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Abstract

The method of conjugate gradients (CG) is widely used for the iterative solution of large
sparse systems of equations Ax = b, where A ∈ ℜn×n is symmetric positive definite. Let xk

denote the k–th iterate of CG. This is a nonlinear differentiable function of b. In this paper we
obtain expressions for Jk, the Jacobian matrix of xk with respect to b. We use these expressions
to obtain bounds on ∥Jk∥2, the spectral norm condition number of xk, and discuss algorithms
to compute or estimate Jkv and J

T

k v for a given vector v.

1 Introduction

The method of conjugate gradients (CG) of Hestenes and Stiefel [10] is widely used for the iterative
solution of large sparse systems of equations Ax = b, where A ∈ ℜn×n is symmetric positive
definite. Let xk denote the k–th iterate of CG. It can easily be verified that xk = xk(b) is a
nonlinear differentiable function of b. See, e.g., [27] for some effects of the nonlinearity, or the recent
monograph [15] for a more general discussion on the nonlinearity of Krylov subspace methods. In
this paper we obtain expressions for the Jacobian of xk with respect to the right-hand side vector b,

Jk =
∂xk

∂b
∈ ℜn×n.

Our main motivation for studying this topic comes from the following problem in statistics,
sometimes referred to as truncated CG regression or the partial least-squares problem; see, e.g., [3]
and the references therein. Consider estimating x̄ = A−1b̄ from a given noisy right-hand side
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b = b̄ + Δb, where Δb ∼ (0,Σ) is random noise. It is well known that the best linear unbiaised
estimator of x̄ is x = A−1b, with

x̄− x = A−1Δb, cov{x̄− x} = A−1ΣA−1.

In practise, however, it is often unfeasible to compute x. Rather, one computes xk, the k–th iterate
of CG applied to the noisy system, with k ≪ n. The question then becomes: what is cov{x̄− xk}?
The following idea has received some recent attention in the data assimilation community and has
made its way into operational data assimilation codes [20, 28]. First linearize xk(b) ≈ xk(b̄)+JkΔb.
Then, to first order,

cov{x̄− xk(b)} ≈ cov{x̄− xk(b̄)− JkΔb} = cov{JkΔb} = JkΣJ
T
k .

The above sparked our interest in the mathematical properties of, and computations involving, the
Jacobian matrix Jk.

It is usually not feasible to compute and store the (generally dense) matrix Jk. Therefore, one
is usually interested in a scalar measure of the sensitivity of a computed solution, rather than the
entire Jacobian matrix. For example, one quantity of interest might be the absolute condition
number of xk with respect to perturbations in b (in any chosen norm):

∥Jk∥ = lim
�→0

sup
∥Δb∥≤�

∥xk(b+Δb)− xk(b)∥
∥Δb∥ . (1)

See, e.g., [11, Chapter 3] for a proof of the above. We use one of our expressions for the Jacobian
to obtain bounds on ∥Jk∥2, the spectral norm condition number of xk. In [20, 28], the following is
used as a measure of sensitivity:

vT cov{x̄− xk(b)}v ≈ vTJkΣJ
T
k v

for a given vector v. Hence, matrix-vector products of the form JT
k v are required. We discuss

methods to compute or estimate the quantities Jkv and JT
k v.

There has been some related work on the sensitivity of Krylov subspace methods. Kuznetsov
et. al. [1, 13] obtain expressions for the condition number of a Krylov subspace Kk(A, b) with
respect to perturbations in A and b. Here, however, we are interested in the sensitivity not of a
whole subspace but of only one vector in the space, namely, xk. We also mention the papers of
Greenbaum [6] and Strakoš [26] (see also [8]) who consider the sensitivity of CG iterates to changes
in the eigenvalue distribution of A. A summary and more thorough bibliographies can be found
in [15, 18, 19]. One important aim of such work is to understand how rounding errors in finite
precision arithmetic affect the behaviour of the algorithm. Here our motivation is different: we are
interested in applications in which b is an observation vector greatly contaminated by noise, and
in which very few iterations of CG are performed. In this setting, a sensitivity analysis of xk with
respect to perturbations in b is certainly relevant.

The rest of this paper is organized as follows. In Section 2 we introduce the Lanczos [14] and
CG algorithms. In Section 3 we obtain expressions for Jk, the Jacobian of xk with respect to b.
We also give bounds on the normwise relative error between Jk and A−1 and on the spectral norm
condition number ∥Jk∥2. We discuss methods to compute or estimate Jkv and JT

k v for a given
vector v in Section 4. In Section 5 we present numerical experiments to illustrate the theory, and
we conclude with a discussion in Section 6.
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2 The Lanczos and Conjugate Gradients algorithms

We start by reviewing some known facts about the Lanczos algorithm and its relation to CG.
Unless otherwise stated we assume exact arithmetic. The effects of rounding errors in floating
point arithmetic are discussed briefly in Sections 5.2 and 6. A more thorough treatment of these
topics, including implementation details, can be found, e.g., in the monographs [2, 4, 7, 12, 15, 18].

The Lanczos algorithm computes an orthogonal tridiagonalization of the symmetric matrix
A ∈ ℜn×n column by column, starting from an arbitrary normalized vector v1. After k steps the
algorithm produces Vk =

[
v1, . . . vk

]
∈ ℜn×k with orthonormal columns and

Tk =

⎡
⎢⎢⎢⎢⎣

�1 �2

�2 �2
. . .

. . .
. . . �k

�k �k

⎤
⎥⎥⎥⎥⎦
, T̃k =

[
Tk

�k+1e
T
k

]
, (2)

such that
AVk = VkTk + �k+1vk+1e

T
k = Vk+1T̃k. (3)

(Here ek is the k–th standard basis vector, not to be confused with the error �k below.) The columns
of Vk form an orthonormal basis for the Krylov subspace

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}.

Starting from an initial guess x0 with residual r0 = b−Ax0, CG produces a sequence of iterates
satisfying

xk ∈ x0 +Kk(A, r0),

rk = b−Axk ∈ AKk(A, r0), rk ⊥ Kk(A, r0).

Define �1 = ∥r0∥2 and start the Lanczos algorithm with v1 = r0/�1. Then the iterate xk and
residual rk from CG can be written as

xk = x0 + VkT
−1
k �1e1 (4)

rk = r0 −AVkT
−1
k �1e1 = −�1�k+1e

T
k T

−1
k e1vk+1.

We will also use the fact that Kk(A, r0) = Range(Vk) = Range(Kk), where

Kk =
[
r0, . . . , A

k−1r0
]
=
[
A�0, . . . , A

k�0
]

(5)

and �0 = A−1b− x0 is the initial error.
It can also be useful to think of CG in terms of polynomials:

xk = x0 + �k−1(A)r0, (6)

where �k−1(A) is a polynomial of degree at most k − 1. Then the error �k = A−1b − xk and the
residual rk = b−Axk satisfy

�k = �k(A)�0, rk = �k(A)r0, �k(A) = I −A�k−1(A). (7)
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Below we outline some properties of the polynomial �k to be used in later sections. Let Πk denote
the set of polynomials of degree at most k. It is well known that

∥�k∥A = ∥�k(A)�0∥A = min
�∈Πk

�(0)=1

∥�(A)�0∥A. (8)

Let �
(j)
k , j = 1, . . . , k, denote the eigenvalues of Tk, known as Ritz values. These are the roots

of �k (see, e.g., [4, §2.4], [25, §2]) which can therefore be written in the form

�k(�) =
k∏

j=1

(
1− �

�
(j)
k

)
. (9)

In the following lemma we give another characterization of �k. Similar ideas are used in [5, §1]
and [17, §6].

Lemma 2.1. Let the spectral decomposition of A be

A = QΛQT , Q−1 = QT , Λ = diag(�i), 0 < �1 ≤ ⋅ ⋅ ⋅ ≤ �n,

and define

Lk =

⎡
⎢⎣
�1 . . . �k

1
...

...

�n . . . �k
n

⎤
⎥⎦ , w = Λ1/2QT �0, W = diag(wi), e =

⎡
⎢⎣
1
...

1

⎤
⎥⎦ . (10)

Write the polynomial �k in (7) as

�k(�) = 1 +

k∑

i=1

�i�
i, tk = [�1, . . . , �k]

T . (11)

Then provided CG has not reached the exact solution A−1b before step k, the matrix LT
kW

2Lk is

non-singular and the vector of coefficients tk satisfies

tk = argmin
t
∥W (e+ Lkt)∥22 = −(LT

kW
2Lk)

−1LT
kW

2e. (12)

Proof. If the matrix LT
kW

2Lk is singular there exists a vector y = [1, . . . , k]
T ∕= 0 such that

WLky = 0. Because W is diagonal, this implies, for all indices i ∈ [1, k], either wi = 0 or

1�i + 2�
2
i + ⋅ ⋅ ⋅+ k�

k
i = 0.

Let j denote the smallest index such that j ∕= 0, and without loss of generality scale y such that
j = 1. Then either wi = 0 or

1 + j+1�i + ⋅ ⋅ ⋅+ k�
k−j
i = 0.

In other words, there is a polynomial �̃k−j of degree at most k − j such that �̃k−j(0) = 1 and
�̃k−j(�i) = 0 for all i satisfying wi ∕= 0. Note from the definition of w in (10) that wi = 0 implies
eTi Q�0 = 0. Thus, we have

�̃k−j(A)�0 = Q�̃k−j(Λ)Q
T �0 = 0.
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The above and (8) implies that �k−j = 0, i.e., xk−j = A−1b. Therefore, so long as CG has not
reached the exact solution, the matrix LT

kW
2Lk cannot be singular.

Now from (8),

∥�k(A)�0∥A = min
�∈Πk

�(0)=1

∥�(Λ)w∥22 = min
�∈Πk

�(0)=1

∥W�(Λ)e∥22 = min
t
∥W (e+ Lkt)∥22.

In other words, the vector of coefficients tk in (11) is the solution of a weighted linear least-squares
problem:

tk = argmin
t
∥W (e+ Lkt)∥22 = −(LT

kW
2Lk)

−1LT
kW

2e.

Lemma 2.1 gives a convenient expression for the coefficients of the polynomial �k in (7) in terms
of the eigenvalues and eigenvectors of A and the initial error �0. We use this expression to obtain
our main result in the next section.

3 Properties of the Jacobian matrix

Let xk denote the k–th iterate of CG applied to Ax = b. Throughout we assume that xk is
well-defined, that is, CG has not reached the exact solution A−1b prior to step k.

3.1 Expressions for Jk

First, we obtain the matrix of partial derivatives of tk defined in (11) with respect to b. In the
proof we use the following notation. For a differentiable matrix function

X :

{
ℜn → ℜp×q,

b 7→ X(b),

∂bX : ℜn → ℜp×q is the linear operator defined by

X(b+Δb) = X(b) + ∂bX(b) ⋅Δb+ o (∥Δb∥2).

The matrix representation of ∂bX in the standard basis in ℜpq×n is the Jacobian matrix ∂
(
vec(X)

)
/∂b.

For a detailed introduction to matrix differential calculus we recommend [16, Chapter 5].

Lemma 3.1. Let tk be the vector of coefficients defined in (11). In the notation of Lemma 2.1,

∂tk
∂b

= −2(WLk)
†�k(Λ)Λ

−1/2QT . (13)

Proof. Recall from Lemma 2.1 that

tk = argmin
t
∥W (e+ Lkt)∥22 = −(LT

kW
2Lk)

−1LT
kW

2e, (14)

where only W in the above right-hand side depends on b. Denote Mk = LT
kW

2Lk. Then for any
Δb ∈ ℜn,

∂b(M
−1
k ) ⋅Δb = −M−1

k (∂bMk ⋅Δb)M−1
k = −M−1

k LT
k

(
∂bW

2 ⋅Δb
)
LkM

−1
k .
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Furthermore, because W is diagonal, ∂bW
2 = 2W∂b(W ). Therefore, from (14),

∂btk ⋅Δb = M−1
k LT

k

(
∂bW

2 ⋅Δb
)
LkM

−1
k LT

kW
2e−M−1

k LT
k

(
∂bW

2 ⋅Δb
)
e

= 2M−1
k LT

kW (∂bW ⋅Δb)(LkM
−1
k LT

kW
2e− e)

= −2(WLk)
†(∂bW ⋅Δb)(Lktk + e).

Next, noticing that (Lktk + e) = �k(Λ)e and using the fact that ∂bW ⋅Δb is diagonal, we obtain

∂btk ⋅Δb = −2(WLk)
†�k(Λ)(∂bW ⋅Δb)e

= −2(WLk)
†�k(Λ)(∂bw ⋅Δb)

= −2(WLk)
†�k(Λ)Λ

−1/2QT∂bb ⋅Δb.

The last equality in the above follows from the fact that

w = Λ1/2QT �0 = Λ−1/2QT b− Λ1/2QTx0,

see (10), so ∂bw = Λ−1/2QT∂bb. Since ∂bb is the identity operator, the above implies that ∂tk/∂b,
the matrix representation of ∂btk, is given by (13).

Using the above Lemma we can now obtain our main result. The following theorem gives two
equivalent expressions for Jk, the Jacobian of xk with respect to b, in terms of the matrices Vk and
Tk and the polynomials �k and �k−1 defined in Section 2.

Theorem 3.1. Let xk be the k–th iterate of CG applied to Ax = b starting from x0. In the notation

of Section 2,

Jk = A−1
[
I − �k(A)

]
+ 2VkT

−1
k V T

k �k(A). (15)

Equivalently,

Jk = 2VkT
−1
k V T

k + (I − 2VkT
−1
k V T

k A)�k−1(A). (16)

Proof. Because xk = A−1b − �k, we have ∂xk

∂b = A−1 − ∂�k
∂b . Then with Kk defined in (5) and tk

in (11) we obtain

�k = �k(A)�0 =

(
I +

k∑

i=1

�iA
i

)
�0,

∂�k
∂b

= �k(A)
∂�0
∂b

+
k∑

i=1

Ai�0
∂�i
∂b

= �k(A)A
−1 +Kk

∂tk
∂b

,

where we have used the fact that �0 = A−1b− x0, so that ∂�0
∂b = A−1. Thus,

∂xk

∂b
= A−1

[
I − �k(A)

]
−Kk

∂tk
∂b

. (17)

Note that
Kk =

[
A�0, . . . , A

k�0
]
= QΛ−1/2

[
Λw,Λ2w, . . .Λkw

]
= QΛ−1/2WLk. (18)
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From this and Theorem 3.1 we obtain

Kk
∂tk
∂b

= −2QΛ−1/2(WLk)(WLk)
†�k(Λ)Λ

−1/2QT . (19)

Using (18), Range(Vk) = Range(Kk), and V T
k AVk = Tk, we obtain

(WLk)(WLk)
† = Λ1/2QTKk(K

T
k AKk)

−1KT
k QΛ1/2 = Λ1/2QTVkT

−1
k V T

k QΛ1/2.

Thus,

Kk
∂tk
∂b

= −2VkT
−1
k V T

k �k(A).

We obtain (15) from the above and (17). Equation (16) follows from (15) and the relationship (7)
between the polynomials �k and �k−1.

The formula for Jk given in (15) can be used to derive relationships between Jk and A−1. (See
Corollaries 3.1 and 3.2 below.) The expression in (16) is useful for understanding the relationship
between the condition number ∥Jk∥2 and ∥T−1

k ∥2, as shown in Corollary 3.3.

3.2 Relationship to A−1

For the exact solution x(b) = A−1b, the Jacobian is simply ∂x/∂b = A−1. Therefore, intuitively,
we might expect that Jk approaches A−1 as k increases. However, this is not always the case. The
following corollary bounds the normwise relative error between Jk and A−1.

Corollary 3.1. In the notation of Theorem 3.1,

∥Jk −A−1∥2
∥A−1∥2

≤ 3∥�k(A)∥2. (20)

Furthermore, if ∥�k(A)∥2 < 1,

∣rTk Jkrk∣
1 + ∥�k(A)∥2

≤ ∥�k∥2A ≤
∣rTk Jkrk∣

1− ∥�k(A)∥2
. (21)

Proof. From (15) we have

Jk −A−1 =
(
−A−1 + 2VkT

−1
k V T

k

)
�k(A).

The relationship (20) follows by takings norms and using the fact that ∥VkT
−1
k V T

k ∥2 = ∥T−1
k ∥2 ≤

∥A−1∥2. Recall from Section 2 that rTk Vk = 0. Therefore,

∥�k∥2A = rTk A
−1rk = rTk

(
Jk +A−1�k(A)

)
rk = rTk Jkrk + rTk A

−1/2�k(A)A
−1/2rk,

from which the inequalities in (21) follow.
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We can interpret Corollary 3.1 as follows. If ∥�k(A)∥2 ≪ 1 then the Jacobian Jk is close to A−1

and the energy norm of the error is close to (rTk Jkrk)
1/2. From (9),

∥�k(A)∥2 = max
i

k∏

j=1

∣∣∣∣∣1−
�i

�
(j)
k

∣∣∣∣∣ .

Therefore, if all eigenvalues of A are well approximated by a Ritz value, ∥�k(A)∥2 ≪ 1. Alterna-
tively, from the characterization of �k in (8),

∥�k(A)∥2 ≥
∥�k(A)�0∥∗
∥�0∥∗

=
∥�k∥∗
∥�0∥∗

,

where ∥ ⋅ ∥∗ can denote either the A-norm, the 2-norm, or the A2-norm, i.e., the residual 2-norm. If
�0 has a significant component along the eigenvector of A corresponding to the largest in magnitude
eigenvalue of �k(A), the above lower bound is a reasonable approximation. If this is the case, and
if ∥�k∥∗/∥�0∥∗ ≪ 1, then ∥�k(A)∥2 ≪ 1. Of course, it is certainly possible to construct examples in
which ∥�k(A)∥2 ≫ 1. One such example is given in Section 5.

Because ∥�k(A)∥2 can be much larger than 1, and because the quantity Jkrk is expensive to
compute (see Section 4), it is doubtful whether (21) can be used as a reliable and efficient way
to estimate the energy norm of the error. Nevertheless, we report (21) as it gives one way to
characterize the relationship between Jk and A−1.

Note from (8) and (15) that �k(A) = 0 implies both xk = A−1b and Jk = A−1. However, it
may be the case that Jk ∕= A−1 when xk = A−1b if �k = �k(A)�0 = 0 but �k(A) ∕= 0. In other
words, if for a specific b we have obtained the exact solution in k < n steps, it does not necessarily
follow that xk(b) = A−1b for all b. Hence, we cannot conclude that ∂xk/∂b = A−1. The following
corollary gives an expression for Jk when CG reaches the exact solution, that is, when for a specific
b we have xk = A−1b.

Corollary 3.2. Suppose that CG reaches the exact solution at step k. Then

Jk = A−1
[
I − �k(A)

]
= A−1 −Q

[
0

Λ−1
2 �k(Λ2)

]
QT , (22)

where the spectral decomposition of A is

A = QΛQT = [Q1, Q2]

[
Λ1

Λ2

] [
QT

1

QT
2

]
,

and Λ1 consists of those eigenvalues of A to which a Ritz value has converged. If the exact solution

is only obtained at step n, then Jn = A−1.

Proof. Let Tk = Q̄kΛ̄kQ̄
T
k be the spectral decomposition of Tk. It is known that xk = A−1b implies

AVk = VkTk in (3), so that Q1 = VkQ̄k, Λ1 = Λ̄k, and �k(Λ1) = �k(Tk) = 0. Thus in (15) we have

V T
k �k(A) = V T

k [VkQ̄k, Q2]

[
�k(Λ1)

�k(Λ2)

]
QT = [Q̄k, 0]

[
0

�k(Λ2)

]
QT = 0,

from which (22) follows. If this only occurs at step n, the block Λ1 = Λ̄n has dimension n and the
block Λ2 is inexistant. In other words, �n(A) = 0 and thus Jn = A−1.
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3.3 The condition number of xk

Recall from the introduction that a useful scalar measure of the sensitivity of xk to perturbations
in b is its spectral norm condition number, ∥Jk∥2. From Theorem 3.1 we can obtain bounds on
∥Jk∥2, as shown below.

Corollary 3.3. In the notation of Theorem 3.1,

∥T−1
k e1∥2 ≤ ∥Jk∥2 ≤ 2∥T−1

k ∥2 +
(
1 + 2∥A∥2∥T−1

k ∥2
)
∥�k−1(A)∥2.

Proof. For the lower bound, from (15) and (7) we have

∥Jk∥2 ≥
∥Jkr0∥2
∥r0∥2

=

∥∥�k−1(A)r0 + 2VkT
−1
k V T

k �k(A)r0
∥∥
2

∥r0∥2
.

Recall that V T
k �k(A)r0 = V T

k rk = 0. Furthermore, using (6), (4), and the fact that �1 = ∥r0∥2 we
have

∥Jkr0∥2
∥r0∥2

=
∥�k−1(A)r0∥2
∥r0∥2

= ∥T−1
k e1∥2. (23)

The upper bound is an immediate consequence of (16).

If r0 has a significant component along the eigenvector of A corresponding to the largest eigen-
value of �k−1(A), then from (23) ∥�k−1(A)∥2 ≈ ∥T−1

k e1∥2. If this is the case, Corollary 3.3 shows
that both the lower bound and upper bound on the spectral norm of the Jacobian depend only on
terms involving T−1

k (as opposed to A−1). In such cases, the spectral norm condition number of
xk is essentially determined by the reciprocal of the smallest Ritz value. Of course, this reasoning
does not hold in the worst case, and it may happen that ∥Jk∥2 ≫ ∥T−1

k ∥2. Numerical examples are
given in Section 5.

4 Computing matrix-vector products

In most practical applications, due to memory limitations it is clearly not possible to explicitly
compute and store the entire matrix Jk ∈ ℜn×n. Recall from the introduction that quantities of
interest are ∥Jk∥2 as well as vTJkΣJ

T
k v for given Σ and v. In this section we briefly review how

matrix-vector products (matvecs) Jkv and JT
k v can be computed or estimated using automatic

differentiation techniques. (See for example [21, §7.2] or [9] for an introduction to automatic differ-
entiation.) This can be used to estimate the spectral norm and Frobenius norm condition numbers
of xk, as follows: for any v of unit length we have a lower bound ∥Jk∥2 ≥ ∥Jkv∥2, while if v ∼ (0, I)
then ∥Jkv∥22 is an unbiased estimator of ∥Jk∥2F .

Algorithm 1 defines the standard CG iterations, presented essentially as in [10]. We can recast
one full iteration of CG in terms of the action of operators. First we replace the scalars �k−1 and
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Algorithm 1 The standard CG iterations

1: Given A, b, and x0

2: r0 = b−Ax0

3: p0 = r0
4: k = 1
5: while stopping criterion not satisfied do

6: �k−1 = rTk−1rk−1 / p
T
k−1Apk−1

7: xk = xk−1 + �k−1pk−1

8: rk = rk−1 − �k−1Apk−1

9: �k = rTk rk / r
T
k−1rk−1

10: pk = rk + �kpk−1

11: k = k + 1
12: end while

13: end

�k by their corresponding expressions

�k−1 =
rTk−1rk−1

pTk−1Apk−1
,

�k =
rTk rk

rTk−1rk−1
=

(rk−1 − �k−1Apk−1)
T (rk−1 − �k−1Apk−1)

rTk−1rk−1

= 1− 2
pTk−1Ark−1

pTk−1Apk−1
+

(rTk−1rk−1)(p
T
k−1A

2pk−1)

(pTk−1Apk−1)2
.

Define the vector zk = [xT
k , r

T
k , p

T
k ]

T ∈ ℜ3n. For the initial step (lines 2–4) we have

z0 = F0(b) =

⎡
⎣

x0

b−Ax0

b−Ax0

⎤
⎦ ,

∂z0
∂b

=

⎡
⎣
0
In
In

⎤
⎦ .

At step k of CG (lines 6–8) we have

zk = F (zk−1) =

⎡
⎢⎢⎣

x+ rT r
pTAp

p

r − rT r
pTAp

Ap

r − rT r
pTAp

Ap+
(
1− 2 pTAr

pTAp
+ (rT r)(pTA2p)

(pTAp)2

)
p

⎤
⎥⎥⎦

k−1

.

Differentiating the above, we obtain

∂zk
∂zk−1

=

⎡
⎣

In
2
�pr

T �In − 2�
� pq

T

0n In − 2
� qr

T −�A+ 2�
� qq

T

0n In − 2
� qr

T − 2
�pq

T + 2�
�2 pr

T G

⎤
⎦

k−1
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where q = Ap, � = rT r
pT q

, � = pT q, � = qT q, and

G = −�A+
2�

�
qqT +

(
1− 2qT r

�
+

��

�

)
In

− 2

�
prTA+

4qT r

�2
pqT +

2�

�
pqTA− 4��

�2
pqT .

Applying the chain rule to successive iterations we have

Jk =
∂xk

∂b
= [In, 0, 0]

∂zk
∂b

= [In, 0, 0]

(
∂zk

∂zk−1

)
. . .

(
∂z1
∂z0

)(
∂z0
∂b

)
.

For any vector v, one can compute

Jkv = [In, 0, 0]

(
∂zk

∂zk−1

)
. . .

(
∂z1
∂z0

)(
∂z0
∂b

)
v

on the fly by updating v ←
(

∂zk
∂zk−1

)
v at step k of CG. This is known as the “forward” or “direct”

mode in automatic differentiation. The cost of this operation is one matvec with A as well as ∼18n
flops for each update step. In comparison, one step of CG requires one matvec with A and ∼10n
flops. Additionally, the quantities (∂ ∗k /∂b)v must be stored, where ∗k denotes every variable in
Algorithm 1. Thus, acquiring sensitivity information in the form of Jkv has a very significant, but
not prohibitive, computational cost, which some users are willing to pay [20, 28].

Computing

JT
k v =

(
∂z0
∂b

)T (
∂z1
∂z0

)T

. . .

(
∂zk

∂zk−1

)T

[In, 0, 0]
T
v,

cannot be done on the fly, since

(
∂zi

∂zi−1

)T

. . .

(
∂zk

∂zk−1

)T

[In, 0, 0]
T
v,

is not know at step i < k of CG. One has to store (or recompute) all the quantities involved at
every step in CG and loop through the algorithm in reverse order a posteriori. This is known as
the “reverse” or “adjoint” mode.

We have attempted to find more efficient methods to compute or estimate Jkv and/or JT
k v

using the recurrences for the polynomials �k−1(A) and the formula (16) given in Section 3. In
our experience, however, the most accurate method of computing matvecs with Jk is using the
automatic differentiation techniques summarized above. Numerical examples are given in the next
section.

5 Numerical experiments

We provide some numerical experiments merely to illustrate the theory developed in the previous
sections. For real-world, large-scale data assimilation applications in which the linearization has
been incorporated for sensitivity analyses, we refer to [20, 28].
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5.1 Behaviour of Jk and ∥Jk∥2
First we illustrate the relationship between Jk and A−1 from Corollary 3.1, as well as the relationship
between the condition number ∥Jk∥2 and ∥T−1

k ∥2 from Corollary 3.3, as k increases.
In these small examples we explicitly compute and store Jk using the automatic differentiation

techniques described in Section 4. To simulate exact arithmetic we run CG with double reorthog-
onalization (of the residual vectors). When we reorthogonalize in CG we also differentiate the
reorthogonalization steps of the algorithm, i.e., the step

rk ← rk −
rjr

T
j

rTj rj
rk, j = 1, . . . k − 1,

leads to the update

∂rk
∂b
← ∂rk

∂b
−

rjr
T
j

rTj rj

∂rk
∂b
−

rTj rk

rTj rj

∂rj
∂b
− rjr

T
k

rTj rj

∂rj
∂b

+ 2
rTj rk

(rTj rj)
2
rjr

T
j

∂rj
∂b

.

We use the known relationships

�1 =
1

�0
, �i =

1

�i−1
+

�i−1

�i−2
, �i =

√
�i−1

�i−2
, i = 2, 3, . . . , k

to obtain the entries of Tk, from which we can then easily compute ∥T−1
k ∥2.

Example 1 is meant to illustrate extreme, but highly unlikely, behaviour of ∥Jk∥2. In this
example A is a diagonal 64 × 64 matrix with 32 eigenvalues equally spaced in [10−1, 100] and 32

eigenvalues equally spaced in [101, 102]. The right-hand side vector is b =
[
1, . . . 1, 0, . . . , 0

]T
and

the iteration is started with x0 = 0. Because r0 is orthogonal to all eigenvectors corresponding to
the eigenvalues in [101, 102], the Lanczos algorithm fails to compute any Ritz value in this interval.
Consequently, for all k,

∥�k(Λ)∥2 ≥ ∣�k(�n)∣ =
k∏

j=1

∣∣∣∣∣1−
�n

�
(j)
k

∣∣∣∣∣ ≥
k∏

j=1

(
102

100
− 1

)
≈ 102k,

∥�k−1(Λ)∥2 ≥ ∣�k−1(�n)∣ =
1

�n
∣1− �k(�n)∣ ≈ 102k−2.

(24)

In other words, the condition number of xk grows very quickly as k increases, and the iterates are
soon highly sensitive to perturbations in b. This is illustrated in Figure 1.

The extreme behaviour in the above example is a trivial consequence resulting from a very
specific choice of b. Examples 2a and 2b below illustrate more typical behaviour of ∥Jk∥2 and the
relative error �k = ∥Jk − A−1∥2/∥A−1∥2. By more typical we mean a situation in which �0 is not

orthogonal to eigenvectors of A corresponding to large eigenvalues. In each case A is formed via its
spectral decomposition. The matrix of eigenvectors is the Q factor in the QR decomposition of a
random matrix, b = e, and x0 = 0. In example 2a the eigenvalues of A are logarithmically equally
spaced between 10−4 and 1, while in example 2b there are n − 1 eigenvalues of A linearly equally
spaced between 1 and 10 with one extra eigenvalue 10−7.

Results are plotted in Figure 2. In each case, ∥Jk∥2 behaves essentially as ∥T−1
k ∥2, which can

be much smaller than ∥A−1∥2 in the early iterations. In example 2a, �k behaves essentially as
∥�k∥A/∥�0∥A. In example 2b, �k is bounded above by ∥�k∥A/∥�0∥A until it reaches its maximum
attainable accuracy.
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Figure 1: Example 1. Left: At a fixed iteration k = 5, the magnitude of the polynomial ∣�5(�)∣
plotted versus �. The crosses on the horizontal axis represent the eigenvalues of A. The horizontal
line is ∥�5(A)∥2 = maxi ∣�5(�i)∣ = ∣�5(�n)∣ and the vertical line shows the corresponding eigenvalue
�n. Right: the condition number ∥Jk∥2 plotted versus k. As predicted by (24), ∥Jk∥2 increases
with a slope close to 2 on the semilog plot.

5.2 Effects of finite precision arithmetic

It is well known that properties of CG derived assuming exact arithmetic, in particular, orthogonal-
ity of the residual vectors, no longer hold when the algorithm is run in finite precision arithmetic.
This can greatly affect the behaviour of the algorithm when it is run in finite precision arithmetic.

The relationships in Section 3 were derived using the connection between the CG and Lanczos
algorithms, assuming exact arithmetic. Here we wish to verify to what extent these relationships
continue to hold when the algorithm is run in floating point arithmetic. We repeat the tests used
to produce Figure 2, but without any reorthogonalization.

Results are given in Figure 3. When no reorthogonalization is used, the relative error between
A−1 and Jk (as computed using automatic differentiation) can oscillate as k increases, particularly
when k ≥ n. (Recall, however, that we are usually interested in stopping the method after k ≪ n
iterations.) In both examples, even for large k, the spectral norm condition number ∥Jk∥2 still
behaves similarly to ∥T−1

k ∥2, modulo some slight oscillations.

5.3 Validity of a first-order analysis

As discussed in the introduction, CG is a highly nonlinear algorithm. Therefore, it is reasonable to
question whether the linearization

xk(b+Δb) ≈ xk(b) + JkΔb (25)

gives a meaningful estimate. From Taylor’s theorem, this certainly must be the case for sufficiently
small ∥Δb∥2. Here we provide numerical experiments to investigate how small is “sufficiently small”.

We compute xk(b) and xk(b + Δb) for k = 5. We then compare the relative error ∥xk(b +
Δb)− xk(b)∥2/∥Δb∥2 with the condition number ∥Jk∥2. (See (1) and (25).) We perform tests with
perturbations Δb scaled to obtain various values of ∥Δb∥2/∥b∥2 ∈ [10−14, 1]. For Δb we pick both
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Figure 2: The condition number ∥Jk∥2 and relative error �k = ∥Jk − A−1∥2/∥A−1∥2 versus k for
example 2a (left) and 2b (right) with double reorthogonalization.
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Figure 3: The condition number ∥Jk∥2 and relative error �k = ∥Jk − A−1∥2/∥A−1∥2 versus k for
example 2a (left) and 2b (right) without any reorthogonalization. (Compare to Figure 2.)

(i) a random vector, and (ii) Δb = v∗, the right singular vector of Jk corresponding to its largest
singular value, so that to first order

∥xk(b+Δb)− xk(b)∥2
∥Δb∥2

≈ ∥JkΔb∥2
∥Δb∥2

= ∥Jk∥2.

We use examples 1, 2a, and 2b described above, as well as example 3, a five-point finite difference
discretization of the Laplacian on a 20× 20 regular grid on [−1, 1]× [−1, 1]. The resulting matrix
A has dimension n = 324, b is set to b = e, and x0 = 0.

Results are plotted in Figure 4. In example 1, the first-order analysis is descriptive of the true
sensitivity of xk only for tiny perturbations, for which ∥Δb∥2/∥b∥2 is close to the unit roundoff. In
this (pathological) example, CG is extremely nonlinear in b. In the remaining examples, however,
the relative error is roughly constant with ∥Δb∥2, even when ∥Δb∥2/∥b∥2 is much larger than the
unit roundoff. (For ∥Δb∥2/∥b∥2 less than roughly 10−1, 10−2, and 10−4 in examples 2a, 2b, and 3,
respectively.) This indicates that, on these test problems, the first-order analysis is descriptive even
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for fairly large values of ∥Δb∥2/∥b∥2. These results were produced using double reorthogonalization.
We have verified that the same phenomenon still holds when no reorthgonalization is performed,
for k = 5 as well as with different choices of k.
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Figure 4: Relative error ∥xk(b + Δb) − xk(b)∥2/∥Δb∥2 versus ∥Δb∥2/∥b∥2 at iteration k = 5 for
examples 1 (top left), 2a (top right), 2b (bottom left) and 3 (bottom right).

6 Discussion

We have performed a first-order perturbation analysis for CG iterates. Our results quantify, to first
order, how sensitive the iterates are to perturbations in the right-hand side vector. In Theorem 3.1
we obtained an expression for the Jacobian of xk in CG in terms of the matrices Vk and Tk from the
Lanczos algorithm and the polynomials �k and �k−1 in (7). We used this result to obtain bounds on
the normwise relative error between Jk and A−1, as well as bounds on the spectral norm condition
number of xk.

In our experience, automatic differentiation seems to be the most reliable way to compute Jkv
and JT

k v. The cost of obtaining such sensitivity information is certainly significant. So far we
have not found a way to compute Jkv or JT

k v very accurately without performing k extra matvecs
with A. A cheaper way to estimate Jk is Jk ≈ VkT

−1
k V T

k . This is particularly efficient in data
assimilation applications in which the overwhelming cost of the computation is that of matvecs
with A. However, it may not give an accurate estimate of Jk (besides the norm, as demonstrated
in Corollary 3.3). Whether or not better estimates can be obtained remains an open question.
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In deriving Theorem 3.1 we have analyzed the Lanczos and CG algorithms assuming exact

arithmetic. In finite precision the relationship (3) no longer holds. Let V
(c)
k , T

(c)
k , and T̃

(c)
k denote

the matrices in (3) obtained when the algorithm is run in floating point arithmetic with machine
unit roundoff u. Paige [22] showed that, under some mild assumptions,

AV
(c)
k = V

(c)
k+1T̃

(c)
k + Fk, ∥Fk∥2 ≤

√
k(7∥A∥2 + n∥∣A∣∥2)u+O(u2).

In the above, the columns of V
(c)
k can quickly lose their orthogonality and even their linear indepen-

dence. Paige [23, 24] has recently shown that there exists a matrix Qk with orthonormal columns
and q1 = [vT1 , 0]

T such that

([
A

T
(c)
k

]
+Hk

)
Qk = Qk+1T̃

(c)
k , ∥Hk∥2 ≤ u∥A∥2 +O(u2).

In other words, the computed Tk is the tridiagonal matrix produced by the exact Lanczos process

applied to a small perturbation of an augmented matrix diag(A, T
(c)
k ) started with the augmented

vector [vT1 , 0]
T . Paige called the above the augmented backward stability of the Lanczos algorithm.

In the future we intend to use this result to analyze the true sensitivity of the Lanczos and CG
algorithms implemented in floating point arithmetic. (By this we do not mean the difference between
xk and x̃k, the iterates computed in exact and floating point arithmetic, respectively, but rather
between x̃k(b) and x̃k(b+Δb).)

We are working on extending the ideas presented in this manuscript to minimum-residual and
other polynomial-based iterative methods. For CG and other methods we can also consider other

derivatives such as ∂xk

∂x0

, ∂∥rk∥2

∂r0
, etc. It may also be possible to find sparse approximations of these

derivatives. Another interesting and very challenging problem which we have not considered here
is the computation of the derivative of xk with respect to elements of A.
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