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Abstract

We report on careful implementations of several push-relabel-based
algorithms for solving the problem of finding a maximum cardinality
matching in a bipartite graph and compare them with fast augmenting-
path-based algorithms. We analyze the algorithms using a common
base for all implementations and compare their relative performance
and stability on a wide range of graphs. The effect of a set of known
initialization heuristics on the performance of matching algorithms is
also investigated. Our results identify a variant of the push-relabel
algorithm and a variant of the augmenting-path-based algorithm as
the fastest with proper initialization heuristics, while the push-relabel
based one having a better worst case performance.

1 Introduction

We study algorithms for finding the maximum cardinality matching in bi-
partite graphs. A subset M of edges in a graph is called a matching if
every vertex of the graph is incident to at most one edge in M. The max-
imum cardinality matching problem asks for a matching M that contains
the maximum number of edges. This problem arises in many applications.
For example, finding a transversal, i.e., the problem of obtaining a zero-free
diagonal of a sparse matrix after permuting its rows and columns, can be
solved via bipartite matching algorithms [12]. Other applications can be
found in divers fields such as bioinformatics [3], statistical mechanics [4],
and chemical structure analysis [10].

There are many different algorithms for finding a maximum matching in
a bipartite graph. In [14], the performance of several augmenting-path-based
algorithms was studied on a wide range of instances. In that paper, special
attention was given to the effect of different initialization heuristics on the
runtimes of these algorithms. The aim of the current paper is to review
the push-relabel-based algorithms and compare their performance with the
promising augmenting-path approaches identified by Duff et al. [14]. To this
end, we implement several push-relabel-based algorithms that essentially
cover all established heuristics for and modifications of the original push-
relabel algorithm. In addition, we apply several new techniques and evaluate
the results.

For the experimental comparison, we use implementations of augmenting-
path-based algorithms by Duff et al. [14], and we carefully implement all
push-relabel-based algorithms using the same data structures as in [14].
Without this sort of uniformity, comparisons between the algorithms might
not be fair, which would render the computational results inconclusive.

Our results indicate that the performance of the different push-relabel-
based algorithms varies widely. The fastest versions are superior to the
augmenting-path-based algorithms. However, the latter class of algorithms
profit strongly from good initialization heuristics, which is sufficient to ren-
der them competitive.
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The rest of this paper is organized as follows. We briefly discuss the
notation and the background in Section 2 and present the main algorithmic
idea common to all push-relabel (PR) variants in Section 3. Detailed de-
scriptions of the different techniques used in the PR variants can be found in
Section 4. In Section 5, we describe the augmenting-path-based algorithms
used for comparison. Starting from Section 6, we describe the experimental
setup and the results, along with their discussion and conclusions in Sec-
tions 7 and 8. Tables containing detailed experimental results can be found
in the appendix.

2 Notation and Background

In a bipartite graph G = (V1, V2, E), the vertex sets V1 and V2 are disjoint,
and each edge in E has one endpoint in V1 and the other one in V2. For a
vertex v ∈ V1 ∪ V2, the neighborhood of v is defined as Γ(v) = {u : {u, v} ∈
E}. Clearly if v ∈ V1 then Γ(v) ⊆ V2, otherwise, if v ∈ V2 then Γ(v) ⊆ V1.

A subset M of E is called a matching if a vertex in V = V1 ∪ V2 is
incident to at most one edge in M. A matching M is called maximal if no
other matching M′ ⊃M exists. A vertex v ∈ V is matched (by M) if it is
incident on an edge inM; otherwise, it is unmatched. A maximal matching
M is called maximum if |M| ≥ |M′| for every matching M′, where | · |
denotes the cardinality of a set. Furthermore, if |M| = |V1| = |V2|, then M
is called a perfect (complete) matching. A perfect matchingM is maximum,
and each vertex in V is incident to exactly one edge in M. Clearly not all
bipartite graphs have a perfect matching. The deficiency of a matchingM is
the difference between the cardinality of a maximum matching and |M|. A
good discussion on matching theory can be found in Lovasz and Plummer’s
book [21].

An important application, which forms our motivation, of the maximum
cardinality matching on the bipartite graphs problem arises in sparse matrix
computations. For a given m × n matrix A, we define GA = (VR, VC , E)
where |VR| = m, |VC | = n, and E = {{vi, vj}, vi ∈ VR, vj ∈ VC : aij 6= 0}
as the bipartite graph derived from A. In this respect, the transversals of
a square matrix A correspond to the perfect matchings of GA. Based on
this important correspondence, we adopt the term column for a vertex in
VC and row for a vertex in VR, maintaining consistency with the notation
in [14]. The number of edges in GA is equal to the number of nonzeros in
A, and it is denoted by τ .
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2.1 Bipartite Cardinality Matching Algorithms

LetM be a matching in G. A path in G isM-alternating if its consecutive
edges alternate between those inM and those not inM. AnM-alternating
path P is called M-augmenting if the start and end vertices of P are both
unmatched. The following theorem by Berge [5] forms the basis for all
augmenting-path-based algorithms for the maximum matching problem.

Theorem 2.1 (Berge 1957) Let G be a graph (bipartite or not) and M
be a matching in G. Then M is of maximum cardinality if and only if there
is no M-augmenting path in G.

In this paper, we use three augmenting-path-based matching algorithms.
The first one, PFP, is a variant of the algorithm of Pothen and Fan [24]. It
was presented in [14]. The second algorithm, HKDW [15], is a variant of the
algorithm proposed by Hopcroft and Karp [17]. The third one, ABMP, was
introduced by Alt et al. [1].

Algorithms based on augmenting paths uses the following approach.
Given a possibly empty matching M, this class of algorithms searches for
an M-augmenting path P. If none exists, then the matching M is maxi-
mum by the theorem above. Otherwise, the alternating path P is used to
increase the cardinality of M by setting M = M⊕ E(P) where E(P) is
the edge set of a path P, and M ⊕ E(P) = (M∪ E(P)) \ (M∩ E(P)) is
the symmetric difference. This inverts the membership in M for all edges
of P, and since both the first and the last edge of P were unmatched inM,
|M⊕E(P)| = |M|+1. The way in which augmenting paths are found consti-
tutes the main difference between the algorithms based on augmenting-path
search, both in theory and in practice.

Push-relabel algorithms on the other hand search and augment together.
They do not explicitly construct augmenting paths. Instead, they repeat-
edly augment the prefix of a speculative augmenting path P2 = (v, u, w) in
G where u is matched to w and v ∈ VC is an unmatched column. Augmenta-
tions are performed by unmatching w and matching v to u. If the neighbor
of an unmatched column is also unmatched, the suffix of an augmenting
path has been found, allowing the augmentation of |M|. This operation is
repeated until no further suffixes can be found. The speculative augmenta-
tions are guided by assigning a label ψ to every vertex which provides an
estimate of the distance to the nearest potential suffix.

The original push-relabel algorithm by Goldberg and Tarjan [16] was
designed for the maximum flow problem. Since bipartite matching is a
special case of maximum flow, it can be solved by pushing and relabeling.
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In fact, it is one of the fastest algorithms for bipartite matching, as was
shown in [7]. In this paper, we study the performance of several variants of
the push-relabel algorithm and compare these to the best augmenting path
algorithms available. We will discuss the simple push-relabel algorithm (PR)
and its extensions in detail in the next two section.

For a short summary about other algorithms and approaches for the
bipartite graph matching problem, we refer the reader to Section 3.4 of [14].

2.2 Initialization Heuristics

Both push-relabel and augmenting-path-based algorithms start with an empty
matching and find matchings of successively increasing size by exploiting
augmenting paths. Thus, these algorithms can be initiated with a non-empty
matching. In order to exploit this, several efficient and effective heuristics,
which find considerably large initial matchings, have been proposed in the
literature [18, 20, 22].

In this paper, we use three initialization heuristics. The first one, which
we call simple greedy matching (SGM), examines each unmatched column
v ∈ VC in turn and matches it with an unmatched row u ∈ Γ(v), if such
a row exists. Although it is the simplest heuristic in the literature, SGM is
probably the most frequently used one in practice. The second heuristic
is KSM [18]. It is similar to SGM, but it keeps track of the vertices with a
single unmatched vertex in their neighborhood and immediately matches
these with their neighbors. Theoretical studies [2, 18] show that KSM is
highly likely to find perfect matchings in random graphs, and in practice,
it is significantly more effective than SGM. The last heuristic, MDM, is the
minimum-degree-matching heuristic which always matches a vertex having
a minimum number of unmatched neighbors with a neighbor that again has
a minimum number of unmatched neighbors. These heuristics are experi-
mentally investigated in [14, 20, 22]. The reader can also find the extended
versions of these heuristics in [20, 22]. Following a remark in [7], we also
initialize the algorithms with an empty matching denoted as NONE for com-
parison.

For SGM, the name simple greedy matching can be misleading, since all
heuristics presented here pursue a comparatively simple greedy strategy.
However, while KSM and MDM greedily pick the vertices by using partial
information and update the information accordingly, SGM acts completely
uninformed. As previous experiments show [14, 20, 22], SGM performs sig-
nificantly worse than KSM and MDM. For these reasons, in this paper, we call
KSM and MDM elaborate initializations whereas SGM and NONE are called basic.
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Note that all three heuristics have a time complexity of O(τ). However,
since SGM does not use any information, it runs significantly faster than KSM
in practice. KSM is a simplified version of MDM, and it is generally faster.

3 The Push-Relabel Matching Algorithm

The push-relabel algorithm described in [16] was originally designed for the
maximum flow problem. Since the bipartite matching problem is a special
case of the maximum flow problem, we use a simplified version of the push-
relabel algorithm similar to the one described in [7]. This simplified version
is given in Algorithm 1 and will be denoted as PR. Section 4 contains several
extensions of PR which were used in the experiments.

Algorithm 1 PR: Push-relabel algorithm for the bipartite matching problem
Input: A bipartite graph G = (VR, VC , E) with a (possibly empty) match-

ing M
Output: A maximum cardinality matching M?

1: Set ψ(u) = 0 ∀u ∈ VR

2: Set ψ(v) = 1 ∀v ∈ VC

3: Set all v ∈ VC unmatched by M active
4: while an active column v exists do
5: Find row u ∈ Γ(v) of minimum ψ(u)
6: if ψ(u) < 2n then
7: ψ(v)← ψ(u)+1 I Relabels v if {u, v} is not an admissible edge
8: if {u,w} ∈ M then
9: M←M\{u,w} I Double push

10: Set w active
11: M←M∪{u, v} I Push
12: ψ(u)← ψ(u)+2 I Relabel u to obtain admissible incident edge
13: Set v inactive
14: return M? =M

Let ψ : VR∪VC → N be a distance labeling used to estimate the distance
and thereby the direction of the closest free row for each vertex. This labeling
constitutes a lower bound on the length of an alternating path from a vertex
v to the next free row. Note that if v is a free column, such a path is also
an augmenting path. During initialization, the algorithm sets ψ(v) = 1
∀v ∈ VC and ψ(v) = 0 ∀v ∈ VR. Now, as long as there are free columns, the
algorithm repeatedly selects one of them and performs the push operation
on it.
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To perform a push on a free column v, we search Γ(v) for a row u ∈ Γ(v)
with minimum ψ(u). Since ψ(u) = 0 and ψ(v) = 1 after the initializa-
tion, the minimum value for ψ(u) is ψ(v) − 1. This relation is maintained
throughout the algorithm as an invariant. Thus, as soon as an edge {v, u}
having ψ(v) = ψ(u) + 1 is found, the search stops. Such an edge is called
admissible.

If u is unmatched it can be matched to v immediately by adding {v, u}
to M and thereby increasing the cardinality of M by one. This is called a
single push. On the other hand, if u is matched to w we perform a double
push by removing {w, u} from M and then adding {v, u} to M, thereby
matching v to u and making w active. This ensures that once a row is
matched, it can never become unmatched again. Thus, the cardinality of
M never decreases. Note that ψ(u) = 0 for any unmatched row u, i.e., such
a row will always have minimum ψ.

If there is no admissible row u among the neighbors of v, i.e., the row u
having minimum ψ(u) has ψ(u) > ψ(v)− 1, we set ψ(v) to ψ(u) + 1 (in case
ψ(u) ≤ 2n). This is referred to as a relabel on v. Clearly, doing so does not
violate the above invariant due to the minimality of ψ(u). To understand
the motivation for a relabel on v, remember that ψ(u) is a lower bound on
the length of an alternating path from u to a closest unmatched row. Now,
even though no path between v and its closest unmatched row necessarily
contains u, such a path must contain a u′ ∈ Γ(v). Since ψ(u) was minimum
among the labels of all the neighbors of v, we have ψ(u′) ≥ ψ(u). Thus,
ψ(u) + 1 is a lower bound on the length of a path between v and the closest
unmatched row, and ψ(v) is updated accordingly.

By the same token, u is relabeled by increasing ψ(u) by 2 following a
push. For a single push, this means that we have ψ(u) = 2 now. Since G is
bipartite and u is no longer an unmatched row, it is clear that the distance
to the next unmatched row must be at least 2 after a single push. In case
of a double push, consider that any alternating path from u to a closest
unmatched row now contains v, since such a path starts with an unmatched
edge on the unmatched row and as G is bipartite, the path contains only
matched edges going from columns to rows and only unmatched edges from
rows to columns. Thus, the actual distance for u must be at least ψ(v) + 1.
Because ψ(v) was either relabeled to ψ(u) + 1 prior to the push or had this
value to begin with, increasing ψ(u) by 2 yields a correct new lower bound.
Note that this increase will not violate the invariant ψ(u) ≥ ψ(v)− 1.

When implementing the push-relabel algorithm, we can eschew storing
the row labels, since ψ(u) will always be either 0 if u is unmatched or equal
to ψ(w) + 1 if u is matched to w.
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We refer to free columns as active vertices. If ψ(u) ≥ 2n for the minimum
ψ(u) among the neighbors of v, instead of performing a push, v is considered
unmatchable and marked as inactive. As it is unmatched, it can never
become active again via a double push. Thus, it will not be considered any
further by the algorithm.

The push and relabel operations are repeated until there are no active
vertices left, either because they have been matched or because they were
marked as inactive. Since the maximum length of any augmenting path in
G is bounded by 2n, no augmenting path that starts at an inactive column
v can exist in M at that time because ψ is a lower bound on the length of
a path to an unmatched row and ψ(u) ≥ 2n for all neighbors of v. Using
Theorem 2.1, it is easy to show that in this caseM is a maximum matching.
The time complexity of the algorithm is O(nτ) [16].

4 Modifications to the Push-Relabel Algorithm

We now consider several modifications to the push-relabel algorithm de-
scribed in Section 3 in order to optimize its performance. The modifications
include applying a strict order of push operations and heuristics that opti-
mize the distance labeling ψ. Both are well studied in the literature [7, 19].
In addition, we experiment with new techniques inspired by the augmenting-
path algorithms.

4.1 Push Order

The push-relabel algorithm repeatedly selects an active column on which
it performs a push operation, but the order in which active columns are
selected is not fixed. Any implementation needs to define a rule according
to which active columns are selected for pushing. A simple solution for this
is to maintain a stack or queue of active columns and select the first or
topmost element, resulting in LIFO (last-in-first-out) or FIFO (first-in-first-
out) push order. Alternatively, each active column v can be sorted into
a priority queue ordered by its label value ψ(v). Maintaining the priority
queue costs some extra effort, but it allows processing the active columns
in ascending or descending dynamic order of their labels. In this study,
we compare the performance of all four approaches. In the results section,
the codes using LIFO-, FIFO-, and highest- and lowest-label-first order are
denoted as PR-LIFO, PR-FIFO, PR-High, and PR-Low, respectively.
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4.2 Global Relabeling

The performance of the PR algorithm can be improved by setting all labels
to exact distances. This is done by periodically running a BFS starting from
the unmatched rows. The label of each vertex v visited by the BFS is set
to the minimum distance from v to any unmatched row. Each vertex w not
visited by the BFS is assigned a label ψ(w) = 2n, thereby removing it from
further consideration. Executing this BFS once per O(n) pushes, in which a
column label was changed, improves the algorithms runtime complexity to
O(
√
nτ) [19]. It is a well-established fact that the global relabeling opera-

tions are essential for practical performance, and preliminary tests confirmed
this. Thus, all our PR codes use periodic global relabeling. Following [7], we
use n as the standard frequency of global relabels. For rectangular matri-
ces, this becomes (m+n)/2, but for simplicity, we will denote it as n in the
text. Furthermore, preliminary experiments showed no noticeable difference
between using relabeling frequencies of m and n.

We study the effect of the frequency of the global relabeling by executing
a BFS once per every n/2k, k ∈ {0, 1, 2, 3} pushes in which a column label is
changed. All codes that do not use the standard relabeling frequency have
the appropriate frequency included in their names. For example, assuming
RF is the standard frequency n, RF/2 indicates a frequency of n/2. Since the
higher frequencies yielded interesting results, we also implemented a PR-FIFO
variant using the frequency of 3RF/4.

4.3 Gap Relabeling

If, at any time during the execution of the algorithm, there is no vertex
having a label of k, all vertices v with ψ(v) > k can be removed from
consideration by setting ψ(v) = 2n. This heuristic, called gap relabeling
was proposed independently in [6] and in [9]. It allows the algorithm to
quickly skip over subgraphs for which a non-perfect maximum matching has
been found. However, a global relabeling has the same effect, since it sets
the labels of all unreachable vertices to 2n. Therefore, the benefit from the
gap relabeling operation is limited, and it diminishes with the increasing
frequency of global relabelings.

We do not use gap relabeling in this study for multiple reasons. First, it
requires more elaborate data structures. For the High and Low push orders,
a priority queue of inactive vertices must be maintained in addition to the
queue of active vertices. For LIFO and FIFO orders, both queues must be
added. Second, it affects primarily the LIFO and High orders that were
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identified as inferior before [7] and also in our preliminary experiments.
Finally, in [7], the PR-Low variant using the gap relabeling was found to
be equivalent to the PR-FIFO variant without the gap relabeling operation.
Therefore, we do not include gap relabeling in the current study.

4.4 Fairness

By default, our PR implementations always search through adjacency lists
in the same order when selecting a neighbor of minimum ψ. This raises the
question whether the algorithm could be improved by encouraging fairness
in neighbor selection. In [14], this was proposed for improving the Pothen
and Fan (PF) algorithm [24], which is discussed in Section 5.1. By varying
the direction of search through the adjacency list for selecting a neighbor
of an active column, the likelihood of the algorithm repeatedly pursuing
an unpromising direction of search is reduced. For the PF algorithm, this
technique resulted in a significant performance gain. It can also be applied
in the PR algorithm during the neighbor selection process. However, as
the labels already suggest which directions are promising and should be
further pursued, the fairness heuristic is less likely to produce noticeable
improvements.

In addition to providing a more even distribution of the neighbor se-
lected, this technique can also reduce the time spent on neighbor selection.
During the execution of the push operation on an active column, the push-
relabel algorithm needs to search for an adjacent row with the minimum
label. If an admissible edge {v, u} is found, the search stops because no
neighbor can have a lower label than ψ(u). Varying the direction of search
increases the likelihood of finding such an edge early. Following [14], this
technique is called fairness, and the PR codes using it are marked with Fair
in their names.

4.5 Multistage Algorithms

The ABMP algorithm (summarized later in Section 5.3) introduced the idea of
switching from a label guided search to a pure augmenting-path search once
the algorithm nears completion. The aim of this technique is to find the few
remaining long augmenting paths quickly. As described in [1], ABMP uses a
lowest label guided approach similar to the push-relabel algorithm in the
first stage and continues with the Hopcroft-Karp algorithm in the second
stage, achieving an improved worst-case runtime of O(n1.5

√
τ/ log(n)).

For practical purposes, Mehlhorn and Näher [23] suggested replacing
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the Hopcroft-Karp algorithm of the second stage with a breath-first search
for augmenting paths. In this paper, we replace the algorithm for the first
stage with PR-FIFO and PR-Low, which were the best PR variants identified
in our preliminary experiments. In the second stage, we switch to the PFP
algorithm (which we describe in Section 5.1) since [14] identified it to be the
best augmenting-path-based algorithm for most of the cases.

We stop the push-relabel phase after 99.9% of the columns have been
matched and, for the PR-Low variant, we also stop as soon as the current low-
est label reaches 0.1

√
n as suggested in [23]. Both codes of this type use fair-

ness, and they are denoted as PR-FIFO+Fair+PFP and PR-Low+Fair+PFP.

5 Augmenting-path-based Algorithms

In this section, we briefly describe the augmenting-path-based algorithms
used for experimental comparison. For a more detailed description, we refer
the reader to [1, 14, 17, 23, 24]. Two of the algorithms, ABMP and HK are
well studied in the literature. They have good worst case runtimes, and
their high performance in practice has been confirmed in many studies.
The third algorithm, PFP, is a modification of the algorithm by Pothen
and Fan [24], and was introduced in [14]. Its runtime complexity O(nτ) is
inferior to that of ABMP, HK, and PR with global relabeling (see Section 4.2),
but it outperformed most of the augmenting-path-based algorithms in the
experiments described in [14]. An experimental comparison between PFP
and the best PR codes is a principal objective of this study.

Note that PR, especially with global relabeling, does indeed find aug-
menting paths and can augment along such paths. However, it can also per-
form pushes, i.e., speculative augmentations that might not follow a valid
augmenting path and have to be undone later. In contrast, the algorithms
presented in this section only augment if an entire valid augmenting path has
been discovered. Therefore, these algorithms are referred to as “augmenting-
path-based” in the literature.

5.1 PFP: A Modification of Pothen and Fan’s Algorithm

The Pothen-Fan algorithm [24], denoted as PF, is based on repeated phases of
depth-first searches (DFSs). Each PF phase performs a maximal set of vertex
disjoint DFSs each starting from a different unmatched column. A vertex
can only be visited by one DFS during a phase. Any DFS that succeeds in
finding an unmatched row immediately suggests an augmenting path. As
soon as all the searches have terminated, the matching M is augmented
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along all the augmenting paths found in this manner. A new phase starts
after those augmentations take place.

As long as there is any M-augmenting path in G, at least one is found
during each phase. When a phase finishes without finding such an aug-
menting path, the algorithm terminates. It also stops if no free columns
remain after performing the augmentations. Clearly, the maximum number
of phases is n, and each phase can be performed in O(τ) time, giving the
algorithm a runtime of O(nτ).

Note that in each DFS the rows adjacent to a column are visited ac-
cording to their order in the adjacency list, even if there is an unmatched
row among them. In order to reach that unmatched row, a pure DFS-based
algorithm may need to explore a large part of the graph. To alleviate this
problem, a mechanism called lookahead is used [12, 24]. This works as fol-
lows. When a column v is visited, the algorithm first checks if v has an
unmatched row u in its adjacency list, and if there is one, it uses the cor-
responding augmenting path. Otherwise, it continues with the usual DFS
process.

The above algorithm using the lookahead technique is known as Pothen
and Fan’s algorithm. In [14], the algorithm was found to be efficient for
matrices arising in real world applications, except that it is very sensitive to
row and column permutations. To alleviate this, they suggested to modify
the order of visiting the rows in the adjacency lists of columns by applying
an alternating scheme. This is done by counting phases and traversing the
adjacency list of a column from left to right in each odd numbered phase.
During an even numbered phase, the adjacency lists are traversed in reverse
order, i.e., the last row in the adjacency list is the first one to be investigated
by the DFSs. The purpose of this modification, which is called fairness, is
to treat each row in an adjacency list fairly in order to spread the search
more evenly in the graph and to find, hopefully, an unmatched row faster.
Note that fairness does not change the complexity of PF, and the memory
requirements are exactly the same in both algorithms. It usually improves
the performance of PF and increases its robustness; in some cases it results
in remarkable speedups, and in all cases the overhead is negligible [14]. In
fact, the success of this technique suggested using it in the PR codes, as
discussed in Section 4.4. Since the modified PF algorithm is superior to the
original one, we use it exclusively. The systematic name of the algorithm
would be PF+Fair, but we shorten it and refer the algorithm as PFP to be
consistent with the names used by Duff et al. [14].
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5.2 HKDW: A variant of the Hopcroft-Karp Algorithm

Like PFP, the HK algorithm also organizes the searches for augmenting paths
into phases [17]. In each phase, it uses a maximal set of vertex-disjoint
shortest augmenting paths in the graph, and augments the matching. A
HK phase consists of two parts. It first initiates a combined BFS, which is
similar to the BFS used in the global relabeling for PR, from all unmatched
columns to assign level values to the vertices. The unmatched columns are
initialized as level zero. For an even level `, the next level `+ 1 contains all
vertices reachable from level ` via edges not in the current matching, and
for an odd level, the next level contains all vertices reachable via matching
edges. This ensures that the BFS progresses along augmenting paths. The
search continues until an odd level L containing at least one unmatched row
is discovered. It stops after assigning a level value of L to all vertices in that
level. Note that L is then the length of the shortest augmenting path in the
graph. If no unmatched row is found, the algorithm terminates.

The second part of an HK phase uses the level values computed in the
first part to find augmenting paths. A restricted DFS is initiated from each
unmatched row in level L. The DFSs are in the reverse direction, i.e., from
the unmatched rows in level L to the unmatched columns in level 0. The
successor of a vertex of level ` in the restricted DFS must be of level `− 1.
Furthermore, no vertex may be visited more than once, ensuring that the
DFSs (and hence the augmenting paths) are vertex disjoint. Therefore, they
will find a maximal set of vertex disjoint augmenting paths of length L in
the graph. These are then used to augment the matching. Except for the
level restriction of the DFSs, the second part of a HK phase is similar to a PFP
phase where each vertex is also visited only once. After the augmentations,
a new phase begins.

Hopcroft and Karp proved that a maximum matching is obtained after
at most O(

√
n) phases. Since the complexity of a HK phase is O(τ), the

runtime complexity of the overall algorithm is O(
√
nτ).

Duff and Wiberg [15] observed that in HK, the time spent for the com-
bined BFS in the first part is much more than the time spent for DFSs in
the second part. As this seems to be a waste of resources, they proposed to
increase the number of augmentations in each phase by using extra DFSs
from the remaining unmatched rows. Similar to original HK, the modified
version starts with a combined BFS up to the highest level L containing
an unmatched row and uses restricted DFSs from unmatched rows in level
L to find a maximal set of vertex disjoint augmenting paths of length L in
the graph and augments along these paths. Then, in an additional third
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part, more DFSs are initiated from other unmatched rows. These addi-
tional DFSs are not restricted by level, and can use all the edges in the
graph. However, they must follow alternating paths, and still, no vertex can
be visited more than once per phase, similar to PFP. Hence the augmenting
paths found by additional DFSs are still vertex disjoint among themselves
and with the restricted DFSs from part two. In [14], this variant was found
to have better performance than the standard HK algorithm. Therefore, we
will use this variant for comparison. We refer to it as HKDW in the remainder
of the paper.

5.3 ABMP: Alt et al.’s Algorithm

The algorithm by Alt et al [1] incorporates some techniques used in the
original push-relabel algorithm [16] into the Hopcroft-Karp algorithm. It
runs in two consecutive stages: In the first stage, a set of augmentations is
performed using a sophisticated search procedure which combines BFS and
DFS. In the second stage, the algorithm calls HK to perform the remaining
augmentations. The key to this algorithm is the search procedure of the first
stage. This procedure performs augmentations (which are found by searches
from unmatched columns) with the aid of level values that constitute lower
bounds on the length of an alternating path from an unmatched row to each
vertex.

In the first stage, ABMP combines the BFS and DFS algorithms to increase
the size of the matching and to assign an attribute, called level, to each
vertex. The level of a vertex is slightly different from the level attribute
used in HK. For each vertex with level ` in ABMP, the length of the alternating
paths from any unmatched row to v is larger than or equal to `. Hence the
level of a vertex v in ABMP is a lower bound on the length of a shortest
alternating path from an unmatched row to v, much like the distance labels
ψ in the push-relabel algorithm.

During initialization, each column and row is assigned a level value of 0
and 1, respectively. At all times, the level values of the rows are even and
those of the columns are odd. Furthermore, all the unmatched columns are
in levels L and L + 2 where L ≥ 1 is an integer increasing over the course
of the first stage. Thus, the pattern of progress in ABMP resembles to that of
PR-Low (see Section 4.1).

In the first stage, a DFS is initiated from each unmatched column v
in level L. These DFSs use the level information such that after visiting
a level ` vertex w, the algorithm tries to “advance” the augmenting path
to an adjacent vertex in level ` − 1. If this is not possible, the algorithm
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“retreats” to the predecessor of w on the path and attempts to advance to
a different neighbor. If an unmatched row u is discovered, an augmenting
path from v to u has been found, and the augmentation is performed. This
is referred to as a “breakthrough”. On the other hand, if the path retreats
from all neighbors of v, the level of v is increased by 2 and a DFS for a
different column in level L begins. This DFS search behaves similarly to
a LIFO push order in PR, except that it cannot relabel any vertices other
than v. If no vertices of level L remain, L is increased by 2 and new DFSs
are started from the unmatched columns in the new level L. The first stage
continues until L, i.e., the minimum level of an unmatched column, is larger
than

√
τ log n/n.

The second stage of the ABMP performs HK as described in Section 5.2. In
other words, ABMP performs augmentations with a DFS maintaining dynamic
level information until a lower bound on the shortest augmenting-path length
is reached and then switches to HK to obtain the maximum matching.

Alt et al. [1] proved that maintaining the level information dynamically
up to level L =

√
τ log n/n is cheaper than the BFS plus DFS approach of

HK in terms of time complexity. With this bound on L, the time complexity
of ABMP becomes O

(
min

(√
nτ, n1.5

√
τ/ log n

))
.

In our implementation, as suggested in [23], the first stage continues
until L > 0.1

√
n, or 50L is greater than the number of unmatched columns.

Note that the initial levels in the first stage are exact distances if the
algorithm starts with an empty matching. That is, assuming there is no
isolated vertex, the length of the shortest alternating path from an un-
matched row to each row and column is 0 and 1, respectively. However,
after a good jump-start routine, using 0 and 1 as the initial level values
makes the algorithm slow since, for the DFSs from an unmatched column v,
the search will be unsuccessful until the level attribute of c is equal to the
shortest augmenting-path length for v. Note that during the course of the
first stage, the level attributes are not exact, i.e., they are only lower bounds
in the same manner as the labels in PR. Hence the DFSs at the beginning,
which use wrong level attributes, are always unsuccessful. However, these
unsuccessful DFSs are necessary to update the level attributes. Such an up-
date scheme may be time consuming when the difference between the lower
bounds and exact values are large. To avoid this problem, as suggested by
Setubal [25], we periodically execute a global update procedure which makes
the lower bounds exact. This global update procedure is essentially identical
to the global relabelings in PR (see Section 4.2) and similar to the combined
BFS part of HK. The difference compared to the combined BFS part is that
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it does not stop after the first level containing an unmatched column has
been found. Instead, it continues the update procedure as described in the
previous paragraph until level L has been reached. The global update pro-
cedure is run at the beginning once and then rerun after a total number of
n level updates have been performed since the last run.

The similarities between ABMP and PR prompted the question whether
it is worthwhile to use a two stage approach where PR is combined with
a simple augmenting-path algorithm in order to obtain a faster combined
algorithm. We have therefore added such a code to study this experimen-
tally (see Section 4.5).

6 Experimental Setup

We implemented all of the algorithms and heuristics in the C program-
ming language and compiled them with gcc version 4.4.1. We perform
experiments by combining the discussed algorithms with the initialization
heuristics summarized in Section 2.2. We perform experiments with these
combinations on a large set of bipartite graphs which include both randomly
generated and real-world instances. We also report on the stability of the
algorithms over the entire data set. All of the experiments were conducted
on an Intel 2.4Ghz Quad Core computer, equipped with 4 GB RAM and
Linux operating system.

6.1 Data Set

We have two disjoint sets of data. The first one contains randomly generated
bipartite graph instances corresponding to random square sparse matrices.
The second set contains instances corresponding to sparse matrices from
real-world applications. These two sets are referred to as random instances
and matrix instances in the following.

To generate the random instances, we used sprand command of Matlab
(the random matrix generator function) and created n× n sparse matrices,
and then used the associated bipartite graphs. As input arguments, sprand
takes n, which is the number of rows and columns, and a value d which is the
probability of an entry in the matrix being nonzero. That is, each of the n2

potential nonzeros is present in the random matrix with the same probability
d. For our experiments, we used n = 106 and d ∈ {k × 10−6 : 1 ≤ k ≤ 10}.
Hence, k, the expected number of nonzeros in a row and column is between
1 and 10. A similar generator is also used in [22].
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For each k, we first create ten random instances and execute all of the
algorithms on these matrices. We then compute the average of the ten
runtimes for each algorithm and use it as the runtime of that algorithm for
the random instance generated by using the parameter k.

We chose a set of real-world matrices from the University of Florida
Sparse Matrix Collection [8] and used the associated bipartite graphs to
build the matrix instances data set. The chosen matrices satisfy the fol-
lowing properties: m × n where min(m,n) ≥ 105, max(m,n) ≤ 2 × 106;
have τ nonzeros where τ ≤ 8 × 106—here again m,n, τ corresponds to the
number of rows, columns, and the nonzeros for a given matrix. In order to
avoid a bias or skew in the data set, we choose at most 16 matrices from
each matrix group. At the time of experimentations, a total of 157 matrices
satisfied these assertions, where 33 of them were rectangular. A complete
list of the names of the matrices and their groups are given in Table 8 in
the appendix.

For each real-world matrix, we performed four sets of experiments. Firstly,
we execute all algorithms with the different heuristics on the original matrix.
Secondly, we apply ten random column permutations to the original matrix
and execute the algorithms for each column-permuted matrix. Thirdly, we
apply ten random row permutations to the original matrix and execute the
algorithms for each row-permuted matrix. Lastly, we apply ten random row
and column permutations and execute the algorithms for each totally per-
muted matrix. For each algorithm, the average of the running time on each
of those groups of ten permutations is stored as the running time of the
algorithm on a matrix instance with a given permutation type.

The matrices in the experiments are initially stored in CCS (compressed-
column-storage) format. This gives direct access to the adjacency lists of
the columns. Due to global relabeling, the PR algorithms also require ac-
cessing the adjacency lists of the rows, and therefore a CRS (compressed-
row-storage) data structure must also be provided. These structures are
constructed during the course of the algorithm and hence the reported run-
times include the associated overhead. The KSM and MDM initializations, as
well as the ABMP and HKDW algorithms also require CRS. For more informa-
tion on these storage formats, we refer the reader to [13, Section 2.7].

7 Experimental Results

In this section, we present the most important experimental results. Further
tables containing detailed results are found in the appendix.
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Table 1: The performance for the highest-label first approach compared to
that of lowest-label first. Matrix and Random are the average performance
values for the matrix and random instances, respectively. Average is the
average runtime over both experiments in seconds, and Ratio is the factor
between an average value and the best average value in this table. It is
interesting to note that MDM initialization works much better than KSM for
PR-High, but PR-Low is still about three times faster.

No Row Column Row and col.
Algorithm Heur. perm. perm. perm. perm. Matrix Random Average Ratio
PR-High KSM 26.86 32.17 9.35 9.27 19.41 1.29 10.35 9.38

MDM 6.11 4.75 4.20 4.39 4.86 1.62 3.24 2.94
PR-High KSM 25.86 31.28 8.77 9.11 18.76 1.30 10.03 9.08
+Fair MDM 6.58 4.68 4.10 4.33 4.92 1.61 3.27 2.96
PR-Low KSM 1.08 1.19 1.33 1.23 1.21 1.00 1.10 1.00
+Fair MDM 2.14 1.30 1.20 1.37 1.50 1.26 1.38 1.25

7.1 Preliminary Experiments on PR-High

Preliminary experiments with the PR-High variants showed that they often
require very high runtimes. Therefore, due to the large number of instances,
we ran PR-High only on a reduced set of instances. The results from this
experiment are shown in Tables 1 and 2. Clearly, PR-High is not competitive
with faster codes such as PR-Low. This matches corresponding findings in [7].
Therefore, implementing the PR-High variant is not recommended.

Conceptually, working with the highest labels first means searching for
augmenting paths among those vertices where such a search has had little
success so far, since high labels are a result of repeated pushes from the
same vertex. Thus, it is likely that some of the work done is futile, since it
will be superseded by more successful searches that will happen later. Note
that unlike the implementation in [7], we do not use gap relabeling. Still,
we obtain a similar result.

7.2 Overview of the Main Results

Due to the fact that the performance of all algorithms varies largely over
the instances, it is difficult to identify a single fastest algorithm. To evaluate
overall performance ρ(A) of an algorithm A, let ρI(A) = tI(A)/tI(A∗I) be the
runtime factor of A where tI(A) is the average runtime taken by algorithm
A on instance I, and A∗I is the fastest algorithm for this instance. We
compute averages ρ(A)R and ρ(A)M for the random and real-world matrix
instances, respectively. To obtain ρ(A), we simply take the average over
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Table 2: The highest (Worst) and the average of the five highest (Avg. 5)
runtimes in seconds on the matrix instances in all four permutation schemes
for the highest-label first and lowest-label first approaches. Clearly, PR-High
is much more likely to give very high runtimes compared to PR-Low or other
PR codes.

No perm. Row perm. Column perm. Row and col. perm.
Algorithm Heur. Worst Avg. 5 Worst Avg. 5 Worst Avg. 5 Worst Avg. 5
PR-High KSM 219.93 152.47 304.77 243.02 246.73 141.28 330.00 169.94

MDM 119.58 52.60 121.33 59.77 121.95 59.88 123.73 69.10
PR-High KSM 215.92 147.67 300.40 236.29 240.69 138.07 320.30 166.61
+Fair MDM 116.68 51.35 118.83 58.74 119.44 58.30 121.01 67.90
PR-Low KSM 1.15 0.81 6.70 3.41 15.77 5.68 8.11 5.89
+Fair MDM 1.47 1.12 21.11 6.12 4.02 2.93 16.56 6.30

ρ(A)R and ρ(A)M . This means that both the random and matrix data sets
have the same weight, even though the latter contains more instances. Note
that an algorithm A refers to a combination of an exact algorithm and an
initialization heuristic. Table 3 gives an overview of the averages ρ(A)R and
ρ(A)M , while ρ(A) is given in Table 4. More detailed results can be found
in Tables 5 and 6 in the appendix.

For the matrix instances, PFP using the basic initialization SGM is clearly
superior to all alternatives. The HKDW, ABMP, and PR-LIFO algorithms per-
form best using MDM initialization, while most other PR variants work better
using SGM. For PR-FIFO with the highest relabeling frequency, using no ini-
tialization is slightly better than SGM.

For the random instances, KSM clearly dominates all other initializations.
Using KSM, all algorithms are close, but the augmenting-path algorithms
show slightly better performance, even though the best PR codes are faster
than PFP. For MDM, the situation is similar, although the runtimes are ap-
proximately 60% higher. With the basic initialization heuristics NONE and
SGM, all PR codes, except LIFO, are superior to augmenting-path algorithms.
This is consistent with previous studies such as [7], which did not include
elaborate initializations.

7.3 Stability

In several previous studies, it was observed that almost all matching in-
stances were “easy”, i.e., the average performance of all algorithms was
always much better than their worst case runtimes would suggest. Thus,
average performance does not provide a good guideline of performance on
the most difficult instances one might encounter.
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Table 3: Average relative runtimes in the matrix and random instances for
all combinations of heuristics and algorithms.

Matrix Random
Algorithm NONE SGM KSM MDM NONE SGM KSM MDM
PFP 1.80 1.63 3.92 6.35 7.27 7.21 1.36 2.13
HKDW 16.55 11.93 8.69 6.57 13.16 16.36 1.29 2.07
ABMP 14.89 9.88 9.10 7.96 4.97 3.71 1.28 2.02
PR-LIFO 352.56 61.08 10.20 7.72 29.43 16.69 1.40 2.09
PR-FIFO 5.18 3.41 4.37 7.37 1.69 1.67 1.40 2.10
PR-Low 49.19 5.16 4.96 7.89 2.40 2.14 1.55 2.21
PR-LIFO+Fair 413.50 61.07 9.99 8.61 29.77 16.81 1.39 2.09
PR-FIFO+Fair 8.45 3.21 4.15 6.96 1.63 1.71 1.40 2.10
PR-Low+Fair 26.80 4.86 4.72 6.86 2.46 2.17 1.54 2.21
PR-FIFO+Fair+RF/4 3.31 3.34 4.28 6.34 1.45 1.46 1.31 2.06
PR-FIFO+Fair+RF/2 3.94 3.21 4.13 6.36 1.42 1.49 1.32 2.05
PR-FIFO+Fair+3RF/4 5.29 3.18 4.11 6.74 1.52 1.61 1.37 2.08
PR-FIFO+Fair+2RF 12.53 3.63 4.71 7.43 2.13 2.05 1.56 2.18
PR-Low+FairRF/2 14.06 4.00 4.69 6.71 2.09 1.91 1.43 2.15
PR-Low+Fair+PFP 13.35 4.09 4.49 6.84 2.59 2.16 1.62 2.26
PR-FIFO+Fair+PFP 3.86 3.48 4.40 6.59 3.19 3.11 1.60 2.32
PR-FIFO+Fair+PFP+RF/2 3.89 3.47 4.41 6.58 3.23 3.05 1.60 2.32

In order to obtain an estimate on how much case-by-case runtimes de-
viate from average runtimes, we compute the standard deviation σ(A) from
the average runtime t(A) over both experiments. Again, both experiments
with the random and matrix instances are weighted equally. This gives us a
statistical estimate on how the runtimes of a given algorithm vary over the
problem instances. Given several different algorithms that deliver high per-
formance, we assume that in practice, one would prefer to use an algorithm
that is unlikely to take significantly more than the average time. We refer
to this measurement as stability.

Arguably, a more suitable measure to compare stability over all algo-
rithms would be the relative deviation σ(A)/t(A), since higher runtimes
incur a higher absolute deviation and thus appear less stable than they re-
ally are. However, we assume that an algorithm with high performance and
low stability is always preferable to one with low performance and high sta-
bility. Thus we use stability only to discriminate between algorithms of high
performance, giving precedence to those that also have the highest stability
among these. Stability values σ(A) are shown in Table 4.

In addition to the stability, we also report the averages of the worst ten
instances for each algorithm and permutation in the matrix experiment in
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Table 4: Average performance over the random and matrix instances and
standard deviations for all combinations of heuristics and algorithms. Lower
values indicate higher performance and stability.

Performance Stability
Algorithm NONE SGM KSM MDM NONE SGM KSM MDM
PFP 4.54 4.42 2.64 4.24 12.6 12.5 2.1 3.7
HKDW 14.86 14.15 4.99 4.32 27.5 28.1 8.6 3.9
ABMP 9.93 6.79 5.19 4.99 11.0 6.2 6.7 5.4
PR-LIFO 191.00 38.89 5.80 4.91 414.9 65.7 8.1 4.8
PR-FIFO 3.43 2.54 2.88 4.73 3.3 1.4 2.3 5.1
PR-Low 25.79 3.65 3.25 5.05 61.6 2.7 2.7 5.4
PR-LIFO+Fair 221.64 38.94 5.69 5.35 511.5 65.9 8.1 6.2
PR-FIFO+Fair 5.04 2.46 2.78 4.53 10.5 1.3 2.2 4.6
PR-Low+Fair 14.63 3.51 3.13 4.53 25.4 2.5 2.5 4.1
PR-FIFO+Fair+RF/4 2.38 2.40 2.79 4.20 1.5 1.6 2.4 3.8
PR-FIFO+Fair+RF/2 2.68 2.35 2.73 4.21 2.4 1.4 2.3 3.8
PR-FIFO+Fair+3RF/4 3.40 2.40 2.74 4.41 4.7 1.3 2.2 4.3
PR-FIFO+Fair+2RF 7.33 2.84 3.13 4.81 17.3 1.5 2.5 4.7
PR-Low+Fair+RF/2 8.08 2.96 3.06 4.43 12.2 1.8 2.6 4.1
PR-Low+Fair+PFP 7.97 3.13 3.05 4.55 12.2 1.8 2.3 4.2
PR-FIFO+Fair+PFP 3.53 3.30 3.00 4.45 1.4 1.4 2.2 3.8
PR-FIFO+Fair+PFP+RF/2 3.56 3.26 3.00 4.45 1.5 1.5 2.2 3.8

Table 7 in the appendix. Interestingly, MDM has superior worst case runtimes,
followed by KSM and SGM, which indicates that the low deficiency provided by
MDM does indeed help all matching algorithms, but, as shown in Table 3 and 4,
the extra effort outweighs the gains. As expected, using no initialization
results in very high worst case runtimes.

Concerning the algorithms, PR, using frequent global relabelings, has the
best worst case runtimes. This is consistent with the good stability results
for these algorithms, as shown in Table 4.

7.4 Performance Profiles

In addition to the runtimes and their averages, we present some comparisons
using performance profiles. Introduced in [11], performance profiles allow
comparison of algorithmic performance at a more detailed level than pre-
sentation of runtime averages only. For each instance I, we define ρI(A) =
tI(A)/tI(A∗I) as in Section 7.2. For a range of 1 ≤ θ ≤ κ, we plot the
fraction of instances where ρI(A) ≤ θ for each algorithm A to obtain its
performance profile. In all the figures, the range of θ is always plotted on
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the x-axis, with the values of κ ranging from 1.3 to 5, depending on the
spread among the algorithms. For the fraction of instances, we always plot
the full range between 0 and 1 on the y-axis.

Due to the large number of algorithm/heuristic combinations studied in
this paper, we restrict ourselves to the performance profiles that illustrate
the most interesting comparisons we encountered. For each plot, the al-
gorithm A∗I is the best among the algorithms shown in that plot, not the
best algorithm encountered in this study. Therefore, a performance profile
is only comparable to one in the same plot.

Figure 1 contains the first series of performance plots. It illustrates
the effect of global relabeling frequency on the performance of PR-FIFO for
each of the four initializations. Only the matrix instances are used for this
comparison.

All initializations except MDM are optimal about in 40% of the instances,
and in almost 95% of all cases, they take less than twice the best runtime,
further illustrating the stability of PR-FIFO. Elaborate initializations level
the differences between the variants of the algorithm to some extent. The θ
values, i.e., the factors of the best runtime within which 90% of the instances
can be solved clearly decreases from Figure 1(a) using no initialization to
figures 1(b) (SGM), 1(c) (KSM), and 1(d) (MDM), where all variants except 2RF
perform nearly identical. 2RF solves easy instances quickly, but takes longer
time for the harder cases. The opposite is true for RF/4, which attains good
average performance in Table 4. Since a small fraction of the instances are
“difficult” and thus require high runtimes which cannot be shown in the
plots (see Table 7), especially robust variants such as RF/4 will appear to
have lower performance in these profiles.

In Figure 2, we compare the effects of initialization on the augmenting-
path algorithms and on PR-FIFO using the standard relabeling frequency of
n, by using the real-world matrix instances as the basis for comparison. For
ABMP, there is a clear hierarchy from MDM initialization providing the best
results down to using no initialization, which yields very poor performance.
This is also true for HKDW, although it works significantly better than ABMP
without initialization, and MDM does not pay off on the easier instances in
HKDW. The situation is very different for PFP and PR-FIFO. Neither works
well using MDM initialization. PFP clearly profits from using SGM, while PR-
FIFO only draws marginal benefit from this initialization. Like MDM, KSM
initialization does not pay off on the matrix instances. However, it provides
the best performance on random instances (see Table 3).

In Figures 3 and 4, four different comparisons between algorithms using
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Figure 1: Performance profiles for PR-FIFO using different initializations
and relabeling frequencies. Elaborate initializations KSM and MDM level the
differences between the variants of the algorithm PR-FIFO to some extent.
The variant 2RF solves easy instances quickly, but takes longer time for the
harder cases. The opposite is true for RF/4, which attains good average
performance in Table 4 with good results on hard instances (see Table 7).

their most efficient initializations are shown. Figure 3 gives results for the
matrix instances. The same comparisons using results from the random
instances are given in Figure 4. Figures 3(a) and 4(a) compare augmenting-
path algorithms and PR-Low. Clearly, PFP using KSM works fastest most of the
time, thereby outstripping PR-Low. ABMP and HKDW show a slow but steady
growth that is typical for the MDM initialization. The behavior is consistent
for both types of instances, although KSM provides even greater benefits on
the random instances.

Figures 3(b) and 4(b) illustrate the effect of fairness on PR-Low and PR-
FIFO. All four algorithms use SGM initialization. It was chosen in order
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Figure 2: Performance profiles for three augmenting-path-based algorithms
and PR-FIFO with differing initialization algorithms on the matrix instances.
For ABMP (a) and HKDW (b), MDM initialization provides superior results, while
SGM yields the best performance for PFP (c) and PR-FIFO (d). The latter
algorithms using SGM are also more robust, as only few instances take more
than twice the minimum time.

to avoid the leveling effect of the elaborate initializations observed in Fig-
ure 1. For the matrix instances, fairness yields a noticeable improvement
on a small number of instances. For the random matrix instances, the fair
algorithms are slightly slower. The average values in Table 4 suggest that
fairness improves performance by a small amount, most noticeably on the
hard instances shown in Table 7. Still, the difference between PR-Low and
PR-FIFO is much larger than the effect of fairness.

Figures 3(c) and 4(c) compare the best algorithms identified in this study,
i.e., PFP and PR-FIFO with high relabeling frequency. Clearly, PFP using
SGM initialization stands out, as it is much faster on most “easy” matrix
instances, but slower on others. Interestingly, PFP using KSM, PR-FIFO with
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Figure 3: Performance profiles for comparing selected algorithms using their
most efficient initializations on matrix instances: (a) compares augmenting-
path algorithms and PR-Low; (b) illustrates the effect of fairness on PR-Low
and PR-FIFO; (c) compares the best algorithms identified in this study, i.e.,
PFP and PR-FIFO with a high relabeling frequency; (d) studies the behavior
of the multistage PR algorithms. Figure 4 contains results for the same
experiments on the random instances.

frequency RF/2 using SGM and uninitialized PR-FIFO with frequency RF/4
behave similarly even though the algorithms are quite different. Clearly,
using either PFP with KSM initialization or PR-FIFO provides a great deal of
stability over both types of instances.

Finally, Figures 3(d) and 4(d) study the behavior of the PR multistage
algorithms. All algorithms in these figures use KSM. Interestingly, the rela-
beling frequency for the multistage PR-FIFO algorithm has next to no effect.
This indicates that the algorithms switch to PFP before the second global
relabeling starts (the first global relabeling is performed after initialization).
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Figure 4: Performance profiles for comparing selected algorithms using their
most efficient initializations on random instances: (a) compares augmenting-
path algorithms and PR-Low; (b) illustrates the effect of fairness on PR-Low
and PR-FIFO; (c) compares the best algorithms identified in this study, i.e.,
PFP and PR-FIFO with high relabeling frequency; (d) studies the behavior
of the multistage PR algorithms. Figure 3 contains results for the same
experiments on the matrix instances.

For the matrix instances, PR-Low benefits from introducing the PFP stage,
while on the random instances, the opposite is true. In both cases, the
difference between PR-Low+PFP and PR-FIFO+PFP is small.

However, based on the results in Figure 3(b) and Table 4, even though
the multistage approach looks promising, it cannot keep up with the stan-
dard PR-FIFO approach using a high relabeling frequency. This suggests that
the push-relabel approach might often be faster than PFP when matching a
small number of remaining unmatched vertices. Therefore, the multistage
approach does not seem to be worthwhile, since the increased relabeling fre-
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quency provides better results overall. Comparing the performance of ABMP
and HKDW using KSM or MDM initialization in Table 4 confirms this finding. For
PR-Low, switching to PFP improves performance in the matrix experiments,
but Figure 3(b) indicates that PR-FIFO is faster to begin with and thus does
not profit from the multistage technique.

7.5 General Observations

As the results vary widely over the test instances, it is difficult to extract
general statements from the results. However, we can reliably observe the
following.

• The Karp-Sipser heuristic is superior to the minimum-degree
heuristic for initialization

Although MDM usually produces matchings with lower deficiency, it is
noticeably slower than KSM, and the improved initialization does not
compensate for this, resulting in slower overall algorithms. This effect
appears consistently throughout the experiments. This matches corre-
sponding results from [20]. Note however that results in [14] indicate
that MDM can be better than KSM for some augmenting-path algorithms
and for some difficult random instances. However, in addition to PR-
High, ABMP and HKDW show good performance using MDM in Table 3.
Furthermore, judging from the good worst case performance shown in
Table 7, MDM is quite robust and provides maximum stability for ABMP,
HKDW, and the PR-LIFO codes.

• Initialization for push-relabel competes with relabeling fre-
quency

Some previous results [7] claimed that the push-relabel algorithm does
not benefit from the simple greedy initialization, but in our experi-
ments this was not universally true. For the random instances, KSM
initialization (which provides matchings of far smaller deficiency than
SGM) consistently sped up the combined PR algorithms. For the ma-
trix instances, performance and stability decrease for the fast FIFO
algorithms and increase for the slower LIFO and Low algorithms when
using KSM instead of SGM. With the increasing relabeling frequency,
the performance when using SGM or no initialization increases signifi-
cantly. Therefore, the PR approach that performs best on average does
not use KSM, but our results indicate that in some cases using KSM ini-
tialization pays off. However, the gains in performance are noticeably
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smaller than those for PFP.

• The gains from introducing fairness to the push-relabel algo-
rithm are small

Since the push-relabel algorithm already has a guiding mechanism,
we do not observe the same improvements as in PFP compared to the
standard Pothen-Fan algorithm. However, fairness, i.e., varying the
search direction when selecting a neighbor for an active vertex, is easy
to implement and slightly improves performance. This improvement
can be found consistently among all initializations and push orders.
Fairness also improves stability.

• The HKDW and ABMP algorithms perform well with elaborate
initializations

Both algorithms show superior performance on the random instances
when using KSM initialization. On the matrix instances, performance is
worse than that of PFP and most PR algorithms, with MDM initialization
providing the best results. Therefore, overall stability of these algo-
rithms is low, although they consistently perform well on the harder
instances. Consistent with the findings in [20], ABMP profits more from
KSM initialization than the push-relabel codes.

• The initialized PFP algorithm works well

With no or with the simple greedy initialization, PFP is extremely
fast on some of the matrix instances. Note that when an instance
is easy, PFP equipped with NONE and SGM only requires CCS and no
additional data structure. However, due to the bad performance of
these initialization heuristics, it is very slow on some of the random
instances for which the deficiency of the initial matching is high. With
KSM initialization, its overall performance is almost equal to the best
push-relabel algorithm, and it is almost as stable. The algorithm along
with the KSM heuristic is relatively simple to implement.

• The gain in multistage algorithms is low

The multistage algorithms PR-FIFO+Fair+PFP and PR-Low+Fair+PFP
work reasonably well. In fact, they improve slightly upon the under-
lying algorithms PR-FIFO+Fair and PR-Low+Fair, respectively. How-
ever, these algorithms benefit significantly from the increased global
relabeling frequency, while the multistage algorithms seem to improve
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only marginally. Therefore, we conclude that this approach ultimately
does not pay off, and that the extra effort involved in implementing
this approach is highly likely to outweigh any possible gains.

7.6 Comparison Between Push-Relabel Algorithms

Since preliminary experiments discussed in Section 7.1 indicated that the
High variant is inferior to other PR codes, it was discarded before.

The performance of LIFO codes was also inferior in our experiments.
Conceptually, LIFO push order means that after a double push that un-
matches column w and matches column v to row u, w is selected as the
next active vertex. This process continues until a free row vertex is found
or none can be found. It thus resembles to DFS-based algorithms with
additional overhead due to the labels and due to not using the lookahead
mechanism. Even though KSM and MDM initializations speed up the algorithm
tremendously, it is still inferior to FIFO and Low, as well as PFP. It is inter-
esting to note that both LIFO and High work better with MDM initialization
as compared to KSM.

Out of the push-relabel variants, we recommend FIFO push order with
fairness and frequent global relabelings. In our experiments, FIFO performed
better than Low while in [7] both algorithms performed equally well. This
difference might be partially due to differences in data structures. However,
considering that the advantage FIFO has over Low is larger on real-world in-
stances, it is likely that the difference is mainly due to the different test sets,
as [7] used only randomly generated instances. In any case, the expected
overall performance of FIFO is at least as good as that of Low. This, in addi-
tion to the fact that FIFO is easier to implement, this suggests that FIFO is
the first choice among all push orderings. Furthermore, its performance is
also the most stable among the fast matching algorithms. This also implies
that using gap relabeling does not need to be considered.

The results also clearly indicate that frequent global relabelings are
worthwhile. However, with the increased global relabeling frequency, the
effect of elaborate initialization declines so far that at the optimum global
relabeling frequency of RF/2, using KSM is no longer worthwhile, and SGM is
the best. For an even higher frequency of RF/4, even SGM does not improve
performance anymore, and using no initialization becomes the best alterna-
tive. For the random instances, this is even true for frequencies of RF or
higher.

In [7], for a relabeling frequency of RF, SGM initialization was found to be
detrimental to overall performance. This is not surprising considering that
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the study used only randomly generated instances, even though their gener-
ators differ from those used in our experiments. Clearly, frequent relabeling
tends to offset the gains from the elaborate initializations, and therefore,
even though both techniques are helpful, the returns from using both at the
same time are clearly diminishing. Finding a combination of an initializa-
tion heuristic and a relabeling scheme that can be shown to reliably improve
performance remains an open question. For now, the overall effect of ini-
tializations depends too strongly on the instances, which prevents us from
giving a clear recommendation. Using SGM with a relabeling frequency of
RF/2 showed the best performance, but the difference to using no initializa-
tion with a relabeling frequency of RF/4 is very small, and therefore, even
though the effort incurred in implementing SGM is minimal, it still might not
be worthwhile.

7.7 Augment or Push?

In [7], it was investigated whether pushing is preferable to augmenting and
concluded that push-relabel type algorithms usually perform better than
the augmenting-path-based ones. While our study generally confirms their
findings, [7] does not use elaborate initialization heuristics. In [14, 20], the
strong positive effect of the MDM and KSM heuristics on the augmenting-path-
based algorithms for the more difficult instances was established, and our
results in Section 6 show that PFP, the best augmenting-path algorithm
identified, can compete with the best PR algorithm when KSM is used.

Note that even though there exist PR-FIFO versions with a better average
performance, PFP using KSM initialization is faster on the random instances,
and thus the “winner” depends entirely on the data set. Furthermore, PR-
FIFO beats PFP only when using a relabeling frequency that is higher than
the standard of n recommended in [7]. However, the experiments reliably
show that the competitive PR algorithms consistently have better stability
than the augmenting-path-based algorithms whose behavior varies widely
between the two types of instances. Thus, without further knowledge about
the instance, it is likely that PR-FIFO will perform better on average. On the
other hand, this means that if the type of instances is known beforehand, it
is possible to exploit these properties. For the real-world instances, which
are relatively easier than the random instances, the SGM initialized PFP was
far better than all alternatives, and on the random instances the Karp-Sipser
initialized augmenting-path algorithms perform best. Thus, for all except
the most difficult instances, the fastest algorithm is usually an augmenting-
path-based one, as shown in Figure 5.
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Figure 5: Performance profiles comparing the best augmenting-path algo-
rithm with the best push-relabel algorithm for each instance on (a) random
and (b) real-world matrix instances. Clearly, within the range of these
profiles, the augmenting-path algorithms show better performance. This
changes for very difficult instances though (see Table 7).

8 Concluding Remarks

We have investigated the performance of push-relabel algorithms in compar-
ison with the augmenting-path based methods. Our findings illustrate that
the difference between augmenting and pushing is rather small compared to
the difference among either the augmenting-path-based algorithms or the
push-relabel variants. Furthermore, elaborate initialization heuristics often
have a greater impact than different algorithmic techniques.

Our results are largely consistent with earlier studies performed on ran-
domly generated problem instances. By experimenting thoroughly on large
problem instances arising in real-world applications, we were able to draw
several clear conclusions. First of all, the augmenting-path based algorithm
PFP [14] equipped with the SGM or KSM initialization heuristics and the push-
relabel variant PR-FIFO are preferable to all the others. The performance of
the PR-FIFO algorithm is very good and also very stable over the different
classes of instances. On the other hand, depending on the application, PFP
with suitable initialization can be noticeably faster. Further results include
that the Karp-Sipser initialization heuristic yields the best results among
the alternatives studied and that the PR algorithms can often benefit from
initialization heuristics.
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APPENDIX

In the following, we present detailed results for our experiments.
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Table 5: Runtimes relative to the best performance for the random instances.
Numbers in the first row denote the average vertex degree.

Algorithm Heuristic 1 2 3 4 5 6 7 8 9 10 Average
SGM 1.00 1.00 40.42 14.87 5.51 3.51 2.39 1.36 1.02 1.00 7.21

PFP KSM 2.09 1.31 1.00 1.03 1.10 1.29 1.38 1.24 1.32 1.81 1.36
MDM 3.06 1.96 1.53 1.63 1.70 1.81 2.06 2.08 2.25 3.18 2.13
NONE 1.18 1.10 40.73 14.77 5.37 3.55 2.49 1.36 1.00 1.13 7.27
SGM 1.97 2.15 87.89 32.20 13.72 8.55 6.20 4.40 3.24 3.30 16.36

HKDW KSM 2.01 1.24 1.04 1.07 1.01 1.07 1.10 1.20 1.31 1.85 1.29
MDM 2.97 1.91 1.58 1.66 1.58 1.70 1.84 2.02 2.22 3.23 2.07
NONE 3.16 2.50 78.85 22.84 7.99 4.55 3.23 2.89 2.41 3.18 13.16
SGM 1.43 3.29 10.83 5.34 3.30 2.63 2.43 2.39 2.31 3.11 3.71

ABMP KSM 2.05 1.31 1.05 1.04 1.00 1.00 1.00 1.17 1.24 1.89 1.28
MDM 2.98 1.98 1.59 1.63 1.59 1.56 1.69 1.93 2.13 3.13 2.02
NONE 4.33 5.16 12.28 6.60 4.36 3.54 3.17 3.24 3.01 3.97 4.97
SGM 37.65 61.85 37.85 14.74 6.00 3.02 1.65 1.36 1.32 1.49 16.69

PR-LIFO KSM 2.04 1.25 1.14 1.06 1.15 1.30 1.37 1.32 1.40 1.94 1.40
+RF/2 MDM 2.96 1.92 1.62 1.66 1.76 1.62 1.89 2.09 2.22 3.22 2.09

NONE 135.08 86.95 41.92 14.70 5.72 3.24 2.07 1.58 1.29 1.75 29.43
SGM 2.06 2.21 2.23 1.58 1.43 1.50 1.55 1.45 1.25 1.49 1.67

PR-FIFO KSM 2.04 1.25 1.16 1.07 1.16 1.30 1.37 1.32 1.40 1.94 1.40
+RF/2 MDM 2.99 1.94 1.63 1.66 1.76 1.61 1.88 2.08 2.23 3.23 2.10

NONE 2.82 2.01 2.03 1.65 1.32 1.31 1.37 1.31 1.32 1.78 1.69
SGM 3.98 2.20 2.40 2.14 1.90 1.86 1.89 1.72 1.56 1.73 2.14

PR-Low KSM 2.42 1.35 1.26 1.14 1.27 1.46 1.53 1.43 1.53 2.10 1.55
+RF/2 MDM 3.35 2.03 1.70 1.73 1.88 1.67 1.98 2.16 2.29 3.32 2.21

NONE 5.01 2.87 2.63 2.17 1.75 1.79 1.85 1.75 1.78 2.34 2.40
SGM 2.06 2.25 2.26 1.74 1.43 1.50 1.55 1.46 1.34 1.51 1.71

PR-FIFO KSM 2.06 1.25 1.16 1.07 1.16 1.30 1.36 1.32 1.40 1.94 1.40
+Fair+RF/2 MDM 2.98 1.93 1.63 1.67 1.76 1.61 1.88 2.08 2.22 3.22 2.10

NONE 2.65 1.90 1.97 1.75 1.26 1.26 1.31 1.24 1.28 1.73 1.63
SGM 4.02 2.20 2.64 2.13 1.91 1.84 1.89 1.74 1.50 1.81 2.17

PR-Low KSM 2.39 1.34 1.25 1.13 1.27 1.45 1.52 1.43 1.52 2.09 1.54
Fair+RF/2 MDM 3.33 2.01 1.70 1.73 1.88 1.67 1.97 2.15 2.30 3.33 2.21

NONE 5.02 2.91 2.68 2.57 1.83 1.79 1.84 1.75 1.80 2.37 2.46
SGM 1.79 1.45 1.92 1.67 1.32 1.35 1.14 1.12 1.18 1.67 1.46

PR-FIFO KSM 2.32 1.24 1.03 1.00 1.01 1.09 1.13 1.19 1.28 1.80 1.31
+Fair+RF/8 MDM 3.26 1.93 1.54 1.60 1.61 1.56 1.75 2.01 2.16 3.14 2.06

NONE 1.99 1.41 1.76 1.56 1.37 1.22 1.17 1.19 1.19 1.62 1.45
SGM 1.54 1.68 1.96 1.67 1.27 1.25 1.24 1.25 1.32 1.75 1.49

PR-FIFO KSM 2.05 1.24 1.07 1.02 1.06 1.16 1.21 1.23 1.32 1.83 1.32
+Fair+RF/4 MDM 3.00 1.93 1.57 1.62 1.66 1.58 1.80 2.03 2.18 3.17 2.05

NONE 1.98 1.46 1.88 1.63 1.26 1.32 1.16 1.00 1.07 1.47 1.42
SGM 1.77 1.99 2.08 1.79 1.36 1.35 1.39 1.37 1.33 1.71 1.61

PR-FIFO KSM 2.06 1.25 1.12 1.05 1.11 1.23 1.29 1.28 1.37 1.90 1.37
+Fair+3RF/8 MDM 3.00 1.93 1.60 1.64 1.70 1.59 1.84 2.06 2.21 3.20 2.08

NONE 2.33 1.63 1.86 1.69 1.40 1.16 1.14 1.11 1.20 1.64 1.52
SGM 3.19 3.04 2.73 2.03 1.87 2.01 1.53 1.22 1.25 1.68 2.05

PR-FIFO KSM 2.05 1.25 1.31 1.16 1.34 1.59 1.67 1.49 1.59 2.10 1.56
+Fair MDM 2.97 1.92 1.73 1.75 1.94 1.69 2.05 2.18 2.29 3.31 2.18

NONE 3.86 3.18 2.93 1.83 1.65 1.79 1.87 1.52 1.19 1.47 2.13
SGM 3.02 2.11 2.36 2.06 1.67 1.46 1.44 1.43 1.49 2.09 1.91

PR-Low KSM 2.39 1.35 1.15 1.08 1.14 1.24 1.30 1.30 1.42 1.95 1.43
+Fair+RF/4 MDM 3.36 2.03 1.63 1.66 1.74 1.61 1.85 2.08 2.25 3.26 2.15

NONE 3.83 2.41 2.50 2.16 1.85 1.82 1.44 1.40 1.50 2.04 2.09
SGM 2.30 2.29 2.25 2.11 1.88 1.89 2.73 1.95 1.78 2.41 2.16

PR-Low KSM 2.45 1.37 1.30 1.16 1.31 1.49 1.68 1.54 1.66 2.27 1.62
+Fair+PFP+RF/2 MDM 3.37 2.07 1.75 1.76 1.91 1.68 2.08 2.24 2.36 3.42 2.26

NONE 5.20 2.54 2.59 2.12 1.85 1.91 3.04 2.18 1.93 2.54 2.59
SGM 2.37 2.08 5.09 5.60 3.97 3.60 2.80 1.91 1.62 2.10 3.11

PR-FIFO KSM 2.37 1.44 1.20 1.22 1.32 1.54 1.63 1.49 1.60 2.15 1.60
+Fair+PFP+RF/2 MDM 3.34 2.12 1.72 1.82 1.92 1.90 2.20 2.27 2.43 3.45 2.32

NONE 2.91 2.23 4.85 5.63 4.31 3.54 2.88 1.83 1.72 2.00 3.19
SGM 2.03 1.67 4.86 5.74 4.14 3.60 2.81 1.92 1.61 2.09 3.05

PR-FIFO KSM 2.39 1.44 1.20 1.21 1.32 1.53 1.63 1.49 1.60 2.14 1.60
+Fair+PFP+RF/4 MDM 3.33 2.12 1.72 1.81 1.92 1.90 2.20 2.28 2.42 3.46 2.32

NONE 2.62 1.84 5.22 5.71 4.34 3.69 2.94 2.05 1.91 1.99 3.23
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Table 6: Runtimes relative to the best performance for the matrix instances.
Total avg. denotes the average of the matrix average and the random average
from Table 5.

Algorithm Heuristic No perm. Row perm. Col. perm. Row + col.perm. Matrix avg. Total avg.
SGM 1.55 1.79 1.54 1.64 1.63 4.42

PFP KSM 4.05 3.47 3.46 4.68 3.92 2.64
MDM 8.81 5.18 4.30 7.10 6.35 4.24
NONE 1.94 1.98 1.57 1.73 1.80 4.54
SGM 5.13 32.15 5.83 4.62 11.93 14.15

HKDW KSM 4.55 19.80 5.38 5.05 8.69 4.99
MDM 9.01 5.62 4.44 7.21 6.57 4.32
NONE 42.64 12.32 4.91 6.34 16.55 14.86
SGM 5.43 13.59 11.77 8.75 9.88 6.79

ABMP KSM 4.52 10.56 11.99 9.35 9.10 5.19
MDM 12.28 6.25 5.09 8.23 7.96 4.99
NONE 27.52 12.32 8.89 10.82 14.89 9.93
SGM 105.91 120.37 8.61 9.42 61.08 38.89

PR-LIFO KSM 12.75 16.27 5.42 6.35 10.20 5.80
+RF/2 MDM 10.78 7.19 5.01 7.89 7.72 4.91

NONE 761.08 591.68 30.16 27.33 352.56 191.00
SGM 2.88 3.18 3.71 3.90 3.41 2.54

PR-FIFO KSM 4.01 3.89 4.50 5.07 4.37 2.88
+RF/2 MDM 12.27 5.35 4.52 7.33 7.37 4.73

NONE 7.98 3.14 5.60 4.00 5.18 3.43
SGM 7.02 3.77 4.70 5.16 5.16 3.65

PR-Low KSM 4.78 4.42 5.13 5.52 4.96 3.25
+RF/2 MDM 13.10 5.85 4.91 7.71 7.89 5.05

NONE 135.28 29.41 18.24 13.82 49.19 25.79
SGM 2.88 3.06 3.00 3.89 3.21 2.46

PR-FIFO KSM 3.95 3.78 3.85 5.03 4.15 2.78
+Fair+RF/2 MDM 11.03 5.22 4.40 7.21 6.96 4.53

NONE 24.22 2.78 3.10 3.70 8.45 5.04
SGM 3.89 3.58 6.67 5.29 4.86 3.51

PR-Low KSM 4.71 4.28 4.42 5.49 4.72 3.13
+Fair+RF/2 MDM 9.60 5.54 4.66 7.63 6.86 4.53

NONE 55.63 23.51 15.12 12.95 26.80 14.63
SGM 2.89 3.24 3.03 4.21 3.34 2.40

PR-FIFO KSM 3.89 3.91 3.90 5.40 4.28 2.79
+Fair+RF/8 MDM 8.90 5.14 4.19 7.15 6.34 4.20

NONE 3.06 3.05 3.11 4.03 3.31 2.38
SGM 2.83 3.08 2.95 3.98 3.21 2.35

PR-FIFO KSM 3.88 3.80 3.73 5.13 4.13 2.73
+Fair+RF/4 MDM 8.97 5.12 4.21 7.14 6.36 4.21

NONE 6.17 2.80 2.98 3.82 3.94 2.68
SGM 2.90 3.04 2.89 3.90 3.18 2.40

PR-FIFO KSM 3.89 3.77 3.74 5.03 4.11 2.74
+Fair+3RF/8 MDM 10.38 5.15 4.27 7.15 6.74 4.41

NONE 11.62 2.75 3.06 3.72 5.29 3.40
SGM 3.03 3.27 3.98 4.24 3.63 2.84

PR-FIFO KSM 4.06 4.53 5.01 5.24 4.71 3.13
+Fair MDM 11.11 6.20 4.57 7.86 7.43 4.81

NONE 39.09 3.45 3.38 4.22 12.53 7.33
SGM 3.81 3.69 3.56 4.96 4.00 2.96

PR-Low KSM 4.63 4.26 4.27 5.62 4.69 3.06
+Fair+RF/4 MDM 9.57 5.39 4.46 7.41 6.71 4.43

NONE 27.93 10.75 9.03 8.53 14.06 8.08
SGM 3.89 3.47 3.19 5.82 4.09 3.13

PR-Low KSM 4.84 3.97 3.91 5.23 4.49 3.05
+Fair+PFP+RF/2 MDM 10.06 5.43 4.46 7.42 6.84 4.55

NONE 8.78 27.56 3.74 13.31 13.35 7.97
SGM 3.07 3.16 3.70 3.98 3.48 3.30

PR-FIFO KSM 4.22 3.78 4.56 5.04 4.40 3.00
+Fair+PFP+RF/2 MDM 9.29 5.33 4.41 7.32 6.59 4.45

NONE 4.00 3.27 4.13 4.05 3.86 3.53
SGM 3.01 3.22 3.71 3.93 3.47 3.26

PR-FIFO KSM 4.16 3.81 4.61 5.05 4.41 3.00
+Fair+PFP+RF/4 MDM 9.26 5.33 4.41 7.32 6.58 4.45

NONE 3.84 3.30 4.42 4.00 3.89 3.56
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Table 7: Average of the worst ten runtimes in seconds for the matrix in-
stances with various permutations. MDM consistently provides very good re-
sults here. Ratio denotes the ratio between the average and the best average
found among all algorithms.

Algorithm Heuristic No perm. Row perm. Col. perm. Row + col.perm. Average Ratio
SGM 3.00 5.95 4.69 8.58 5.55 3.31

PFP KSM 1.98 4.35 4.00 7.01 4.34 2.58
MDM 2.10 4.43 3.63 7.12 4.32 2.57
NONE 3.08 5.96 4.69 8.66 5.60 3.33
SGM 4.17 53.53 9.79 9.38 19.22 11.45

HKDW KSM 2.36 20.34 8.17 7.46 9.58 5.71
MDM 2.37 3.80 5.10 7.89 4.79 2.85
NONE 6.22 11.92 7.31 9.48 8.73 5.20
SGM 2.46 37.02 28.23 16.57 21.07 12.55

ABMP KSM 0.78 12.30 22.29 14.17 12.39 7.38
MDM 1.84 8.31 6.97 12.59 7.43 4.42
NONE 4.45 23.11 13.98 17.60 14.79 8.81
SGM 362.51 910.62 25.14 32.54 332.70 198.16

PR-LIFO KSM 18.64 30.93 5.73 6.88 15.55 9.26
+RF/2 MDM 7.94 11.91 5.08 6.74 7.92 4.72

NONE 880.83 1553.39 103.90 125.01 665.78 396.54
SGM 0.88 2.67 4.00 4.60 3.04 1.81

PR-FIFO KSM 0.68 2.41 4.01 4.02 2.78 1.66
+RF/2 MDM 1.58 2.64 3.19 3.78 2.80 1.67

NONE 1.67 2.12 3.59 4.04 2.85 1.70
SGM 1.58 2.73 7.48 18.74 7.63 4.55

PR-Low KSM 0.85 3.17 4.81 4.90 3.43 2.05
+RF/2 MDM 1.75 3.83 4.16 4.75 3.62 2.16

NONE 121.15 160.60 143.83 165.61 147.80 88.03
SGM 0.77 2.38 2.63 4.45 2.56 1.52

PR-FIFO KSM 0.60 1.92 2.72 3.64 2.22 1.32
+Fair+RF/2 MDM 1.28 2.10 2.62 2.98 2.24 1.34

NONE 4.65 1.73 2.15 3.97 3.13 1.86
SGM 0.81 2.34 35.98 21.85 15.24 9.08

PR-Low KSM 0.63 2.59 3.33 4.64 2.80 1.67
+Fair+RF/2 MDM 0.91 2.49 2.89 4.12 2.60 1.55

NONE 42.29 127.07 107.95 148.77 106.52 63.44
SGM 0.65 2.27 2.14 3.72 2.20 1.31

PR-FIFO KSM 0.53 1.69 2.37 3.57 2.04 1.21
+Fair+RF/8 MDM 0.83 1.71 1.71 2.54 1.70 1.01

NONE 0.59 2.21 2.22 3.71 2.18 1.30
SGM 0.68 2.12 2.12 3.74 2.16 1.29

PR-FIFO KSM 0.53 1.61 2.31 3.47 1.98 1.18
+Fair+RF/4 MDM 0.85 1.64 1.74 2.48 1.68 1.00

NONE 1.22 1.83 2.21 3.76 2.25 1.34
SGM 0.69 2.08 2.13 3.94 2.21 1.32

PR-FIFO KSM 0.57 1.67 2.38 3.44 2.01 1.20
+Fair+3RF/8 MDM 1.17 1.81 2.03 2.58 1.90 1.13

NONE 2.30 1.67 2.08 3.80 2.46 1.47
SGM 0.96 3.27 6.52 6.28 4.26 2.54

PR-FIFO KSM 0.71 5.13 7.80 4.84 4.62 2.75
+Fair MDM 1.35 6.21 3.23 7.30 4.52 2.69

NONE 7.63 3.96 3.40 6.70 5.42 3.23
SGM 0.83 2.20 2.21 11.78 4.25 2.53

PR-Low KSM 0.60 2.05 2.50 4.44 2.40 1.43
+Fair+RF/4 MDM 0.90 1.90 2.12 2.80 1.93 1.15

NONE 11.45 41.37 43.07 57.14 38.26 22.79
SGM 0.88 3.28 2.75 37.92 11.21 6.67

PR-Low KSM 0.67 2.41 2.74 5.32 2.79 1.66
+Fair+PFP+RF/2 MDM 0.96 2.99 2.29 5.36 2.90 1.73

NONE 0.98 164.18 2.70 170.38 84.56 50.36
SGM 0.95 3.15 3.25 6.48 3.46 2.06

PR-FIFO KSM 0.84 2.66 3.47 5.35 3.08 1.84
+Fair+PFP+RF/2 MDM 1.06 3.15 2.44 5.45 3.03 1.80

NONE 0.98 3.51 3.21 6.38 3.52 2.10
SGM 0.91 3.15 3.34 6.14 3.38 2.02

PR-FIFO KSM 0.84 2.63 3.55 5.35 3.09 1.84
+Fair+PFP+RF/4 MDM 1.07 3.16 2.44 5.45 3.03 1.81

NONE 1.01 3.77 4.34 6.27 3.85 2.29
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Table 8: List of matrices from the UFL Sparse Matrix Collection used in
the experiments.

Group Name Group Name Group Name
ATandT pre2 IBM EDA trans4 McRae ecology2
ATandT twotone IBM EDA trans5 QLi largebasis
Hamm hcircuit PARSEC CO CEMW t2em
Hamm scircuit PARSEC Ga10As10H30 CEMW tmt unsym
LPnetlib lp ken 18 PARSEC Ge87H76 CEMW tmt sym
Ronis xenon2 Rajat rajat21 TKK engine
Rothberg cfd2 Rajat rajat23 Um 2cubes sphere
Norris lung2 Rajat rajat24 JGD Forest TF19
Norris stomach Andrianov ins2 JGD GL7d GL7d15
Norris torso2 Andrianov lp1 JGD GL7d GL7d23
Norris torso3 Rajat rajat29 JGD Homology ch7-8-b5
vanHeukelum cage12 Rajat rajat30 JGD Homology ch7-9-b4
vanHeukelum cage13 AMD G2 circuit JGD Homology ch7-9-b5
Schenk IBMNA c-73 Sandia ASIC 320k JGD Homology ch8-8-b4
Schenk IBMSDS matrix 9 Sandia ASIC 320ks JGD Homology ch8-8-b5
Schenk IBMSDS matrix-new 3 Sandia ASIC 680k JGD Homology m133-b3
Schenk ISEI barrier2-10 Sandia ASIC 680ks JGD Homology mk13-b5
Schenk ISEI barrier2-11 AMD G3 circuit JGD Homology n4c6-b10
Schenk ISEI barrier2-12 GHS psdef apache2 JGD Homology n4c6-b7
Schenk ISEI barrier2-1 Oberwolfach filter3D JGD Homology n4c6-b8
Schenk ISEI barrier2-2 Oberwolfach boneS01 JGD Homology n4c6-b9
Schenk ISEI barrier2-3 Pajek IMDB JGD Homology shar te2-b3
Schenk ISEI barrier2-4 Pajek internet JGD Margulies kneser 10 4 1
Schenk ISEI barrier2-9 Barabasi NotreDame actors JGD Margulies wheel 601
Schenk ISEI ohne2 Barabasi NotreDame www FreeFieldTech. mono 500Hz
Schenk ISEI para-10 Pajek patents main TSOPF TSOPF FS b39 c30
Schenk ISEI para-4 Schenk IBMNA c-big Yoshiyasu image interp
Schenk ISEI para-5 Schenk IBMNA c-73b Botonakis thermomech TC
Schenk ISEI para-6 Mittelmann pds-70 Botonakis thermomech TK
Schenk ISEI para-7 Mittelmann pds-80 Botonakis thermomech dM
Schenk ISEI para-8 Mittelmann pds-90 Botonakis thermomech dK
Schenk ISEI para-9 Mittelmann pds-100 Freescale transient
Kamvar Stanford Mittelmann sgpf5y6 Um offshore
Kamvar Stan. Berk. Mittelmann stormG2 1000 SNAP email-EuAll
Tromble language Mittelmann watson 1 SNAP web-BerkStan
Hamrle Hamrle3 Mittelmann watson 2 SNAP web-Google
Lin Lin Mittelmann cont11 l SNAP web-NotreDame
GHS indef d pretok Mittelmann cont1 l SNAP web-Stanford
GHS indef darcy003 Mittelmann neos SNAP amazon0302
GHS indef helm2d03 Mittelmann neos1 SNAP amazon0312
GHS indef mario002 Mittelmann neos2 SNAP amazon0505
GHS indef turon m Mittelmann neos3 SNAP amazon0601
GHS psdef bmw7st 1 UTEP Dubcova3 SNAP roadNet-CA
GHS psdef ford2 Botonakis FEM 3D thermal2 SNAP roadNet-PA
DNVS ship 003 Wissgott parabolic fem SNAP roadNet-TX
DNVS shipsec1 Watson Baumann SNAP soc-sign-epinions
DNVS shipsec5 QLi crashbasis Gleich usroads-48
DNVS shipsec8 QLi majorbasis Gleich usroads
GHS indef boyd2 Rajat Raj1 Williams mac econ fwd500
GHS indef cont-300 HVDC hvdc2 Williams mc2depi
IBM EDA dc1 Rucci Rucci1 Williams cop20k A
IBM EDA dc2 McRae ecology1 Williams webbase-1M
IBM EDA dc3
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