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Abstract

In this paper we address the solution of three-dimensional heterogeneous Helmholtz
problems discretized with compact fourth-order finite difference methods with appli-
cation to acoustic waveform inversion in geophysics. In this setting, the numerical
simulation of wave propagation phenomena requires the approximate solution of
possibly very large linear systems of equations. We propose an iterative two-grid
method where the coarse grid problem is solved inexactly. A single cycle of this
method is used as a variable preconditioner for a flexible Krylov subspace method.
Numerical results demonstrate the usefulness of the algorithm on a realistic three-
dimensional application. The proposed numerical method allows us to solve wave
propagation problems with single or multiple sources even at high frequencies on a
reasonable number of cores of a distributed memory cluster.

Key words. Flexible Krylov subspace methods; Helmholtz equation; Inexact precon-
ditioning; Inhomogeneous media.

1 Introduction

Three-dimensional seismic imaging in the frequency domain requires efficient numerical
methods for the approximate solution of possibly very large linear systems of equations.
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Due to the indefiniteness of the matrices, the resulting linear systems are known to be
very challenging for iterative methods. Efficient preconditioners combined with Krylov
subspace methods must be thus developed and in the past years several authors have
proposed various numerical methods related to this challenging topic [4, 9, 13, 21]. A
factorization-free two-grid preconditioner where the coarse grid problem is solved only
approximately has been recently proposed and successfully applied to the second-order
accurate discretization of the Helmholtz equation [12]. In this paper we extend this
two-grid preconditioner to a high-order discretization of the acoustic wave equation and
detail the performance of the algorithm on a a realistic three-dimensional application.

2 Acoustic full waveform inversion in the frequency do-
main

We briefly describe the forward problem associated with acoustic imaging [20].

2.1 Forward problem

Given a three-dimensional physical domain Ωp, the propagation of a wave field in a het-
erogeneous medium can be modeled by the Helmholtz equation written in the frequency
domain:

−
3∑
i=1

∂2u

∂x2
i

− (2πf)2

c2
u = δ(x− xs), x = (x1, x2, x3) ∈ Ωp. (1)

The unknown u represents the pressure wavefield in the frequency domain, c the acoustic-
wave velocity in ms−1, which varies with position, and f the frequency in Hertz. The
source term δ(x − xs) represents a harmonic point source located at (xs, ys, zs). The
wavelength λ is defined as λ =

c

f
. A popular approach - the Perfectly Matched Layer

formulation (PML) [2, 3] - has been used in order to obtain a satisfactory near bound-
ary solution, without many artificial reflections. Artificial boundary layers are used to
absorb outgoing waves at any incidence angle as shown in [2]. We denote by ΩPML the
surrounding domain created by these artificial layers. This formulation leads to the fol-
lowing set of coupled partial differential equations with homogeneous Dirichlet boundary
conditions imposed on Γ the boundary of the domain:

−
3∑
i=1

∂2u

∂x2
i

− (2πf)2

c2
u = δ(x− xs) in Ωp, (2)

−
3∑
i=1

1
ξxi(xi)

∂

∂xi
(

1
ξxi(xi)

∂u

∂xi
)− (2πf)2

c2
u = 0 in ΩPML\Γ, (3)

u = 0 on Γ, (4)
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where the ξxi functions represent the complex-valued damping functions in each direction
respectively. The set of equations (2, 3, 4) defines the forward problem related to acoustic
imaging.

2.1.1 Compact fourth-order accurate discretization

Accurate solution of the forward problem (2, 3, 4) is a key ingredient in any acoustic
imaging tool. Thus we consider a high-order accurate finite difference discretization of
the Helmholtz problem [10] on an uniform equidistant Cartesian grid of size nx×ny×nz.
We denote later by h the corresponding mesh grid size, Ωh the discrete computational
domain and nPML the number of points in each PML layer. A fixed value of nPML = 10
has been considered hereafter. In [10] compact schemes based on Padé approximation
(leading to a 27-point discretization stencil for three-dimensional applications) have been
developed to reduce spurious dispersion, anisotropy and reflection. It has been proven
that the resulting schemes have fourth-order accurate local truncation error on uniform
grids and third-order in the non-uniform case. Since a stability condition has to be
satisfied to correctly represent the wave propagation phenomena [6], we consider such a
discretization scheme with 10 points per wavelength as in [19].

The discretization of the forward problem leads to the linear system Ah xh = bh,
where Ah ∈ Cn×n is a sparse complex matrix which is non Hermitian and nonsymmetric
due to the PML formulation and where xh, bh ∈ Cn represent the discrete frequency-
domain pressure field and source, respectively. Due to the large dimension of the linear
system, preconditioned Krylov subspace methods are most often considered and efficient
preconditioners must be then developed for such indefinite problems.

3 Two-level preconditioned Krylov subspace method

In this section we introduce the geometric two-level preconditioner that is proposed for
the solution of wave propagation problems presented in Section 2.

3.1 Geometric two-level preconditioner

We first present the general framework of the preconditioner and introduce some nota-
tions for that purpose. The fine and coarse levels denoted by h and H are associated
with discrete grids Ωh and ΩH respectively, while G(Ωk) is the set of grid functions
defined on Ωk. Due to the geophysical application where structured grids are routinely
used, it seems natural to consider a geometric construction of the coarse level ΩH . The
discrete coarse grid domain ΩH is then deduced from the discrete fine grid domain Ωh by
doubling the mesh size in each direction as classically done in geometric multigrid [17].
We select as a prolongation operator IhH : G(ΩH) → G(Ωh) trilinear interpolation and
as a restriction IHh : G(Ωh)→ G(ΩH) its adjoint which is often called the full weighting
operator [17]. We refer the reader to [18] for a complete description of these operators
in three dimensions. Finally we assume that AH is obtained by discretization of (2, 3,
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4) on ΩH .

Algorithm 1 Geometric approximate two-level cycle applied to Ah zh = vh with initial
approximation z0

h. zh =M(vh).
1: Polynomial pre-smoothing: Apply µ1 cycles of GMRES(ms) to Ah zh = vh with

initial approximation z0
h and symmetric Gauss-Seidel as a right preconditioner to

obtain the approximation zµ1

h .
2: Restrict the fine level residual: vH = IHh (vh −Ah zµ1

h ).
3: Solve approximately the coarse problem AH zH = vH : Apply µc cycles of

GMRES(mc) to AH zH = vH with initial approximation z0
H and symmetric Gauss-

Seidel as right preconditioner to obtain the approximation zH .
4: Correct the fine-grid approximation: z̃h = zµ1

h + IhH zH .
5: Polynomial post-smoothing: Apply µ2 cycles of GMRES(ms) to Ah zh = vh with

initial approximation z̃h and symmetric Gauss-Seidel as a right preconditioner to
obtain the approximation zµ2

h .

The general form of the two-level cycle to be used as a preconditioner is sketched in
Algorithm 1. This cycle belongs to the class of multiplicative two-level preconditioner.
The approximation at the end of the cycle zh can be represented as zh =M(vh) where
M is a nonlinear function. Consequently this cycle leads to a variable nonlinear precon-
ditioner which must be combined with an outer flexible Krylov subspace method [16].
In this study we have selected an outer Krylov subspace method of minimum residual
type namely flexible GMRES (FGMRES(m)) [14].

Polynomial smoothers based on the GMRES Krylov subspace method [15] have been
selected for both pre- and post-smoothing phases as in [8]. The main originality of this
cycle is to consider an approximate solution zH of the indefinite coarse level problem
AH zH = vH . As far as we know this feature has been analysed algebraically by No-
tay [11] in the framework of symmetric positive definite systems. In [11] it has been
proven that the coarse level solution in a standard two-level cycle is not required to be
accurate to obtain an efficient cycle to be used as a solver or as a preconditioner. In
the framework of indefinite Helmholtz problems with homogeneous velocity field solving
only approximately the coarse level problem has been analysed by Local Fourier Analy-
sis and Robust Fourier Analysis in [12] for second-order accurate discretization schemes.
Theoretical developments supported by numerical experiments have notably shown that
the approximate solution of the coarse level problem may also lead to an efficient pre-
conditioner. We report the reader to [12, Section 3.4] for a complete description of this
analysis on three-dimensional model problems. In Section 4 numerical experiments will
demonstrate that such a strategy is also efficient when solving realistic heterogeneous
problems with high-order discretization schemes.
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4 Numerical performance on a large three-dimensional
model

We investigate the performance of the two-grid preconditioner combined with Flexible
GMRES(m) for the solution of (2, 3, 4) on a realistic heterogeneous velocity model.

4.1 Settings

In the two-grid cycle (Algorithm 1) we consider the case of two iterations of symmetric
Gauss-Seidel preconditioned GMRES as a smoother (ms = 2, µ1 = 1 and µ2 = 1), a
restart parameter equal to mc = 5 for the preconditioned GMRES method to be used
on the coarse level, a maximal number of coarse cycles equal to µc = 20 and zero initial
guesses (z0

h = 0, z0
H = 0). We consider a moderate value for the restart parameter of

the outer Krylov subspace method (m = 5) as in [12]. In the numerical experiments the
unit source is located at (xs/h, ys/h, zs/h) = (nx/2, ny/2, nPML+1). A zero initial guess
is chosen and the iterative method is stopped when the Euclidean norm of the residual
normalized by the Euclidean norm of the right-hand side satisfies the following relation:

||bh −Ahxh||2
||bh||2

≤ 10−5. (5)

The numerical results have been obtained on Jade, a SGI Altix ICE 8200 cluster
located at CINES1 (each node of Jade is equipped with 2 Intel Quad-Core X5560 pro-
cessors) using a Fortran 90 implementation with MPI in single precision arithmetic.
Physical memory on a given node (8 cores) of Jade is limited to 34 GB. This code was
compiled by the Intel compiler suite with the best optimization options and linked with
the Intel vendor BLAS and LAPACK subroutines.

4.2 The SEG/EAGE Salt dome model: forward problem

The SEG/EAGE Salt dome model [1] is a velocity field containing a salt dome in a
sedimentary embankment. It is defined in a parallelepiped domain of size 13.5× 13.5×
4 km3. The minimum value of the velocity is 1500 m.s−1 and its maximum value is
4481 m.s−1 respectively. This testcase is considered as challenging due to both the
occurrence of a geometrically complex structure (salt dome) and the large dimensions of
the computational domain.

4.2.1 Weak scalability analysis

We analyze now the weak scalability of the algorithm and thus consider different prob-
lems with increasing frequencies on a growing number of cores so that the local problem
size is only slightly changing. Numerical experiments are reported in Table 1. In the
homogeneous case, when the frequency is multiplied by a factor of 2, a ratio of 8 between

1http://www.cines.fr
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the size of two consecutive grids should be considered to obtain a fixed local problem
size. Nevertheless due to the fixed number of points taken in the PML layer that is cho-
sen independently of the frequency and due to the heterogeneous nature of the velocity
field, the number of unknowns on two consecutive grids is found to be multiplied by a
factor greater than 8 in practice. These factors are indicated in the ”Ratio” column in
Table 1.

We consider a range of frequencies from 2.5Hz to 40Hz in this study. We note that
the largest frequency case (f = 40Hz) requires to solve an indefinite linear system with
more than 15 billion of unknowns. In Table 1 we report the number of preconditioner
applications (Pr), the corresponding computational times in seconds (T) and the maxi-
mal requested memory in GB (M). We remark that when the frequency is multiplied by
a factor of two, the number of preconditioner applications is also multiplied by a factor
close to two for small to mid frequencies. This behaviour has been reported by various
authors [4, 9, 13] who obtained a similar behaviour on heterogeneous problems defined on
smaller computational domains although. However in the case of large frequencies, the
number of preconditioner applications tends to grow considerably. A similar behaviour
has been reported on both homogeneous and heterogeneous problems for second-order
accurate schemes in [12]. We note however that this increase in preconditioner applica-
tions is found to be less pronounced in the case of the high-order discretization scheme
considered here (e.g., 227 preconditioner applications are required at f = 20 Hz for the
second-order discretization scheme). Finally we note that the maximal requested mem-
ory is growing linearly with the problem size. This notably reflects the fact that the
numerical method does not rely on any numerical factorization of sparse matrices either
at the fine or at the coarse level.

SEG/EAGE Salt dome - Weak scaling

h (m) f (Hz) Grid Ratio Cores Partition T (s) Pr M (GB)
60 2.5 225× 225× 71 1.00 1 1× 1× 1 171 10 1.35
30 5 451× 451× 143 8.1 8 2× 2× 2 385 18 10.9
15 10 903× 903× 287 65.1 64 4× 4× 4 989 43 87.8
7.5 20 1807× 1807× 575 522.3 512 8× 8× 8 2710 112 704.2
3.75 40 3615× 3615× 1151 4184.7 4096 16× 16× 16 7984 293 5641.8

Table 1: Two-grid preconditioned Flexible GMRES(5) for the solution of the Helmholtz
equation for the SEG/EAGE Salt dome model with mesh grid size h such that h =
min(x,y,z)∈Ωh

c(x, y, z)/(10 f). The parameter T denotes the total computational time in
seconds, Pr the number of preconditioner applications and M the requested memory in
GB.
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4.2.2 Strong scalability analysis

We propose to analyze now the strong scalability property of the numerical method.
Thus we fix the global problem size to approximately 246 millions of unknowns (i.e. a
grid of size 927×927×287 corresponding to a frequency of 10Hz is used) and we consider
a growing number of cores. Whatever the number of cores the same physical problem
is thus solved. Numerical results are shown in Table 2. The number of preconditioner
applications (Pr) is found to be nearly constant. The slight differences in terms of
preconditioner applications can be explained by the local nature of the symmetric Gauss-
Seidel method used as a preconditioner in both smoothing and coarse phases. To further
analyze the behaviour of the method we provide a scaled speed-up factor (τ) as an
indication of the scalability of the algorithm: the code is said to perfectly scale when τ
is equal to 1. Taking as reference values for Tref and Pref the computational time and
number of cores corresponding to the first numerical experiment (first row of Tables 2),
it appears that the numerical method enjoys good strong scalability properties up to
1024 cores. This is a very satisfactory behaviour on such a realistic application.

SEG/EAGE Salt dome - Strong scaling

h (m) f (Hz) Grid Cores Partition T (s) Pr τ M (GB)
15 10 927× 927× 287 32 4× 4× 2 1969 43 1.00 91.2
15 10 927× 927× 287 64 4× 4× 4 1009 43 0.97 92.5
15 10 927× 927× 287 128 8× 4× 4 524 43 0.94 93.2
15 10 927× 927× 287 256 8× 8× 4 282 44 0.87 94.1
15 10 927× 927× 287 512 8× 8× 8 156 44 0.79 96.6
15 10 927× 927× 287 1024 16× 8× 8 90 44 0.68 98.2
15 10 927× 927× 287 2048 16× 16× 8 52 44 0.60 99.9

Table 2: Two-grid preconditioned Flexible GMRES(5) for the solution of the Helmholtz
equation for the SEG/EAGE Salt dome model with mesh grid size h such that h =
min(x,y,z)∈Ωh

c(x, y, z)/(10 f). The parameter T denotes the total computational time in
seconds, Pr the number of preconditioner applications and M the requested memory in
GB. τ = Tref

T / P
Pref

is a scaled speed-up factor where T, P denote the elapsed time and
corresponding number of cores on a given experiment respectively.

4.2.3 Multiple right-hand side problems

The solution of multiple right-hand side problems is also an important issue in acoustic
imaging corresponding to the occurrence of multiple sources in the computational do-
main. Thus we analyze the performance of the two-grid preconditioner combined with a
block flexible Krylov subspace method for the solution of heterogeneous Helmholtz prob-
lems with p right-hand sides. The block flexible Krylov subspace method (BFGMRESD(m)
proposed in [5, Algorithm 3]) allows variable preconditioner and relies on the idea of block
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size reduction to derive an efficient method in terms of computational operations. At
each restart of the block flexible Krylov subspace method it detects linear combinations
of linear systems that have approximately converged to effectively reduce the current
number of linear systems to consider during convergence. The number of linear systems
considered along convergence is thus always non-increasing. In [5] numerical experiments
with a second-order accurate discretization scheme have been reported showing the effi-
ciency of this new method on an application related to seismics. Here we consider the
case of high-order discretization schemes and investigate the performance of the outer
preconditioned block Krylov subspace method with respect to the number of right-hand
sides at a given frequency (5 Hz). Table 3 reports both the number of preconditioner
applications on a single vector and corresponding computational times versus the num-
ber of right-hand sides p and number of cores for the standard block flexible GMRES(m)
proposed in [7] and BFGMRESD(m) respectively. The maximal number of right-hand
sides is 256 on 1024 cores. Using the block size reduction in the block flexible Krylov
subspace method allows us to decrease the number of linear systems considered along the
convergence. This leads to a significant decrease of the computational times (a reduction
of about 55% is indeed obtained for p = 256 or p = 1024). This is a rather satisfactory
result on this practical application.

SEG/EAGE Salt dome - Grid : 479× 463× 143, f = 5 Hz

(p, Cores) (4, 16) (16, 64) (64, 256) (256, 1024)
Method Pr T (s) Pr T (s) Pr T (s) Pr T (s)
BFGMRES(5) 76 902 304 970 1216 1094 4864 1522
BFGMRESD(5) 50 600 150 464 535 483 2102 681

Table 3: Two-grid preconditioned Block Flexible GMRES methods (with or without
deflation) for the solution of the Helmholtz equation for the SEG/EAGE Salt dome model
with mesh grid size h such that h = min(x,y,z)∈Ωh

c(x, y, z)/(10 f). Case of multiple right-
hand side problems (p denotes the number of right-hand sides considered and Cores the
number of cores). The parameter T denotes the total computational time in seconds
and Pr the number of preconditioner applications on a single vector.

5 Conclusions

The solution of heterogeneous Helmholtz problems is recognized as of high interest in
many application fields. In this paper we have focused on a specific three-dimensional
application in seismics related to acoustic wave propagation problems in the subsoil.
The numerical simulation of such phenomena requires the approximate solution of pos-
sibly very large indefinite linear systems of equations. We have proposed an iterative
two-grid method where the coarse grid problem is solved only approximately. A cycle of
this method is used as a variable preconditioner for a flexible Krylov subspace method.
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Numerical experiments on small to high frequency problems have shown the efficiency of
such a preconditioner applied to a high-order discretization of the acoustic wave equation
on structured grids. Problems with multiple right-hand sides have also been addressed
and the reported numerical experiments show a satisfactory behaviour of the numerical
method on a given realistic three-dimensional problem. The proposed numerical method
allowed us to solve wave propagation problems even at high frequency on a reasonable
number of cores of a distributed memory computing platform.
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