1.6 1.4 1.6 1.7 1.9 1.5 1.7
rbg-b(7, 100, 10) 1.7 1.8 1.8 1.8 1.7 1.8 1.7
rbg-b(7, 100, 15) 2.2 2.3 2.3 2.3 2.2 2.2 2.2
rbg-b(7, 200, 3) 3.6 4.3 3.0 2.5 7.4 5.2 3.3
rbg-b(7, 200, 5) 2.1 1.4 1.4 1.4 2.2 1.4 2.3
rbg-b(7, 200, 10) 1.6 1.8 1.8 1.8 1.6 1.6 1.6
rbg-b(7, 200, 15) 2.0 2.0 2.0 2.0 2.0 2.0 1.9
rbg-b(10, 1, 3) 1.4 1.5 1.5 1.5 1.5 1.5 1.6
rbg-b(10, 1, 5) 2.0 2.2 2.3 2.3 1.9 2.1 2.1
rbg-b(10, 1, 10) 3.3 3.6 4.1 4.0 3.4 3.7 3.0
rbg-b(10, 1, 15) 4.0 4.0 4.0 4.0 4.3 4.7 4.3
rbg-b(10, 40, 3) 1.8 2.1 2.0 1.9 2.5 1.9 1.6
rbg-b(10, 40, 5) 2.0 2.0 2.1 2.1 2.2 2.3 2.3
rbg-b(10, 40, 10) 2.9 3.1 3.2 3.2 2.9 3.0 2.9
rbg-b(10, 40, 15) 4.2 4.3 4.4 4.5 4.0 4.2 3.9
rbg-b(10, 100, 3) 3.0 2.9 2.1 2.0 4.5 3.1 2.6
rbg-b(10, 100, 5) 2.1 2.0 2.2 2.2 2.1 2.2 2.3
rbg-b(10, 100, 10) 2.6 2.8 2.7 2.8 2.6 2.6 2.6
rbg-b(10, 100, 15) 3.5 3.5 3.7 3.6 3.5 3.6 3.5
rbg-b(10, 200, 3) 5.7 7.8 4.5 3.7 12.2 6.7 5.1
rbg-b(10, 200, 5) 2.1 2.1 2.2 2.2 2.3 2.1 2.5
rbg-b(10, 200, 10) 2.4 2.5 2.5 2.6 2.4 2.4 2.4
rbg-b(10, 200, 15) 3.1 3.1 3.1 3.1 3.1 3.1 3.0

Avg. Relative Perf. 1.1 1.2 1.1 1.1 1.3 1.2 1.1
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Table 8: The number of matrices (among 100) for which KSM and MDM heuris-
tics find the maximum matching.

heuristic A AQ PA PAQ

KSM 16 16 16 16
MDM 56 53 53 53

say too much about the performance of the algorithms except that MC21A

and HK are worse than the other algorithms.

5.3.3 Experiments with matrices from real-life problems

Since both of the heuristics work well, in order to differentiate between
the algorithms and to compare their performance, we need to find graphs
where KSM and MDM perform poorly. Constructing or characterising hard test
cases for the bipartite matching problem is an interesting research area—
a comment also made by Cherkassky et al. [8]. We try to obtain such
hard instances from the original and permuted versions of real life matrices
from which we believe we can build a fair benchmark set to compare the
performance of the algorithms.

The KSM and MDM heuristics perform very well on the real life matrices;
the numbers of matrices (among 100) for which they can find the maximum
matching are given in Table 8.

Even when the heuristics cannot find a maximum cardinality matching,
their deficiencies are usually very small. From the above numbers, we can
argue that MDM performs better than KSM in terms of deficiency. Note that a
smaller deficiency usually implies a shorter execution time. However, there
are some matrices for which the algorithms using KSM are as fast as the
ones using MDM even when MDM obtains a much larger initial matching. Ta-
ble 9 shows this by an example with the matrices amazon0312 (the original
matrix) and rajat21 (rowwise and columnwise permuted version).

Tables 10 and 11 show the execution times and average relative perfor-
mance of the algorithms for some of the test matrices. For each matrix, we
performed four sets of experiments. Firstly, we execute the corresponding
algorithm ten times on the original matrix. Secondly, we apply ten random
column permutations to the original matrix and execute the algorithm for
each column-permuted matrix. Thirdly, we apply ten random row permuta-
tions to the original matrix and execute the algorithm for each row-permuted
matrix. Lastly, we apply ten random row and column permutations and ex-
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Table 9: Execution times of algorithms in seconds combined with KSM and
MDM for the matrices amazon0312 and rajat21. Each entry in the table is
the average of 10 runs.

Matrix Heuristic Deficiency BFSB MC21A PF PF+ HK HKDW ABMP-

BFS

amazon0312 KSM 11254 22.7 68.6 26.3 18.4 5.4 18.3 2.3
A MDM 5852 25.1 61.0 26.2 19.1 5.8 16.6 2.2

rajat21 KSM 7421 2.0 14.8 6.9 6.4 4.6 2.1 2.5
PAQ MDM 1302 2.4 10.2 6.3 5.8 5.2 2.4 3.3

ecute the algorithm for each totally permuted matrix. Averages of these
ten values are given in the table for each set of experiments. Note that we
build the CSR or CSC after any permutation; the indices in rids or cids are
stored in increasing order.

For some other matrices (not shown in the tables), the heuristics find
a matching of the maximum cardinality or a matching whose cardinality is
very close to the maximum, even after permuting the matrix. Hence the exe-
cution times are small, and the performance of the algorithms are very close
to each other. On the other hand, for some of the matrices, the heuristics
obtain a matching with high deficiency, usually after permutations, but still
almost all of the algorithms perform quite efficiently, i.e., less than 3 sec-
onds. To avoid having large tables, we only put the most interesting results
where the heuristics, and hence the algorithms are evidently sensitive to the
permutations. Note that the average relative performance of the algorithms
are computed by taking all of the results into account, including those not
given in the table.

The experiments with real-life matrices also show that the modified ver-
sions PF+ and HKDW perform better than PF and HK, and that MC21A performs
relatively badly compared to other algorithms. Although the runtimes of the
algorithms get closer when MDM is used instead of KSM, we can argue that
PF+ and HKDW are better than the other algorithms with MDM.

As Tables 10 and 11 show, PF+ is less sensitive to permutations of the
matrices than the original algorithm PF. Furthermore, it appears that the
fairness mechanism that we have incorporated into PF makes it the most
robust algorithm among all the algorithms in this paper. The algorithms HK
and ABMP seem to be robust but the relative performance of HK is worse than
HKDW, ABMP and PF. Although PF+ seems to be the most efficient and robust
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Table 10: Execution times of algorithms in seconds combined with the KSM

heuristic for real life matrices. Each entry in the table is the average of
10 runs. The second column shows the permutation. Only the matrices
for which the algorithms are highly perturbed by random permutations are
given in the table. The relative average performance of the algorithms for
the matrices below and for all 100 matrices are given.
Matrix Perm Avg. BFSB MC21A PF PF+ HK HKDW ABMP-

Def. BFS

pre2
A 11878 8.5 37.2 3.0 0.2 1.2 1.8 3.0
AQ 11834 3.7 69.4 26.7 0.7 2.5 1.1 5.8
PA 11830 20.0 4.8 0.7 0.4 2.8 10.8 4.2
PAQ 11835 5.3 6.5 1.1 0.7 4.1 1.2 7.3

t2em
A 13182 4.8 135.6 4.6 0.1 6.7 3.2 0.6
AQ 13239 1.6 83.2 53.3 0.8 12.7 2.1 2.0
PA 13325 14.9 4.6 1.3 0.9 11.1 47.4 1.8
PAQ 13320 2.4 3.1 1.6 1.3 16.0 1.8 2.9

tmt unsym
A 13156 6.2 142.0 5.1 0.1 6.1 3.8 0.6
AQ 13305 1.7 90.2 61.4 1.2 12.5 2.3 2.0
PA 13336 18.8 4.9 1.1 0.8 11.4 51.6 1.9
PAQ 13286 2.0 3.0 1.5 1.2 16.2 1.9 2.7

tmt sym
A 13306 6.0 147.8 3.8 0.1 3.7 3.1 0.5
AQ 13330 1.4 100.5 72.1 0.6 8.8 1.5 1.4
PA 13326 16.5 3.3 0.7 0.6 7.6 56.6 1.4
PAQ 13410 2.2 2.2 1.1 1.0 11.9 1.3 2.2

apache2
A 6762 5.0 114.3 17.7 1.9 3.5 16.5 0.9
AQ 6744 1.9 195.4 110.6 0.3 7.6 0.6 1.9
PA 6703 14.3 5.3 0.5 0.5 7.3 91.3 1.9
PAQ 6741 2.7 4.1 0.8 0.5 9.9 0.8 3.0

Hamrle3
A 23057 10.4 135.4 26.5 4.6 29.8 0.9 11.7
AQ 23127 28.7 233.6 100.6 11.0 54.1 37.9 36.5
PA 23062 24.9 177.7 22.8 20.9 64.1 3.0 26.4
PAQ 23115 42.9 100.9 47.4 46.4 85.4 61.8 45.4

ecology1
A 14461 5.7 216.9 15.2 1.1 6.9 13.8 0.7
AQ 14471 1.7 195.6 119.6 0.8 14.3 2.4 2.4
PA 14498 17.8 4.7 1.3 0.9 13.0 94.5 2.1
PAQ 14494 3.0 3.1 1.5 1.3 18.5 2.0 3.0

ecology2
A 14578 5.8 220.2 15.6 1.1 8.0 13.6 0.6
AQ 14438 1.9 193.1 119.3 0.8 15.0 2.4 2.3
PA 14447 17.7 4.7 1.2 0.8 12.7 96.7 2.1
PAQ 14415 2.4 3.3 1.8 1.3 18.4 1.9 2.7

amazon0312
A 11254 22.7 68.6 26.3 18.4 5.4 18.3 2.3
AQ 11252 24.1 73.2 30.6 21.5 6.1 20.0 2.1
PA 11235 26.1 93.2 38.9 27.4 6.1 22.7 3.6
PAQ 11258 27.7 99.1 44.5 30.6 7.1 23.0 2.5

language
A 3707 4.6 16.9 2.5 0.9 2.2 1.0 5.7
AQ 3726 8.2 21.5 4.8 1.8 3.1 2.5 6.7
PA 3668 6.1 19.1 3.4 2.2 2.9 1.0 6.0
PAQ 3719 10.1 23.6 6.0 3.9 4.2 3.1 7.4

Relative average
performance

A 26.2 544.3 26.1 2.4 23.6 18.1 5.5
AQ 4.1 165.1 97.0 1.9 11.6 3.1 3.5
PA 21.0 15.5 3.1 2.4 11.7 65.5 4.2

PAQ 3.8 7.9 3.0 2.2 9.8 2.2 3.2

Overall relative
average
performance

A 6.1 95.5 7.2 1.3 5.9 5.1 2.4
AQ 2.9 47.4 25.3 1.3 5.4 1.7 2.6
PA 7.3 8.7 1.6 1.3 5.3 14.9 3.0

PAQ 3.4 4.1 1.6 1.3 5.7 1.8 3.2
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Table 11: Execution times of algorithms in seconds combined with the MDM

heuristic for real life matrices. Each entry in the table is the average of 10
runs. The second column shows the permutation. Only the matrices highly
sensitive to the permutations are given in the table. The relative average
performance of the algorithms for the matrices below and for all 100 matrices
are given.
Matrix Perm Avg. BFSB MC21A PF PF+ HK HKDW ABMP-

Def. BFS

pre2
A 408 1.9 2.6 0.8 0.4 1.0 1.6 1.5
AQ 554 7.1 13.5 6.3 1.0 3.1 1.1 6.3
PA 341 3.6 1.6 0.8 0.8 2.2 3.2 2.5
PAQ 440 10.6 2.5 1.3 1.2 4.7 1.5 7.7

Hamrle3
A 39 0.7 0.4 0.3 0.3 1.2 0.3 0.7
AQ 1162 179.1 92.7 70.2 11.9 65.9 34.1 198.9
PA 22544 75.9 165.9 22.3 19.9 93.4 4.2 66.7
PAQ 18288 144.1 87.7 47.1 46.2 144.7 68.4 149.2

rajat21
A 1292 0.6 0.2 0.2 0.4 1.1 0.4 0.5
AQ 1298 1.3 0.7 0.6 0.9 2.7 1.1 2.2
PA 1158 1.8 5.2 2.2 2.0 3.0 1.3 1.8
PAQ 1302 2.4 10.2 6.3 5.8 5.2 2.4 3.3

rajat29
A 596 0.3 0.2 0.3 0.3 0.8 0.4 0.9
AQ 549 1.1 0.7 0.8 0.7 2.3 1.2 3.9
PA 505 1.0 0.7 1.3 1.0 2.7 1.4 1.7
PAQ 533 1.7 1.4 1.6 1.5 3.0 1.8 2.7

amazon0312
A 5802 25.1 61.0 26.2 19.1 5.8 16.6 2.2
AQ 5838 27.2 70.3 31.8 22.9 6.8 19.4 3.5
PA 5928 28.3 85.7 38.8 27.1 6.6 21.0 5.2
PAQ 5981 30.5 95.4 45.0 31.5 7.7 22.5 4.5

language
A 2677 4.9 13.9 2.7 1.1 2.2 0.8 5.5
AQ 2874 10.0 19.4 5.1 2.1 3.5 2.8 6.4
PA 3253 6.6 18.1 3.7 2.5 3.1 1.2 6.3
PAQ 3467 12.4 23.9 6.6 4.4 4.6 3.6 7.6

Relative average
performance

A 4.9 9.2 3.5 2.6 3.6 2.9 3.5
AQ 6.4 8.8 4.3 2.0 3.3 2.4 6.1
PA 6.2 13.4 3.6 2.8 5.9 2.3 4.9

PAQ 4.1 6.2 3.0 2.3 2.4 1.8 2.7

Overall relative
average
performance

A 1.6 2.2 1.4 1.2 1.6 1.2 1.3
AQ 1.7 2.3 1.6 1.2 1.6 1.2 1.5
PA 1.9 2.4 1.3 1.2 1.8 1.5 1.7

PAQ 1.5 1.9 1.3 1.2 1.5 1.2 1.3
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algorithm, there are some cases on which it performs much worse than ABMP

(see amazon0312).
The difference between the performance of PF (or PF+) and MC21A is huge

in favour of PF. This result is interesting since they both use nothing but
DFS with a lookahead technique. Furthermore, MC21A can prune all of the
visited vertices after each unsuccessful DFS, whereas PF can do the same
after only some of the DFSs. We observed that if one uses multiple DFSs
like PF, it is highly probable that the algorithm finds a large maximal set of
augmenting paths.

In agreement with the results of the experiments with random graphs
given in Table 4, for most of the real life matrices BFSB is better than MC21A.
It is interesting to see that when KSM is used, BFSB is better than MC21A

for all of the 100 unpermuted matrices except FS b39 c30, rajat24, and c-
big. However, especially for the row permuted matrices, there are some
cases where MC21A is 5 times faster than BFSB such as pre2 and tmt sym in
Table 10.

6 Discussions and conclusions

We have reviewed and implemented eight algorithms for solving the prob-
lem of finding a maximum cardinality matching in bipartite graphs namely,
DFSB, BFSB, MC21A, PF, PF+, HK, HKDW, and ABMP. We have also reviewed and
implemented three heuristics which are used in general as a preprocessing
step by these exact algorithms as a jump-start routine. We have described
the details of the algorithms and systematized, developed, and used several
ideas for enhancing performance. We have suggested a simple yet effective
modification to PF that we call PF+. Although PF seems to be an efficient
algorithm in practice, we have witnessed cases (especially with real life ma-
trices) in which it is badly affected by row and column permutations. The
experiments show that PF+ withstands the permutations much better than
any of the other algorithms while exhibiting the same practical performance
as PF.

We have performed extensive tests with the algorithms and concluded
the following.

• Instead of SGM or KSM one should use MDM: Although we observed some
cases where using MDM may increase the execution times of the algo-
rithms, these cases are very rare and its positive effect is much higher
than its negative effect especially on the matrices from the UFL col-
lection.
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• The pure search techniques such as DFSB and BFSB are not robust:
That is, the probability that they suffer due to a worst case perfor-
mance is much higher than other algorithms in this paper. Although
for the rbg-u random matrix class, BFSB is a good alternative, there
are algorithms which are better in general. Hence we do not suggest
using either DFSB or BFSB.

• Instead of PF and HK, one should use PF+ and HKDW: For PF+, there is
almost no overhead for the fairness mechanism, and the final algorithm
is more robust. The improvement due to this additional mechanism
on the average execution times over PF is very impressive for some
matrices. For HKDW, although there is the overhead of additional DFSs,
the reduction in the execution time is high and there is a good overall
improvement over HK.

• ABMP and its variants are not the best performing algorithms as stated
in the literature: Previous results show that ABMP is much better than
HK and other existing algorithms. Most of these studies use SGM as the
jump-start routine and do not have all the algorithms in this paper.
As our experiments show, using MDM instead of SGM decreases the effect
of the first stage, and the performance of ABMP-BFS gets more closer
to the performance of HK. Additionally, the algorithm PF+ has a better
performance on average (although there are some cases for which PF+

performs much worse than HK, HKDW, or ABMP).

In addition to these practical conclusions, our experience also leads to
the following two more theoretically oriented results.

• Parallelization is not straightforward: Although we did not discuss
the parallelization of bipartite matching algorithms, we make the fol-
lowing comment. Our experiments with the matrices from the UFL
collection in which we randomly permuted the rows and/or columns
of the matrices show that even if these algorithms are parallelized, the
partition of the data and/or the order in which the vertices/edges are
processed would affect the run time, and hence there is no easy way
to conduct speedup studies.

• A lower bound on the time complexity needs to be developed: As stated
in Section 3.3.1, the total length of the shortest augmenting paths is
O(n log n) for algorithms that augment matchings through the shortest
augmenting paths. It seems therefore highly implausible that there
would be an augmenting path based algorithm that breaks this barrier.
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We mean the worst-case performance, and therefore we rule out the
randomized algorithms and analysis.
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