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1 About Relating Computation

1.1 Introduction

Hypercomputation, that is nonlinear computation in real multiplicative Dickson
algebras Ak

∼= R2k

, is developed in (Chatelin 2011 a). For k ≥ 2 (resp. k ≥ 3)
multiplication is not commutative (resp. associative). However addition remains
both associative and commutative.

The situation changes in an essential way when computation is merely linear but
there exists a relator which rules the way any two numbers are to be added. This
kind of relating computation will be defined in precise terms in Section 2. It includes
the special case of an explicit metric reference consisting of a positive finite number
λ, 0 < λ < ∞. The classical structure of an abelian additive group is weakened by
considering an addition whose commutativity and associativity are controlled by the
relator. A physically meaningful example was provided a century ago by 3D-Special
Relativity (Einstein) where the role of λ as a metric reference is played by c, the
speed of light, and the relator is a plane rotation.

1.2 Special Relativity in the early days

It was soon recognised that hyperbolic geometry underlies Einstein’s law of addition
for admissible velocities (Varičak 1910, Borel 1914) creating the relativistic effect
known today as Thomas precession (Silberstein 1914, Thomas 1926).

But, despite Maxwell’s valiant efforts (Maxwell 1871), Hamilton’s noncommu-
tative × of 4-vectors was still unacceptable for most scientists at the dawn of the
20th century. Therefore Einstein’s noncommutative + of 3-vectors (representing
relativistically admissible velocities) was fully inconceivable: Einstein’s vision was
much ahead of its time! A version of Special Relativity with more appeal to physi-
cists was conceived by Minkowski in 1907, by dressing up as physical concepts the
Lorentz transformations in the field of quaternions H which had been introduced by
Poincaré in 1905, see (Walter 1999, Auffray 2005). This is the version adopted until
today in physics textbooks.

1.3 The mathematical revival in 1988

Einstein’s intuition was left dormant for 80 some years until it was brought back to
a new mathematical life in the seminal paper (Ungar 1988). During 20 years, Ungar
has crafted an algebraic language for hyperbolic geometry which sheds a natural light
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on the physical theories of Special Relativity and Quantum Computation (Ungar
2008). Ungar’s geometry, which is expressed in “gyrolanguage”, is based on the
key concepts of gyrator and gyrovector space. They are mathematical concepts
abstracted from Thomas precession, a kinematic effect in 3D-special relativity. The
physical effect was anticipated in (Borel 1913, 1914). As we shall see, these concepts
find an equally natural use beyond physics, in the realm of computation ruled by a
relator.

1.4 Geometric Information Processing in relating computa-

tion

The gyrolanguage is geared towards Hyperbolic Geometry and Physics. In this
report, we export some of Ungar’s tools developed for mathematical physics into
mathematical computation in a relating context (Definition 2.1 below). The reward
of the shift of focus from physics to computation is to gain insight about the geo-
metric ways by which information can be organically processed in the mind when
relation prevails. This processing exemplifies the computational thesis posited in
(Chatelin 2011 a,b) by revealing geometric aspects of organic intelligence.

The change of focus entails some changes in the vocabulary which are signalled
by a reference to the original gyroterm defined in (Ungar 2008). The reader will find
all the necessary theoretical background for the presentation to follow in Ungar’s
work, mainly the 2008 book which is a goldmine.
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9.4 On the Poincaré vs. Einstein debate about Relativity and Geometry . 33
9.5 Einstein’s vision of Relativity . . . . . . . . . . . . . . . . . . . . . . 34

10 Cloth geometry and human Information Processing 36

2 Linear organic computation

2.1 Preliminaries

A groupoid (S, ◦+) is a set S of elements on which a binary operation called addition
and denoted ◦+ is defined : (a, b) ∈ S × S 7→ a ◦+ b ∈ S. An element 0 such that
0 ◦+ a = a (resp. a ◦+ 0 = a) is called a left (resp. right) neutral. An automorphism
for (S, ◦+) is a bijective endomorphism ϕ which preserves ◦+ : ϕ(a ◦+ b) = ϕ(a) ◦+ ϕ(b)
for all a, b ∈ S. The set of automorphisms form a group (relative to composition ◦)
denoted Aut (S, ◦+ ) with the identity map I as unit element.

The subtraction is denoted ◦− : a ◦− b = a ◦+ ( ◦− b).

2.2 Relators

We suppose that we are given a map:

rel : S × S → Aut (S, ◦+)
(a, b) 7→ rel(a, b)

such that rel(a ◦+ b, b) = rel(a, b). (A1)

A map rel satisfying the reduction axiom (A1) is called a relator. We set R =
rel(S, S) for the range of the relator in Aut (S, ◦+).

2.3 Organs for linear relating computation

We suppose that ◦+ satisfies the additional axioms:
a ◦+ b = rel(a, b)(b ◦+ a), (A2)

a ◦+ (b ◦+ c) = (a ◦+ b) ◦+ rel(a, b)c, (A3)
which express by means of rel(a, b) a weak form of commutativity (A2) and asso-
ciativity (A3).
The algebraic structure (G, rel) consisting of the additive groupoid G = (S, ◦+ ) and
the relator rel is called an organ.
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Definition 2.1 A linear relating computation refers to any algebraic computation
taking place in an organ defined by the data { ◦+ , rel} satisfying the three axioms
(A1), (A2), (A3).

Remark 2.3.1 In (Definition 2.7, Ungar 2008), the relator is called gyrator with (A1) ⇐⇒ (G5).
Next (A3) ⇐⇒ (G3) is gyroassociativity and (A2) ⇐⇒ (G6) is gyrocommutativity which is optional
in a gyrogroup. An organ is a gyrocommutative gyrogroup (Definition 2.8). And ◦+ is denoted
either + or ⊕ therein.

2.4 Some properties of the relator

The neutral 0 and the opposite ◦− a are unique: left=right, and a ◦− a = ◦− a ◦− a = 0.
The relator satisfies:
• ◦− (a ◦+ b) = rel(a, b)( ◦− b ◦− a), (Theorem 2.11)

= ◦− a ◦− b (Theorem 3.2)
• rel−1(a, b) = rel( ◦− b, ◦− a) (Theorem 2.32)
• rel(b, a) = rel−1(a, b) (Theorem 2.34)

= rel(a, ◦− rel(a, b)b) (Lemma 2.33)

• rel( ◦− a, a) = rel( ◦− a, a) = rel(0, a) = rel(a, 0) = rel(0, 0) = I (2.1)

More in Table 2.2 (Ungar 2008).

The identities in (2.1) follow from the reduction axiom (A1). Because ◦− a ◦+ a =
0 ◦+0 = 0, rel( ◦− a, a) and rel(0, 0) could be arbitrarily chosen in Aut (S, ◦+ ). In full
generality, 0 is a singularity with an indeterminate character. The indeterminacy
disappears under the reduction axiom (A1).
We cite other consequences for (A1) which shed some light on organic computation
in G. We assume below that the property (π): g ◦+ g = 0 ⇐⇒ g = 0 holds for
any g ∈ G. In a multiplicative algebra context, one would say that there exists no
2-torsion (Chatelin 2011 a). Observe that (π) is satisfied in the Examples 2.1 to 2.3
given in Section 2.6.

Proposition 2.1 Given any g 6= 0 in G, there exists a unique half h such that
h ◦+h = h +̂ h = g.

Proof. +̂ is defined in (2.6) below. Use (A1) and (π), see Theorem 3.34. �

There are two important corollaries (Ungar 2008):
(i) rel(a, b) 6= ◦− I (Theorem 3.36),
(ii) rel(a, b)b = ◦− b =⇒ b = 0 (Theorem 3.37).
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2.5 The two basic equations associated with ◦+ and rel

Because ◦+ is not commutative we are led to consider L = {La = a ◦+ ·; a ∈ G} and
R = {Ra = · ◦+ a; a ∈ G} Left– (resp. right–) addition ◦+ is abbreviated L ◦+ (resp.
R ◦+ ).
We consider the left and right linear equations associated with a, b in G.

Lax = a ◦+ x = b, (2.2)

Ray = y ◦+ a = b, (2.3)

Each of them has the unique solution

x = ◦− a ◦+ b, (2.4)

y = b ◦− rel(a, b)a. (2.5)

The equality (2.5) suggests to consider the composite map ◦+ rel(·, ·) as an induced
addition +̂ defined by

(a, b) ∈ G × G 7→ a +̂ b = a ◦+ rel(a, ◦− b)b. (2.6)

The corresponding subtraction is denoted −̂ . Then (2.5) can be rewritten as
y = b −̂ a.

Three properties are noteworthy:
• Aut (S, ◦+) = Aut (S, +̂ ),
• +̂ is classically commutative (Theorems 2.38 and 3.4).
• ◦− a = −̂ a by (2.1).

The concept of an organ is determined by the two data: ◦+ and the associated relator
(as a map into the automorphisms for ◦+). In the relating perspective, the source no-
tion is the relator which rules its associated addition ◦+ . This addition precedes the
secondary addition +̂ , which is induced by R ◦+ and the relator combined together.

The concept of an organ reduces to the classical concept of an abelian additive group
when the primitive operation is associative and commutative (hence ◦+ = +̂ ), that
is when the range R reduces to {I}.
By expanding its range to the larger subset R $ Aut (S, ◦+) ( ◦− I 6∈ R) the re-
lator controls the weak (or relative) commutativity and associativity of ◦+ , thus
introducing inhomogeneity and anisotropy in the organic structure. This has the
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additional benefit to induce the existence of +̂ , another addition which is classically
commutative.
In other words, the expansion {I} → R loosens the rigid structure of an abelian
group and provides the more flexible, relating, structure of an organ.
We observe that since R is a proper subset of Aut (S, ◦+ ), the role of the relator is
to reduce the variety of possible automorphisms. The standard group appears as a
limit case corresponding to the ultimate reduction R = {I} which is tautological.
This explains why the concept of an organ is better suited than a group to describe
an organic logic which is evolutive by essence.

Organic Information Processing (IP) is a dynamical process which reflects the dy-
namics of the relator. Its operations in G consist of ◦+ , +̂ and their automorphisms.
One can view an organ as a new algebraic species, some kind of a “fieldoid”, based on
the groupoid, in which +̂ plays the role attributed to × in an ordinary field (group-
based) structure. The main difference with a field is that the neutral 0 (identical
for ◦+ and +̂ ) replaces the unit 1 6= 0. The analogy is described in the

Remark 2.5.1 The induction {R ◦+ , rel} → +̂ is analogous to the creation of the product n × a
by n repeated additions of the real number a. In this most familiar case, the relator stems from
an iterated addition. The induction can also be compared with the way by which the complex × is

recursively induced by {+, conjugation, iteration k − 1 → k} in Dickson algebras Ak
∼= R2

k

, k ≥ 1
(Chatelin 2011 a).

Remark 2.5.2 In Remark 2.3.1, we noted that the axiom (A2) ⇐⇒ (G6) is optional in a gy-
rogroup. To better appreciate the concept of a relator for an organ deprived of (A2) it is inter-
esting to contrast it with the way alternativity, a weak form of associativity is expressed in the
multiplicative algebra of octonions G (Chapter 9 in Chatelin 2011 a, Section 9.4).
In additive parlance, weak associativity is ruled by (A3).And in multiplicative notation for the
alternative algebra G (Lemma 9.4.1):

a × (b × γ) = ((a × (b × γ)) × γ−1) × γ, γ 6= 0.

Recalling that ◦−γ becomes γ−1, one sees that the second formula related to ×, and determined
by multiplication by γ and γ−1 only, is much more intricate than the first which writes simply
(a ◦+ b) ◦+ rel(a, b)γ = a ◦+(b ◦+ γ).

2.6 Three basic examples

The following Examples are found in Sections 3.4, 3.8 and 3.10 respectively of (Ungar
2008) The explicit formula for x ◦+ y entails the determination of rel(x, y).
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Example 2.1 The subgroup of all Möbius transformations of the complex open unit disk D = {z ∈
C; |z| < 1} into itself is defined by : (a, z) 7→ eiθ a+z

1+āz for a, z ∈ D and θ ∈ R. If we set a ◦+ z = a+z
1+āz ,

the relator is defined by rel(a, z) = 1+az̄
1+āz ∈ Aut (D, ◦+). Hence clearly a ◦+ z = rel(a, z)(z ◦+ a).

Endowed with ◦+ the unit disk becomes an organ. △

Example 2.2 Let c be the vacuum speed of light. We set Bc = {x ∈ R3; ‖x‖ < c} to represent
the ball of relativistically admissible velocities.
Einstein’s law of addition of velocities x, y ∈ Bc is

x ◦+ y =
1

1 + <x,y>
c2

[

x + y +
1

c2

γx

1 + γx
x ∧ (x ∧ y)

]

where γx =
(

1 − 1

c2 ‖x‖2
)−1/2

is the inverse of Lorentz contraction.
Using Grassmann identity in R3:

x ∧ (y ∧ z) =< x, z > y− < x, y > z,

(Lamotke 1998, Chapter 7, p. 207), one can also write

x ◦+ y =
1

1 + <x,y>
c2

[

x +
1

γx
y +

1

c2

γx

1 + γx
< x, y > x

]

The two velocity components, parallel and orthogonal to the relative velocity between inertial
systems, were given by Einstein in his 1905-epoch-making paper. The latter formula is valid for
n ≥ 2.
Einstein’s addition is ruled by a relator which is the rotation: y ◦+x 7→ x ◦+ y with axis parallel to
x ∧ y through the angle ε, 0 ≤ |ε| < π (Borel 1913, Silberstein 1914). ε is related to θ = ∡(x, y)
in the following way (Ungar 1988,1991): ε = 0 for |θ| ∈ {0, π} and for |θ| ∈]0, π[ x and y are
independent, yielding:

cos ε =
(ρ + cos θ)2 − sin2 θ

(ρ + cos θ)2 + sin2 θ
,

sin ε = −2
(ρ + cos θ) sin θ

(ρ + cos θ)2 + sin2 θ
,

with ρ2 = γx+1

γx−1

γy+1

γy−1
, ρ > 1, and |ε| < |θ|.

When ‖x‖ and ‖y‖ tend to c−, γx and γy tend to ∞ and ρ → 1+. Then cos ε → cos θ and
sin ε → − sin θ. △

Example 2.3 V = Rn, n ≥ 2 is the euclidean linear vector space with scalar product < ·, · >.

Let be given λ, 0 < λ < ∞, and define vλ = 1

λv for v ∈ V , βv =
(

1 + ‖vλ‖2
)−1/2

. We consider

u ◦+ v =

(

1

βv
+

βu

1 + βu
< uλ, vλ >

)

u + v

defined for u, v ∈ V . For n = 3 and λ = c, this additive law governs the relativistic addition of
proper velocities expressed in traveller’s time. The relator is again a rotation. △

The reader can check that in each example above x ◦+ y is symmetric in x and y iff
x and y are dependent.
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2.7 Liaison Λ between rel, ◦+ and +̂

To the linear equations (2.2), (2,3) for ◦+ , we add the third equation for +̂

a +̂ x̂ = x̂ +̂ a = b (2.7)

which admits the unique solution

x̂ = ◦− ( ◦− b ◦+ a) = b ◦− a. (2.8)

Observe that x = rel( ◦− a, b)x̂ by (A2).

Each of the solutions x, y and x̂ is obtained by a respective call to the three following
cancellation laws for ◦+ and +̂ :

• left cancellation for ◦+ : a ◦+ ( ◦− a ◦+ b) = b (2.9)

• right cancellation for ◦+ : (b −̂ a) ◦+ a = b (2.10)

• cancellation for +̂ : (b ◦− a) +̂ a = a +̂ (b ◦− a) = b (2.11)

Identities (2.10) and (2.11) express a link by means of the relator between R ◦+ and
+̂ which is not present in (2.9) concerning L ◦+ .
If one uses x, y and x̂, the three identities become respectively

a ◦+ x = b (2.12)

y ◦+ a = b (2.13)

x̂ +̂ a = a +̂ x̂ = b (2.14)

This notational artifact separates R ◦+ and +̂ in (2.10), (2.11) which appear now as
(2.13) = right cancellation for ◦+ , (2.14)=cancellation for +̂ .
None of the two writings is a faithful description of the computational reality which
is, by essence, connected. Whichever writing is chosen, the reader should keep in
mind that a liaison based on rel(a, ·) exists between · ◦+ a and ·+̂a = a+̂ · for
rel(a, ·) 6= I when the linear cancellation laws are at work. This liaison reflects the
existence of the relator which regulates any relating computation in its organ. The
liaison concerns L ◦+ as well. Indeed, the equality (2.8) x̂ = b ◦− a suggests to consider
the equation involving Lb:

Lbx̃ = b ◦+ x̃ = a

whose solution is x̃ = ◦− b ◦+ a = ◦− (b ◦+ a) = ◦− x̂.
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Definition 2.2 We call liaison Λ(rel, ◦+ , +̂ ) the computational consequences of the
three fundamental cancellation laws (2.9), (2.10) and (2.11).

The computational dynamics of organic IP results from the shifts L ◦+ , R ◦+ and the
automorphisms of G. Given a and b, we shall be concerned in Sections 4 and 7
with the evolution of x̂ = b ◦− a (resp. y = b −̂ a) when a left (resp. right) shift by
an arbitrary g ∈ G is realised simultaneously on a and b. For future reference we
mention the two results valid for g ∈ G:

• (g ◦+ b) ◦− (g ◦+ a) = rel(g, b)(b ◦− a) (Theorem 6.12) (2.15)

• (a −̂ b) = (a ◦+ h) −̂ (b ◦+ g) with h = rel(a, b)g (Theorem 6.14). (2.16)

3 Metric cloths

3.1 The normed vector space frame

Let V be a linear vector space over R with finite dimension n ≥ 2, scalar product
< a, b > for a, b ∈ V and derived norm ‖a‖ =

√
< a, a >.

The addition + and scalar multiplication are standard operations in V ∼= Rn. Let λ
be given, 0 < λ < ∞ and set Bλ = {x ∈ V ; ‖x‖ < λ}. We suppose that the ball Bλ,
or V itself, are endowed with the organic structure (G, ◦+ ) with relator rel, where
G represents Bλ or V as the case may be. The neutral 0 for G is identified with
0 ∈ V .
The linear vector space V is the frame of the organ G iff the relator preserves the
scalar product: < rel(u, v)x, rel(u, v)y >=< x, y > for any quadruple (u, v, x, y) ∈
G4. It follows that ‖rel(x, y)‖ = 1 for x, y ∈ G. Hence the range R of the relator is
a subset of the group of isometries of G. Note that R ⊂ O(n) does not contain −I
because of (A1).
We assume moreover that if x and y are linearly dependent in G then for x = ry,
r ∈ R (say), (ry) ◦+ y = y ◦+ (ry). Hence rel(ry, y) = rel(x, y) = I (=⇒ x ◦+ y =
x +̂ y). The formula for ◦+ becomes symmetric in x and y. The property is satisfied
for the 3 Examples given in Section 2.6. We shall see how this assumption enables
simplexity to take place in an axial fashion.

3.2 The scalar multiplication ◦×
We suppose that G admits a scalar multiplication ◦× : R × G → G such that
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• 1 ◦× a = a,
• (r1 + r2) ◦× a = (r1 ◦× a) ◦+ (r2 ◦× a),
• (r1r2) ◦× a = r1 ◦× (r2 ◦× a), a ∈ G, r1, r2 ∈ R,

• for r and a 6= 0 |r| ◦× a

‖r ◦× a‖ = a

‖a‖ ,

• rel(u, v)(r ◦× a) = r ◦× (rel(u, v)a) for u, v, a ∈ G, r ∈ R,
• rel(r1 ◦×u, r2 ◦×u) = I, u ∈ G, r1, r2 ∈ R.
• ‖r ◦× a‖ = |r| ◦×‖a‖, r ∈ R, a ∈ G.

3.3 n = 1: the measuring rod M = {±‖a‖, a ∈ G}
All elements in M are colinear, hence the relator image reduces to {I1 = 1}, and
◦+ = +̂ on M . M is a 1D-linear vector line equipped with ◦+ , ◦× and ‖ · ‖ deriving
from G and V . The 3 operations usually differ from the standard operations +, ·, | · |
defined on R.

3.4 n ≥ 2: the V -framed metric cloth W

We suppose that ‖a ◦+ b‖ ≤ ‖a‖ ◦+ ‖b‖, a, b ∈ G.
The structure W = (G, ◦+ , ◦× ) obeying the assumptions above is a metric cloth in
the normed vector frame V . The cloth W is organically and metrically woven by
{ ◦+ , relator, ◦× , ‖ · ‖}. This is Ungar’s gyrovector space in the carrier V (Definition
6.2, Ungar 2008).

Example 3.1 The scalar multiplication for the organ Bc in Example 2.2 is such that r ◦× 0 = 0,
r ◦×x = µ(r)x for 0 6= x ∈ Bc. We set xc = 1

cx, then

µ(r) =
1

‖xc‖
tanh(r tanh−1 ‖xc‖), r ∈ R.

Then Bc becomes the R3-framed cloth WE (based on Einstein’s addition) which is an alternative
framework for Special Relativity in Physics, classically presented by means of Lorentz transforma-
tions in the field of quaternions H.
Let q = (cα, X) be given in H, with real part cα, α ∈ R and imaginary part X in R3. Then
q2 = c2α2 − ‖X‖2 + 2cαX . A Lorentz transformation in H leaves invariant the quantity

ℜq2 = c2α2 − ‖X‖2 = f constant for all q ∈ H

(Poincaré 1905). Observe that ‖X‖2 = c2α2 − f and ‖ℑq2‖2 = 4c2α2(c2α2 − f) are nonnegative
iff c2α2 ≥ f which is always satisfied when f ≤ 0.
By (11.2) in (Ungar 2008), the Lorentz transformation without rotation is a boost L(u) for u ∈ Bc

such that, for uc = 1

cu, qc = 1

c q = (α, Xc)

L(u)qc = (γu[α+ < uc, Xc >], γuu[α +
γu

1 + γu
< uc, Xc >]).
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Then by (11.10) for u, v ∈ Bc we get the composition law:

L(u)L(v) = L(u ◦+ v)rel(u, v) = rel(u, v)L(v ◦+u).

The general case (transformations with rotations in SO(3) is given in (11.15), (11.20).
These formulae shed an interesting light about the connection between hypercomputation in H
based on × and computation in the cloth WE based on Einstein addition ◦+ E . The connection is
developed in (Chatelin 2011c). △

Because a − a = 0 in V , −a = (−1) × a = ◦− a in W . In general r ◦× (a ◦+ b) 6=
(r ◦× a) ◦+ (r ◦× b), unless a and b are dependent. Scalar multiplication distributes axi-
ally: r ◦× [(r1 ◦× a) ◦+ (r2 ◦× a)] = (rr1) ◦× a ◦+ (rr2) ◦× a = (rr1 + rr2) ◦× a.
The automorphisms of W form the group Aut (W ): they consist of automorphisms
of G which preserve also the scalar multiplication ◦× and the scalar product < ·, · >.
The identification −a = ◦− a = −̂ a which holds in W provides more insight on the
induced addition +̂ by considering the mirror equation for (2.2) where a and b are
exchanged:

b ◦+ x̃ = a. (3.1)

Lemma 3.1

x̃ = −x̂ (3.2)

Proof.(3.1) yields x̃ = −b ◦+ a by (2.4) and x̂ = b ◦− a by (2.8). Now x̂ = −(−b ◦+ a) =
−x̃. �

In the larger context of a cloth, the liaison Λ includes +, as illustrated by the
identification x̂ = −x̃.

Definition 3.1 A linear weaving computation refers to any algebraic computation
taking place in a metric cloth W defined by the data {rel, +̂ , R, V }.

The set of operations that we shall consider in weaving Information Processing
(WIP) is restricted to Op(W ) = L ∪R ∪ Aut (W ).

Definition 3.2 The weaving information processing WIP in a metric cloth W is
realised in W by means of Op(W ).

13



We shall study by geometric means the results of WIP. The metric cloth W inherits
from its euclidean frame not only a scalar product/norm, but also its affine essence
with respect to a real parameter. Therefore the geometry derived from a cloth is
based on lines (as affine functions of a real parameter) and in particular on geodesics
(for which the triangle inequality becomes an equality). In what follows, we build
on Ungar’s vision based on physical insight. We develop some aspects of the role of
geometry in WIP. The existence of the three operations ◦+ , +̂ , + entails a complex
structure for cloth geometry which sheds some light on the polymorphic nature of
non euclidean geometry.

4 The metrics associated with ◦+ and +̂

4.1 Definition

We revisit the four linear equations (2.2), (2.3) (2.7) and (3.1) and their four solutions
x (2,4), y (2.5), x̂ (2.7) and x̃ (3.1). A simplification occurs because ‖rel(a, b)‖ = 1
for x = rel(−a, b)x̂, hence ‖x‖ = ‖x̂‖ = ‖x̃‖ 6= ‖y‖. Thus one can associate two
metrics in W with the three cancellation laws. They are given by

d̊(a, b) = ‖ − a ◦+ b‖ = ‖b ◦− a‖, (4.1)

d̂(a, b) = ‖b −̂ a‖. (4.2)

The reason for the upperscripts stems from the respective triangle inequalities

d̊(a, c) ≤ d̊(a, b) ◦+ d̊(b, c), (4.3)

d̂(a, c) ≤ d̂(a, b) +̂ d̂(b, c). (4.4)

The two metrics are invariant under Aut (W ). Invariance under left shift in L holds
for d̊ by (2.15): ‖b ◦− a‖ = ‖(g ◦+ b) ◦− (g ◦+ a)‖ for any g ∈ G.
d̂ is not L−invariant in general: with a” = g ◦+ a and b” = g ◦+ b, ‖b −̂ a‖ 6= ‖b” −̂ a”‖
for an arbitrary g ∈ G.
Regarding R-invariance for +̂ (based on ◦+ g), if rel(a, b) = I, then: a −̂ b =
(a ◦+ g) −̂ (b ◦+ g) implies R-invariance for +̂ . This is always true when a and b
are dependent. In general (2.16) holds with ‖h‖ = ‖g‖. The topic will be developed
further in Section 7.1.

4.2 Liaison vs. metric entanglement

What is the influence of metrisation on the liaison Λ(rel, ◦+ , +̂ , +)? It is twofold:
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(i) The metric d̊ induces an illusory unification based on the norm equalities ‖x‖ =
‖x̂‖ = ‖x̃‖ between the three distinct solutions x 6= x̂ = −x̃ for (2.2), (2.7) and
(3.1). Thus empirical deductions based on d̊ are ambiguous: the equal norms can
be attributed to three different causes. We call this effect the metric entanglement
&(Λ, d̊) which transforms the computational liaison Λ into an equality about norms.
(ii) Both metrics d̊ and d̂ are woven by the relator: they do not provide the absolute
certainty of classical analysis resulting from ‖ · ‖ in the presence of the unique
standard addition +.

Not too surprisingly, we see that weaving computation in the context of a metric
cloth offers a freedom of choice rather than the absolute certainty of classical math-
ematics, a situation already encountered with hypercomputation (Chatelin 2011 a).
In the sequel, we investigate the impact of weaving on cloth geometry based on d̊
and d̂.

Remark 4.2.1 On the notational dilemma

It is important to keep in mind that in the ambiguous context of weaving computation the notation
itself is, by force, ambiguous. For example the notation d̊ and d̂ was suggested by the triangle
inequalities (4.3), (4.4). But, of course, the notation d̊ reflects ◦+ through its two aspects (i) L ◦+ ,

and (ii) +̂ which combines R ◦+ and the relator. And d̂ reflects the unique aspect R ◦+ converted
into +̂ . In the difficult task to capture as best as possible the subtle relational interplay between
◦+ and +̂ by symbolic means, cloth geometry will prove to be a meaningful tool.

5 About the lines passing through 2 distinct points

5.1 Introduction

Let be given a 6= b. In euclidean geometry there exists a unique straight line
passing through a and b, which can be represented by the affine function: t ∈ R 7→
a + (b − a)t ∈ Rn: the point a (resp. b) corresponds to t = 0 (resp. 1).
The straight line is the geodesic of the euclidean metric.
The segment [a, b] is defined by 0 ≤ t ≤ 1. It has a unique midpoint mab =
a + 1

2
(b − a) = 1

2
(b + a) = mba. This simple euclidean picture will be modified in

cloth geometry since there exist more than one line passing through two points due
to the existence of more than one cancellation law.
In what follows we restrict our attention to the three fundamental (cancellation)
laws (2.9), (2.10), (2.11) that we put at the foundations of our geometric study.
The three laws are ordered respectively as first, second and third. They define three
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types of lines numbered 1,2,3. It is important to distinguish whether a and b are
dependent or not.

5.2 Three fundamental lines through a 6= b, a and b indepen-

dent

To each fundamental law we associate a unique fundamental line passing through a
for t = 0 and b for t = 1. These lines are given by the table below

symbol definition representation, t ∈ R

L1 = L-Lab left-line for L ◦+ a ◦+ (−a ◦+ b) ◦× t (5.1)

L2 = R-Lab right-line for R ◦+ (b −̂ a) ◦× t ◦+ a (5.2)

L3 = L̂ab line for +̂ (b ◦− a) ◦× t +̂ a = a +̂ (b ◦− a) ◦× t (5.3)

We call a the origin of the 3 lines (t = 0). The three distinct solutions x, y, x̂ are
the respective coefficients of t for the lines. The 3 representations can be rewritten
respectively under the form: a ◦+ x ◦× t, y ◦× t ◦+ a, x̂ ◦× t +̂ a = a +̂ x̂ ◦× t.

Lemma 5.1 (i) a +̂ x̂ ◦× t = a ◦+ x1 ◦× t with x1 = rel(a,−b)x̂ = x.
(ii) x̂ ◦× t +̂ a = x̂ ◦× t ◦+ a2 with a2 = rel(b,−a)x̂.
(iii) Moreover ‖x̂‖ = ‖x‖ = ‖a2‖: x and a2 are rotated about O from x̂ through
opposite angles.

Proof.(i) a +̂ x̂ ◦× t = a ◦+ (rel(a,−x̂)x̂) ◦× t by (2.6) with rel(a,−b ◦+ a) = rel(a,−b) by
(A1). And rel(a,−b)x̂ = rel(−a, b)x̂ = x.
(ii) x̂ ◦× t +̂ a = (b ◦− a) ◦× t ◦+ rel(x̂,−a)x̂ by (2.6) and rel(b ◦− a,−a) = rel(b,−a).
(iii) Clear when we observe that rel−1(a,−b) = rel(b,−a). �

The line L̂ab can be interpreted as a modified (i) left- or (ii) right- line for ◦+ .
We use the generic notation Lab = L(a, x) where x is the coefficient of the parameter
t in the equation for the line passing through the origin a(t = 0) and b(t = 1). Hence
L̂ab = L3 = L(a, x̂), x̂ = b ◦− a.

Lemma 5.2 (i) L̂ab = L-L(a, x) = L-Lab with x = rel(a,−b)x̂, b = a ◦+ x.
(ii) L̂ab = R-L(a2, x̂) = R-La2b2

with a2 = rel(b,−a)x̂, b2 = x̂ ◦+ a2.
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O

x

a2

L = LL̂x̂

x̃

RL̂

a

b

L̂

ε

Figure 5.1: L̂ = L̂ab and its geodetic components:
L = LL̂ = L-Lab and RL̂ = R-L(a2, x̂).

Proof.Apply Lemma 5.1. For t = 1, (i) a ◦+ x = b, (ii) x̂ ◦+ a2 = b2 ⇐⇒ x̂ = b2 −̂ a2.
�

The line L̂ab is the source of two distinct images, left and right. In the left (resp.
right) image, the origin a is preserved (resp. moved to a2) and the coefficient x̂ is
moved back to x (resp. preserved).
The line L̂ = L̂ab is a composite construction resulting from ◦+ and rel(a,−b) which
can be decomposed into its left and right geodetic components. Quite remarkably,
the left component is L-Lab itself. The right component RL̂ can be characterised by
the rotation x̂ 7→ x = rel(a,−b)x̂ about O through the angle ε. Then a2 is rotated
through −ε. See Figure 5.1.
There are altogether four lines of interest associated with a pair (a, b): the three
lines through a, b plus the right image RL̂ through a2, b2.

5.3 a and b are dependent

When a and b are dependent, the 3 points O, a, b are collinear. An essential simpli-
fication takes place: the four lines above coalesce geometrically into one euclidean
straight line through O.

Lemma 5.3 If a and b are dependent, then rel(a, b) = I, a2 = x = y = x̂, and
b2 = 2 ◦×x.

Proof. By assumption rel(a, b) = I then a ◦+ b = a +̂ b, hence x = y = x̂ = a2 =
b ◦− a. The 3 lines L1, L2, L3 coalesce into one euclidean straight line through O if
x 6= 0 ⇐⇒ b 6= a, since a and x are dependent.

17



(i) Because x = x̂, the left image for L̂ coalesces with itself.
(ii) For the right image a2 = x and b2 = 2 ◦×x yielding the equation x ◦× (t + 1). The
right image is geometrically identical to the axis passing through O, a and b. But
its equation (t + 1) ◦×x differs from a ◦+ t ◦×x, unless a = x ⇐⇒ b = 2 ◦× a. �

Corollary 5.4 (i) If a 6= 0 and b are dependent such that b = l ◦× a; l ∈ R\{1}, the
three lines through a and b and the right image for L̂ coalesce geometrically into a
unique euclidean straight line. The analytic coincidence does not hold for the right
image unless l = 2.
(ii) If l = 1, the unique line is reduced to the point {a} 6= 0, and the right image to
{0}.

Proof. (i) Clear by Lemma 5.3. If b = l ◦× a, a = 1

l−1
◦×x and the common equation

is
(

1

l−1
+ t

)

◦×x.
For l 6= 2, the analytic difference between the two equations is x ◦− a = (l − 2) ◦× a =
(

l−2

l−1

)

◦×x.
(ii) l = 1 ⇐⇒ x = 0. �

When a and b are dependent, the nature of the geometric lines differs markedly; it is
reminiscent of that encountered in euclidean geometry. It is the linear independence
of a and b which forces the lines to bend, indicating a nonlinearity in disguise.
In what follows, a and b are assumed to be independent, unless otherwise stated.

6 About midpoints on a curvilinear segment

There are 3 types of fundamental curvilinear segments (a, b) to consider. We first
assume that a and b 6= 0 are independent.

6.1 Midpoints on L1 and L2 for ◦+
In Chapter 6, Ungar shows that a unique midpoint exists for (5.1) by Theorems
6.53, 6.34 and for (5.2) by Theorem 6.74:

• mL

ab
= a ◦+ x ◦× 1

2
= 1

2
◦× (a +̂ b) = b ◦−x ◦× 1

2
= mL

ba
,

‖a ◦−mL

ba
‖ = ‖b ◦−mL

ba
‖ = ‖x‖ ◦× 1

2

(6.1)
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• mR

ab
= y ◦× 1

2
◦+ a = b ◦− y ◦× 1

2
= mR

ba
, with ‖y‖ 6= ‖x‖ (6.2)

The equality mL

ab
= mL

ba
= 1

2
◦× (a +̂ b), suggests that a and b could play a more

symmetric role in the definition of the left line L1 for ◦+ under an appropriate
change of parameter.

Lemma 6.1 The line L-Lab can be represented in the four equivalent forms:
a ◦+x ◦× t = a ◦× (1−t) ◦+ b ◦× t, x = −a ◦+ b, and b ◦+ x̃ ◦× t′ = b ◦× (1−t′) ◦+ ◦× t′, x̃ = −b ◦+ a,
with t + t′ = 1.

Proof.a ◦+ (−a ◦× t ◦+ b ◦× t) = a ◦× (1 − t) ◦+ b ◦× t since rel(a, a) = I.
When t′ replaces t, a and b are exchanged. �

Letting t = t′ = 1

2
yields mL

ab
which admits the fully symmetric representation

1

2
◦× (a +̂ b). This reflects an essential property of the scalar multiplication ◦× by 2

(Theorem 6.7, Ungar 2008).

2 ◦× (a ◦+ b) = a ◦+ (2 ◦× b ◦+ a) = a+̂(a ◦+ (2 ◦× b)) (6.3)

for any a, b ∈ W . In (6.3), 2 ◦× a is split so that a occurs in two places in the rhs of
2 ◦× (a ◦+ b), yielding three terms.

We have proved the remarkable

Theorem 6.2 For any two independent points 0 6= a 6= b the three additions L ◦+ ,
R ◦+ and +̂ provide the same arithmetic mean on L-Lab:

mL

ab
=

1

2
◦× (a ◦+ b) =

1

2
◦× (b ◦+ a) =

1

2
◦× (a +̂ b).

Proof.Clear. Observe that, in addition to the above coincidences, and (6.1), we also
have mL

ab
= b ◦+ x̃ ◦× 1

2
= a ◦− x̃ ◦× 1

2
. �

No such remarkable property holds for R-Lab. The identities about mR

ab
given in

(6.2) cannot be complemented in general.
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6.2 On the line L̂ for +̂

The third type of curvilinear segment on L̂ defined by (5.3) has two pseudo-means:
m̂ab = x̂ ◦× 1

2
+̂ a differs from m̂ba = b −̂ x̂ ◦× 1

2
(Section 6.13). However, ‖x‖ = ‖x̂‖

guarantees the equality of the respective distances ‖a −̂ m̂ab‖ = ‖b −̂ m̂ba‖ = ‖x̂‖ ◦× 1

2

and of their counterparts on L-Lab.

Lemma 6.3 The two pseudo-means m̂ab and m̂ba on L̂ab are such that

‖x‖ ◦× 1

2
= d̊(a, mL

ab
) = d̊(a, m̂ab) = d̊(b, m̂ba).

Proof.Clear by (6.1). �

When a and b are independent, there are four means: mL on L-Lab, mR on R-Lab,
m̂ab and m̂ba on L̂ab.

6.3 a and b are dependent

Lemma 6.4 If a 6= 0, b = l ◦× a, the four means coalesce into a single point m =
1

2
◦× (a +̂ b) on the unique line Lab.

Proof.Use Lemma 5.3 and Corollary 5.4. �

7 About geodesics, lines and triangles

7.1 Two types of geodesics coexist

Among the three fundamental lines passing through 0 6= a and b independent, only
the first two are geodesics (Theorems 6.48 and 6.78): for any c on L-Lab (resp.
R-Lab) the triangle inequality (4.3) (resp. (4.4)) reduces to an equality. The third
fundamental line L̂ab is not a geodesic. This justifies the existence of two pseudo-
means (Lemma 6.3).

Proposition 7.1 The two additions ◦+ and +̂ coalesce on the geodesic L-Lab.

Proof. By a dichotomy argument based on Theorem 6.2: x ◦+ y = x +̂ y for any x, y
between a and b on L-Lab. �
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a

s
b

O

R-Lab

Figure 7.1: a, b, s ∈ R-Lab

Proposition 7.1 indicates that a sort of “differential” commutativity holds for x ◦+ y
when x and y vary on L1. Given a and b linearly independent the geodesic for d̊
through a, b describes the unique locus of points for which ◦+ is commutative, hence
◦+ = +̂ locally (on L1). This mechanism underlies the emergence of the role of
commutativity for addition in classical mathematics.

We discover below that the geodesics for d̂ play a very different connecting role in
IP by revisiting (2.16) above:

Proposition 7.2 The geodesic R-Lab is such that for any w ∈ W and s ∈ R-Lab,
then

b −̂ a = (b ◦+ rel(b, s)w) −̂ (a ◦+ rel(a, s)w) (7.1)

Proof. See Theorem 6.76 in (Ungar 2008) and Figure 7.1. �

The relation (7.1) is one possible form of the kind of right shift-invariance enjoyed
by +̂ when a and b are independent (2.16). The coefficient y = b −̂ a is invariant
when the same right shift chosen in {· ◦+ rel(·, s)w, w ∈ W , s ∈ R-Lab} is equally
applied to a and b, see Figure 7.1. This exact, albeit limited, kind of R-invariance for

Ĝ under right shift should be contrasted with the metric L-invariance for
◦
G (which

hides the rotation rel(g, b) in (2.15)).

Definition 7.1 Given a 6= b, the property (7.1) for w ∈ W , s ∈ R-Lab defines the
homotopic link between a and b assumed to be independent.

Any s on R-Lab is uniquely defined by t ∈ R through (5.2) which defines the map:

t ∈ R 7→ y(t) = y ◦× t ◦+ a, t ∈ R, y = b −̂ a.
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At any (t, w) ∈ R × W we consider in W

za(t) = rel(a, y(t))w, zb(t) = rel(b, y(t))w,

with za(0) = zb(1) = w. By (7.1), b −̂ a = (b ◦+ zb(t)) −̂ (a ◦+ za(t)) for all t ∈ R, with
‖za(t)‖ = ‖zb(t)‖ = ‖w‖ for any w ∈ W .

The homotopic link between a and b is ruled by the two values rel(a, y) and rel(b, y)
for the relator. Indeed, rel(a, (b −̂ a) ◦× t ◦+ a)rel(b −̂ a, a) = I by (2.16) in Ungar
(2008), and rel−1(b −̂ a, a) = rel(−a, a −̂ b) (Section 2.4).

Proposition 7.3 When w varies on the sphere Sr = {x, ‖x‖ = r} for 0 < r < λ,
the homotopic link between a and b maintains za(t) and zb(t) on Sr for all t ∈ R.

Proof.Clear from the above discussion. �

When w is arbitrary in W , the double equality ‖w‖ = ‖za(t)‖ = ‖zb(t)‖ holds for
any t, and hides the actual source of the homorphic link (7.1) between a and b which
resides in the relator at the pairs (a, b −̂ a) and (b, b −̂ a).

In conformity with the notation adopted in Section 4, we set
◦
G=

◦
G (a, b) for L-Lab

Ĝ = Ĝ(a, b) for R-Lab. This unsatisfactory notation exemplifies the notational
dilemma expressed in Remark 4.2.1 about the difficulty to represent intrinsically
complex facts in the relating domain by a simple enough symbol.

Proposition 5.2 can be rephrased as follows. The line L̂ab has two geodetic images
◦
G (a, b) and Ĝ(a2, b2) which are two different versions of itself.

7.2 Weaving computation and broadcasting information

The broadcasting of information from a to b uses the real parameter t in R to channel

through the two kinds of geodesics
◦
G and Ĝ with distinct capabilities.

1) For a geodesic
◦
G, ‖b ◦− a‖ is invariant under left shift. We say that

◦
G radiates

metric information. In other words,
◦
G is a channel which is blind to rotations

performed on the results produced by WIP: it is a normative channel. Because the

two additions ◦+ and +̂ yield identical results for any pair of points on itself,
◦
G

draws the commutative path from a to b.
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2) By comparison, the geodesic Ĝ through a and b (when independent) is a channel
which selects, from the whole of WIP results, only the ones which enjoy a homotopic
link (according to Definition 7.1). We say that Ĝ emanates limited exact information.

The line L̂ given by (5.3) cannot broadcast information since it is not a geodesic. But

its two geodetic images are suitable for broadcasting. Channel
◦
G= L-Lab broadcasts

the left image which generally differs from L̂ab for t 6= 0 and 1. The right image is
broadcast through RL̂ = R-La2b2

which passes through a2 6= a (t = 0) and b2 6= b
(t = 1) in general. This computational property lends weight to the notion of
“action at a distance” for information, a notion which is too often ruled out a priori
in science.

By contrast, if a and b are dependent, a 6= b, there exists a unique channel because
◦
G, Ĝ and L̂ coalesce with the right geodetic image for L̂ (Corollary 5.4). Action is
local, but analysis 6= geometry unless a 6= 0 and b = 2 ◦× a, or vice-versa.

It appears that there are three ways by which information can be broadcast from a
to b:
(i) If a and b are independent, the information potential is twofold, deriving from
the two metrics d̊ and d̂.
(ii) If a and b are dependent, the geometric potential derives from a unique norm.
However the remaining analytic difference a ◦−x vanishes iff b = 2 ◦× a 6= 0 only.

7.3 Geometries of the triangle

There are three geometric aspects stemming from lines through a, b independent
deriving from L ◦+ , R ◦+ , +̂ which are connected and at times entangled. A very
different aspect emerges when a and b are dependent, a situation which we leave
aside in this section.
Section 6.1 has shown that any geodetic segment defined by two distinct points a and
b has a midpoint. In order to discriminate further, we consider three non collinear
points a, b, c and the two associated fundamental triangles with vertices at a, b, c
and whose sides are geodetic segments corresponding to d̊ and d̂ respectively. Such
triangles are geodetic triangles of type 1 and 2 respectively.
Non-geodetic triangles of the third type are constructed by means of non-geodetic
lines L̂.
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θ

y
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◦
G

′

◦
G

cos θ =< −x ◦+ y
‖−x ◦+ y‖ , −x ◦+ y′

‖−x ◦+ y′‖ >

Figure 7.2:
◦
G and

◦
G

′
intersect at x 6= 0 under the angle θ, 0 ≤ θ ≤ π/2

In euclidean geometry, any triangle has concurrent medians meeting at the centroid.
In non-euclidean geometry for a cloth, we restrict our attention to triangles of each
type 1,2 and 3.
According to Section 6.13 in (Ungar 2008), only L-triangles have a centroid. R-
triangles have medians but no centroid. And non-geodetic triangles of type 3 have
no medians.

Example 7.1 On geodetic triangles and squares of type 1.

Let be given λ, 0 < λ < ∞ and Bλ = {x ∈ Rn, ‖x‖ < λ}, n ≥ 2. Then for x ∈ Bλ and xλ = 1

λx,
‖xλ‖ < 1. Using Ungar’s Definition 3.4, we set

x ◦+ y =
1

C
(Ax + By) ,

A = 1 + 2 < xλ, yλ > +‖yλ‖2, B =
(

1 − ‖xλ‖2
)

, C = 1 + 2 < xλ, yλ > +‖xλ‖2‖yλ‖2.

Then we use the metric d̊ defined by ◦+ to measure angles and distances for the geodesics
◦
G, see

Chapter 8 in (Ungar 2008), and Figure 7.2.
We consider, in the hyperbolic plane, two geodesics of type 1 for ◦+ , which intersect at x 6= 0
at an angle θ, 0 ≤ θ ≤ π/2. The Riemann metric associated with ◦+ is conformal to the metric

dx2 =

N
∑

i=1

dx2
i of the Euclidean space Rn, x = (xi) (Section 7.3, p. 247). Hence θ measures the

euclidean angle between the intersecting tangents at x.
We distinguish two cases below:
(i) 0 ≤ θ ≤ π/3. One can construct equilateral triangles (three angles= θ) with defect δ3 = π − 3θ,

0 ≤ δ3 ≤ π and side length ‖a‖ such that ρ3(θ) = ‖a‖
λ =

√
2 cos θ − 1 (Theorem 8.56), with ρ3 = 1

(resp. 0) for θ = 0 (resp. π/3), meaning that ‖a‖ = λ (resp. λ → ∞).
One can equally construct squares (four angles= θ) with defect δ4 = 2π − 4θ, 2

3
π ≤ δ4 ≤ 2π, side

length ‖b‖, 1

λ‖b‖ = ρ4(θ) =
√

cos θ and diagonal length ‖c‖, 1

λ‖c‖ =
√

2 cos θ
1+cos θ ((8.260) in Section
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8.18). Hence λ√
2
≤ ‖b‖ ≤ λ,

√

2

3
λ ≤ ‖c‖ ≤ λ.

(ii) π
3

< θ ≤ π/2. No equilateral triangle can be constructed because −1 ≤ ρ2
3(θ) < 0. Only remain

squares with defect 0 ≤ δ4 < 2π
3
, and 0 ≤ ρ4(θ) < 1√

2
. △

The distinction θ < π

3
or not in Example 7.1 reveals an interesting epistemological

property. When θ ≤ π

3
, the intersection point x can be related in two ways to points

on each geodesic at the same relative distance ratio ρ:
1) either by using an implicit equilateral triangle with 0 ≤ ρ3 ≤ 1,
2)or by using an implicit square with 1/

√
2 ≤ ρ4 ≤ 1.

In other words, the implicit connection of x to three other points (square) rather
than two (triangle) forbids the ratio ρ to tend to 0: necessarily ρ ≥ 1√

2
.

This restriction holds as long as θ ≤ π

3
. When π

3
< θ ≤ π

2
, the connection to three

points is the only possible connection, yielding 0 ≤ ρ < 1√
2
.

This sheds some light on what it may mean to consider the intersection x as im-
mersed in a causal space with 3 or 4 dimensions. When 0 ≤ θ ≤ π

3
the immersion

in 3D (resp 4D) enables continuity to take place in the limit λ → ∞ (resp. imposes
discreteness because ρ ≥ 1√

2
). When π

3
< θ ≤ π

2
, the immersion in 4D is by necessity;

it yields continuity as θ → π/2 (λ → ∞ is the euclidean limit).
This shows that the pair (x, θ) should be considered: one cannot decide between 3
or 4 dimensions for the analysis of x without the information about θ that either
θ ≤ π

3
or θ > π/3. It is quite remarkable that the quantisation which can take

place when θ ≤ π/3 is the result in hyperbolic geometry of a 4D-perspective for an
inherently 3D-phenomenon. It is clear that for θ > π/2, the same reasoning applies
by considering regular polygons with more than 4 vertices.

At this point, we may pause and ponder on the seemingly counter-intuitive fact
that the algebraically poorest L ◦+ provides the geometrically richest of the three
geometric representations of a triangle, the one closest to the familiar euclidean
triangle.
Similar phenomena are actually ubiquitous in hypercomputation (Chatelin 2011 a).
This expresses the creative tension between algebra and geometry telling us that:

less algebraic rules = more geometric options.
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8 Four aspects in cloth geometry

The classical (commutative and associative) addition + underlies the familiar eu-
clidean space, the geometric frame of classical vector calculus.
A nonclassical addition a ◦+ b such that rel(a, b) is an isometry in R ⊂ O(n) trans-
forms the euclidean geometry into a computational construction with four different
geometric aspects which are related and metrically entangled by R.

In the most primordial aspect, the geodesics
◦
G are directly derived from L ◦+ and

provide the picture which has the largest amount of geometric information, corre-
sponding to classical hyperbolic geometry. Weaving computation in a metric cloth
reveals in fact a more complex, multifaceted, picture for cloth geometry. The nature
of the lines through the points a and b depends on their being linearly independent
(I) or not (II).

line type metric line triangle

1

d̊ = ‖ − a ◦+ b‖
geodesic

◦
G

= Channel 1
metric radiation

dichotomy1

◦+ = +̂ 1

centroid 2

2

d̂ = ‖b −̂ a‖
geodesic

◦
G

= Channel 2
limited exact emanation

dichotomy 1 no centroid 2

3
d̊ = ‖b ◦− a‖
line L̂ 6= geodesic

two pseudo-midpoints

left geodetic image
◦
G

right geodetic image
through a2 and b2

no medians

Table 8.1.: (I) a and b independent

A partial summary (limited to lines and triangles) is given in Table 8.1 for a and b
independent. Then Table 8.2 lists for a and b dependent some features of the fourth

1on a geodetic segment
2for a geodetic triangle
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• The four lines (including
◦
G and Ĝ) coalesce into a unique straight channel

through O for l 6= 1.
• For l = 2, there is analytic coincidence as well.
• The four points resulting from the three dichotomies coalesce into one.
• For l = 1, the three lines are reduced to the point {a} and the right image to

the origin O (a 6= 0).

Table 8.2.: (II) a 6= 0, b = l ◦× a, l ∈ R.

aspect reduced by linear dependence to a pencil of lines through O (a 6= b) or to a
set of points (a = b).
Because the non-geodetic lines do not enjoy the unique midpoint property, Un-
gar(2008) leaves out the third aspect, to focus on the first two (p. 205).
He gives three concrete examples in Chapters 4 and 6. The first one corresponds
to Example 7.1; it extends for n ≥ 2 the Möbius transformation given in Example
2.1 for n = 2. The 2nd example generalises to n ≥ 2 the Einstein addition given in
Example 2.2 for n = 3. The third example, also of physical origin, was presented
in Example 2.3. We shall discover later that these three basic examples shed an
essential light on the first two aspects of WIP dealing with geodesics.

8.1 The first aspect based on d̊

Because of the geodetic differential identification ◦+ = +̂ taking place in the first
aspect (Proposition 7.1), each choice of ◦+ yields a cloth geometry whose first as-
pect exhibits some of the properties found in axiomatic hyperbolic geometry (where
models are all equivalent).
It is noteworthy that the three concrete examples do correspond to the three best
known models, respectively the Poincaré ball-, Beltram-Klein ball-, hyperboloid,
models. One marvels at the fact the Beltrami model (1868) anticipates by almost
40 years its most fundamental raison d’être to be provided in 1905 by Einstein.
The Poincaré and Klein ball-models (n ≥ 2) are related to the hyperboloid one
projectively (by means of (t, x1, · · · , xn)). For n = 3, the asymptotic cone for the
hyperboloid is understood as the light-cone c2t2 = x2

1
+ x2

2
+ x2

3
in the Minkowski

time-space interpretation of Special Relativity.
The equivalence between the two ball-models is remarkably simple: with respective
notation P (for Poincaré) and E (for generalised Einstein, i.e. Beltrami-Klein) the
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x

3
4

6

v

∞

Figure 8.1: Organic causality: 1 → v − 1, v ≥ 2 at x.

correspondence is a homothety:

xE 7→ xP =
1

2
◦×xE ⇐⇒ yP 7→ yE = 2 ◦× yP .

(Table 6.1, Section 6.21 in Ungar 2008).

Because the geodesics
◦
G radiate metric information only, it is possible that the

geometric causality at the intersection x of two geodesics of type 1 is based on the
implicit construction of a regular polygon Pv with v vertices and angle 0 ≤ θ ≤
ϕ(v) = π v−2

v
, v ≥ 2, between two adjacent sides. The formula for ϕ(v) is based

on the assumption that for a regular hyperbolic v−polygon (v > 2), the defect is
δv(θ) = (v − 2)π − vθ with 0 ≤ δv(θ) ≤ (v − 2)π where the maximum value is the
sum of the v angles in a euclidean v−polygon. This geometric construction based
on θ defines an organic causality 1 to v − 1, 2 ≤ v < ∞, see Figure 8.1.

Example 8.1 On quantisation and Pv-causality

We consider a regular polygon Pv with v vertices, v ≥ 2 and angle θ. The limit case v = 2
corresponds to θ = 0: the geodesics are tangent at x, and ρ2(0) ∈ [0, 1] (0 ≤ ‖a‖ ≤ λ). When the
case θ = 0 is analysed in 3D (v = 3) then the value 1 is the only possibility if we use the formula
ρ3(θ) =

√
2 cos θ − 1. This means ‖a‖ = λ: the two points are on the boundary of Bλ. Example

7.1 has shown that when 0 ≤ θ ≤ π/3 is analysed in 4D (v = 4) then 1√
2
≤ ρ ≤ 1.

We assume that for v ≥ 3, the map: θ ∈ [0, ϕ(v)] 7→ ρv(θ) ∈ [0, 1] is continuous. When v → ∞,
ϕ(v) → π and Pv becomes a circle. In a Pv-analysis, we suppose that 0 ≤ θ ≤ ϕ(v − 1), then
0 < l(v) ≤ ρv ≤ 1, where l(v) is the value of the relative side length ρv(θ) at θ = ϕ(v − 1).
Accordingly 0 ≤ ρv(θ) ≤ l(v) for ϕ(v − 1) < θ ≤ ϕ(v). We get l(3) = 1 > l(4) = 1√

2
, and

limv→∞ l(v) = 0 by continuity. Hence the quantisation effect disappears in the limit. The effect
is the result of an organic causal analysis based on Pv with 3 ≤ v < ∞, when θ ≤ ϕ(v − 1). It
can be eliminated by a shift to a continuous straight line (v = ∞); then continuity takes over and
replaces discreteness.
The reader is referred to (Chatelin 2011c) for a detailed study of the case where θ is obtuse
(θ > π/2 hence v > 4) but the analysis uses 4 causal dimensions (i.e. squares P4 hence 3 causes).
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The number 4 is a computational suggestion stemming from Fourier analysis of complex signals
(Chapter 10 in Chatelin 2011a), uncovering the role of cos θ

(

= ρ2
4(θ)

)

.

△

8.2 About the second aspect based on d̂

Because of the existence of the liaison Λ, it is not clear that the equivalence of
models which may hold in the 1st aspect remains valid for the other aspects (no
geodetic identification between ◦+ and +̂ ).

Ungar(2008) gives the geodesics Ĝ and
◦
G in the three concrete examples cited above.

Example 8.2 We list the euclidean nature of geodesics
◦
G and Ĝ for n = 2 corresponding to the

three additions given in Section 2.6.

• In the Poincaré disc-model, with λ = 1,
◦
G (resp. Ĝ) is a euclidean circular arc which intersects

the unit circle orthogonally (resp. at two diametrically opposite points).

• In the Belrami disc-model,
◦
G (resp. Ĝ) is a euclidean straight line segment (resp. an elliptic

arc which intersects the boundary circle at two diametrically opposite points).

• In the hyperboloid model in R2,
◦
G (resp. Ĝ) is a hyperbola whose asymptotes meet at O

(resp. a straight line). The model was used by Helmholtz as early as 1870, and by W. Killing, and
K. Weierstrass in 1872. △

In all three examples (n ≥ 2) the second aspect reveals a curious resurgence of flat-
ness into hyperbolicity. Geodetic triangles of type 2 may exhibit certain properties
which are considered classically as characteristics of euclidean geometry (Section
8.28 in Ungar 2008). One can cite the two most emblematic ones:
• parallelism is supported,
• any triangle angle sum equals π ⇐⇒ δ3 = 0.

We add that the gaussian curvature computed in (Ungar 2008) for d̂, n = 2, in the
three examples, is positive, a fact classically associated with elliptic geometry.
More about the epistemological significance for weaving computation in Section 9.

8.3 The third aspect deriving from +̂

The third aspect is by far the most challenging from a computational point of view.
An in-depth treatment is beyond the scope of this report. We can only mention
some properties exhibited by L̂ which deserve serious attention:
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aO

0 1 2

b bO

1a = 0

a) base 3 b) base 2

Figure 8.2: a and b are dependent

1) Each line L̂ with origin a 6= 0 has two images in the first and second geometries
(Proposition 5.2). Therefore to any pair (a, b) one can associate four lines, of which
three are geodesics, the only non-geodetic being L̂ab.
2) Lemma 6.3 shows that dichotomy on a segment (a, b), a and b independent, can
be metrically ambiguous with d̊.

8.4 The fourth aspect deriving from linear dependence

If W is perceived as a pencil of straight lines through the origin O, then the geometry
is strictly reduced to that of the measuring rod M . The situation arises in two ways:
1) a 6= 0, b = l ◦× a, for l 6= 1, rel(a, b) = I. The origin O appears as the unique
source of analytic and geometric information for l = 2.
When l = 1, W is perceived as a totally discontinuous set of points, a situation
which evokes non interacting dimensionless particles.
2) a = 0 and b 6= 0, rel(0, b) = I, and x = x̂ = b = a2, b2 = 2 ◦× b.
Then geometry and analysis can never agree. The three lines have the common
equation b ◦× t and the right image corresponds to b ◦× (t + 1): the parameter t is
shifted by +1.

It is tempting to interpret the two cases 1) a 6= 0 and b 6= 0 for any l 6∈ {0, 1} and
2) a = 0 and b 6= 0 in terms of measurement on the corresponding line.
1) O, a and b are the three collinear points such that if l = 2, there is analytic
and geometric coincidence. This evokes the base 3, see Figure 8.2 a). When l is an
integer > 2, one can think of base l − 1, yielding no analytic coincidence.
2) There are only O and b 6= 0, without analytic coincidence. This corresponds to
the base 2. See Figure 8.2 b).
This sheds an interesting new light on the difference in computing capabilities be-
tween base 2 and 3 respectively. See Chapters 6 and 8 in (Chatelin 2011 a).
The creative tension between the bases 2 and 3 in one dimension is reminiscent of the
choice in causal dimension between 3 and 4 offered to analyse x at the intersection

of two geodesics of type
◦
G in a hyperbolic plane with d̊ metric, when the angle θ

between the two tangents satisfies 0 ≤ θ ≤ π/3. (Example 7.1 and Figure 7.2).
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8.5 Shifting towards unity

Let us consider again the additions of Examples 2.2 (n = 3) and 2.3 (n = 2). The
Einstein addition corresponds to an outer observation of motion in R3 (the observer
is at rest, i.e the observation is objective). The latter addition corresponds to an
inner observation of motion in Rn, n ≥ 2 (the observer is moving, i.e. the observation
is subjective).

In the first (resp. second) type of observation, the geodesic
◦
G (resp. Ĝ) is a euclidean

straight segment (resp. line). This remarkable fact has an important consequence.
It enables the observer to operate a change of origin in the frame V . Putting the
origin on the line or segment defined by a and b unifies the two previously distinct
channels by making a and b appear linearly dependent.
In the case of inner observation one can choose the new origin such that b = 2 ◦× a
since Ĝab is unlimited. This may not be always possible for outer observation because
◦
Gab is a limited segment.
The shift of origin is a move towards unity in two ways. First, it unifies the twofold
channel into a unique one. Second, when θ = 0 the causality for v = 2 is the classical
1 to 1 causality of science. The linear causality used in science appears in WIP as
a particular case of organic causality which can only be valid when θ = 0, reducing
the pair (x, θ) to (x, 0). The single datum x is an incomplete information in WIP,
which ignores θ.
We believe that the shift of origin is at work in simplexity (Chatelin 2011a,b), a
non-reductionist change of perspective in order to ease computation while preserving
the complex structure of the observed phenomenon. An example in astronomical
observation is provided by the shift of focus from Earth to Sun to analyse the
planetary movements in the solar system. The counter-intuitive heliocentric view
was first voiced in Greece (Aristarchus of Samos, ca. -310 to -230), then confirmed
some 1800 years later by Kepler in Prague using Brahe’s data.

9 An epistemological appraisal

9.1 Hyperbolic geometry in Nature

A number of natural shapes exhibit, at least locally, a hyperbolic character in their
geometry. The most famous example is a horse saddle or a mountain pass. Among
other natural hyperbolic surfaces, one can cite lettuce leaves, coral reef or some
species of marine flatworms with hyperbolic ruffles. According to W. Thurston,
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if one moves away from a point in hyperbolic plane, the space around the point
expands exponentially. The idea was implemented in crochet in 1997 by D. Taimina
by ceaselessly increasing the number of stitches in each row of her crochet model
(Henderson and Taimina 2001). Experiments have shown that the visual information
seen through the eyes and processed by our brain is better explained by hyperbolic
geometry (Luneburg 1950). This explains the popularity of hyperbolic browsers
among information professionals (Lamping et al. 1995, Allen 2002).

9.2 Axiomatic vs. cloth geometries

The classical concept of a group underlies the three geometries which can be ax-
iomatically derived from three versions of the parallel postulate: by a point not on a
given line, one can draw a number p of parallels to the line with p ∈ {0, 1,∞}. The
best-known case p = 1 corresponds to a linear vector space endowed with a scalar
product and derived norm. The cases p = 0 (elliptic) and p = ∞ (hyperbolic) are
modifications of the euclidean case, each with many equivalent models.
By comparison, cloth geometry is derived from a metric cloth framed in a linear
normed space with dimension n ≥ 2, and based on an organ G( ◦+ ,relator). It is
not axiomatically defined, but is a computational construct based on ◦+ and on the
corresponding choice of isometries for the relator. The computation results in a
polymorphic geometry in which the relator blurs the clear-cut distinctions created
by axiomatisation based on an abelian group. For example, p = ∞ and p = 1 can
be co-existing properties. Depending on the choice R of isometries, the computed
geometry will exhibit new non-euclidean features, among which some are already
well-known in hyperbolic or elliptic geometries defined axiomatically.

9.3 Cloth geometry in the mind

In (Chatelin 2011 a,b) we have argued that hypercomputation in multiplicative
Dickson algebras is part of the algorithmic toolkit for the human mind. Experimental
evidence provided by Special Relativity indicates that the mental construction of
the outside 3D-reality is controlled by cloth geometry based on Einstein addition.
We posit that, more generally, there exists a commonly shared set of relators
for mind computation. This would explain why most people agree on the general
appearance of the 3D- landscape, if not on all the details. Two eye-witnesses never
agree on the minute details about the scene they both observed at the same place
and time.
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The existence of a common cloth geometry in 3D is the reason why we, human
beings, have the feeling that we share more or less the same external reality, our
habitat called Nature. As for the inner world inside each of us, it differs widely
from one individual to the next. Why? Because the number n of dimensions for the
frame is not bound to be 3 anymore, but may vary arbitrarily at will, n ≥ 2.
Cloth geometry provides a plausible mechanism for outer action and inner under-
standing after observation (Section 8.5). In WIP perspective, both processes result
from a drive in the mind toward alignment. Both processes involve the participa-
tion of the observer’s mind (at a conscious or unconscious level). We note once more
that the observer is free to choose to relate a and b by outer or inner observation.
However the reader should remember that the physical reference λ = c for the speed
of light is imposed by physical reality and defines the limit of observable velocities.
No such constraint exists for inner observation; in other words the reference λ is
self-imposed (or chosen).

9.4 On the Poincaré vs. Einstein debate about Relativity

and Geometry

During the first two decades of the 20th century the intellectual debate about the
“true” nature of physical space was structured around Poincaré (and his legacy after
1912) and Einstein, see (Paty 1992). These giants stood at the two endpoints of a
continuum of ideas running from Mathematics to Physics. The issues at stakes have
been heatedly debated. They can be easily understood by means of hypercomputa-
tion and cloth geometry.
On the one hand Poincaré had an axiomatic vision of Geometry based on groups
(Poincaré 1902). In special relativity he proved the dynamical invariance of physical
laws for Mechanics and Electromagnetism (slightly ahead of Einstein). The relativis-
tic dynamics presented in (Poincaré 1905) bears on group theory and (implicitly)
on the field H of quaternions, two advanced mathematical notions which are now
common in theoretical physics. His work wraps up more than 250 years of discover-
ies about the baffling behaviour of light (Auffray 2005). Poincaré is often criticised
because – as Lorentz, Maxwell and Fresnel did before him – he occasionally mentions
ether, a notion which is considered obsolete in current physics. We remark that in
the cognitive perspective of cloth geometry in the mind, a reference is required for
weaving computation, whatever name is given to it, ether, consciousness ....
On the other hand Einstein did not at first feel the need for a non-euclidean ge-
ometry, because he only slowly became aware of the physical consequences of his
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non symmetric composition law. Together with Ehrenfest, Max Born and others,
he realised that an accelerated motion would not permit exact rigidity for the mov-
ing body, but would imply elastic deformations and possible explosion. In order to
save the relativity principle (by showing that it can apply to all kinds of motions
including accelerations) Einstein had to modify the geometry, thus uncovering the
full breadth of the 1905 paper.
Following (Paty 1992 ), we may say that: “Poincaré thought Physics with his geo-
metric mind, as much as Einstein viewed Geometry through his physicist’s eyes”.
The principle of relativity has been observed in light phenomena since the 17th
Century. In this intellectual odyssey, history has chosen to emphasise the year 1905
and the sole contribution of Einstein, This is an ironical twist of fate since the version
of Special Relativity which survives today in textbooks bears out the group structure
of Lorentz transformations due to Poincaré, while it overlooks the information role of
Einstein’s non commutative addition of 3-vectors in the construction of the human
image of the world.
In retrospect, one realises that relativity has two intricate aspects based on two
algebraic structures: the metric cloth WE (based on ◦+ E) envisioned by Einstein
and the noncommutative field H (based on ×) implicit in Poincaré.
A thorough comparison between the distinct computational roles played by these
two structures is given in (Chatelin 2011c).

9.5 Einstein’s vision of Relativity

In 10 years (1905-1915) Einstein’s vision evolved from the commonly shared eu-
clidean view to a highly personal one. By transmuting ideas borrowed from Riemann
and Poincaré he was led to General Relativity in 1916. This larger vision he would
maintain and refine for the rest of his life (Einstein 1921). Hence his work presents a
remarkable continuity of thought since the day he planted the seed of Relativity by
positing that admissible velocities do not add in a symmetric fashion. The simplicity
of this idea – so daring at the time – should strike a chord in any mathematically
inclined mind! Simplicity is not triviality ...; it means depth and beauty, conferring
a flavour of eternity to Einstein’s revolutionary idea. The new idea ran against a
couple of centuries of scientific development for physics, which had climaxed in the
19th century with a commutative addition for 2- or 3-vectors in classical Mechanics,
symbolised by the parallelogram law. It is fair to say that there exists a world of
difference between the two physics papers authored by Einstein and Ungar which
are 83 years apart: the difference illustrates the progress of algebraic knowledge in
the 20th century. More than a century had to elapse to allow the slow coming of age
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of the idea relativity: from its birthplace in experimental physics into its original
habitat in the human mind. This evolution would not surprise the perceptive Mach
who wrote in Die Mechanik (1883): “We should not consider as foundations for the
real universe the auxilliary intellectual means that we use for the representation of
the world on the stage of thought.” (italics in original).

The relativistic formula is routinely put to good use by engineers in telecommu-
nications and space industries. But is it really understood? A look at textbooks
for physics undergraduates casts some doubts. The pristine clarity of Einstein’s
addition is obscured behind the cloud of Lorentz transformation and its inherent
technicalities. The essence is lost in the mist of Minkowski’s 4D-spacetime. It is
not uncommon to find only the symmetric formula (valid for parallel velocities) as
any quick websurf will confirm. It is no coincidence that history has chosen to tout
the (physically more difficult) equation E = mc2, which is but one of the many
consequences of Einstein’s source law of addition.
We find another clue to the incomplete understanding of relativity if we look at
Quantum Mechanics. Einstein was never convinced by the theoretical status of this
small scale domain of Physics. He acknowledged that the equations worked ex-
tremely well but he maintained that the theory was incomplete. And indeed quan-
tisation can follow from relativity (Sections 7.3 and 8.1). Einstein’s views on QM
were not taken seriously by the physicist community; however, his deeply intuitive
understanding of relativity did not lead him astray.

The result of this unsatisfactory state of affairs is that relativity is not yet fully
embraced: it is, at best, interpreted as an exotic law of Nature, with no other
consequences on everyday life than the use of cellular phones and GPS devices.
Relativity is not perceived as giving us a clue about the ways by which the human
mind builds its “imago mundi”, its image of the world (Chatelin 2011a,b). The role
of relativity in western science is confined to physics research (nanoscale or high
energy) in order to develop ever more sophisticated technologies. More than one
century after Einstein’s groundbreaking discovery, relativity has not yet been taken
seriously by social scientists. They do not venture beyond the overly simplified
version that is called relativism, a mental construct which does not do justice to the
philosophical depth of relativity.
Information Processing is of paramount importance for human affairs. Information-
based activities such as education, medicine, economy and ecology, could benefit
greatly from a new relativity-based scientific approach to cognition.
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10 Cloth geometry and human Information Pro-

cessing

We conclude by a short recollection of some of the arguments which show that
relativity is an ubiquitous property of the reality that we build and experience on
earth. In the course of the report some major principles for WIP have emerged:
1) Given two points 0 6= a and b which are independent, there are 4 ways to relate a
to b by lines, 3 of which are geodesics, including 2 geodetic images of the non geodetic
line. These four ways reduce to 1 when a 6= 0 and b are independent (Section 5.3).
Section 8.1 has indicated that there exists an implicit organic causality which is 1
to v − 1, v ≥ 2, in general. For v ≥ 3, the rules are that (1) there are more than
one cause to any information, (2) action at a distance is ubiquitous.
2) The geodesics are channels which either radiate or emanate information. The
third (non geodetic) line, has 2 geodetic versions which channel two different in-
formations about itself. This expresses the twofold dynamical potential of weaving
computation in cloth geometry when a and b are independent.
3) When a and b are dependent, we get clues about the respective roles of base 2
and base 3 in Nature’s computation.
4) Empirical evidence based on measurements can be problematic due to metric
entanglement (Section 4). Empirical sciences will always need revision for method-
ological reasons. They are temporary mental constructs which reflect the current
know-how of the day, always in a state of becoming.
5) If the external reality can appear, up to a point, to approximately obey general
physical laws, such a reduction is radically impossible for the inner reality of each
individual mind, who is freely choosing its values for n ≥ 2.

Any serious theory of human knowledge acquisition should not ignore the lessons
above taught by cloth geometry. Weaving computation is performed by the mind to
extract meaning from observation. Lessons 1), 2) and 3) are about the construction
of this meaning in the human mind. And lessons 4) and 5) expose some of the
limitations of any naively scientist and purely empirical approach to life on earth.
Assigning a unique cause a to an observation b is possible only when a and b are
linearly dependent, that is in the limited context of a purely linear theory. Linear
independence between a and b implies that the information is processed through a
twofold potential. Under observation, this information processing (which includes
action at a distance) can sometimes be interpreted as creativity. In molecular biology,
the result of action at a distance of an information is often observed as a genetic
modification usually called mutation.
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Moreover to analyse a phenomenon x 6= 0 at the intersection of two geodesics as-
sociated with ◦+ , one needs information about the angle θ between the geodesics
(the legendary “hidden” variable). If π

3
< θ ≤ π

2
,v = 4 and 3 causes of geometric

origin are required for the analysis. If 0 < θ ≤ π

3
, the choice is possible between 2

or 3 causes. Quantisation occurs when x is analysed in R4 but θ ≤ π

3
. Continuity

in 4D is obtained only in the euclidean limit θ → π

2
. This organic causality view

challenges the conventional theory of randomness in science where θ is ignored.

It is discomforting to note that our post-modern society – increasingly based on
“information” – ignores the message of relativity. Through massive computerisation,
its scientific agenda is to reduce quality to quantity, with the predictable outcome
that all human creativity will be eradicated and mankind will be transformed into
an army of robots acting in an artificial “linearly rational” reality. The growing
awareness against this nightmarish future, akin to Brave New World (A. Huxley),
may not be as unscientific as it is often described. If the 2D-chart is not the 3D-
territory, even less so a one-dimensional ranking scale. The value of human life
cannot be judged on a cost/benefit scale! The healthy reaction to say: “No” is
deeply rooted in the feeling that man is neither a machine or a market product. Cloth
geometry in the mind provides a welcome demonstration (based on computation and
geometry only) that this feeling is indeed mathematically sound. The future need
not be gloomy because computers can do much more for us than to participate in
the domination of a financial techno-structure which heightens the imbalance of the
world to unbearable extremes.
They are versatile tools which can prove irreplaceable to implement cloth geometry
and the organic logic of life to the greater benefit of all life on earth. A deeper
understanding of Nature’s reality is needed to cope with the physical limitations of
our planet. We have shown why the principle of relativity in the mind is one of the
keys which are necessary to live up to the scientific challenges of the 21st century.
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Paris 157, 703-705.
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