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Abstract

We propose a variant of the block GMRES method for the solution of linear systems
of equations with multiple right-hand sides. We investigate a deflation strategy to detect
when a linear combination of approximate solutions is already known that avoids perform-
ing expensive computational operations with the system matrix. We specifically focus on
the block GMRES method incorporating deflation at the end of each iteration proposed by
Robbé and Sadkane [M. Robbé and M. Sadkane, Exact and inexact breakdowns in the block
GMRES method, Linear Algebra Appl., 419 (2006), pp. 265-285]. We extend their contri-
bution by proposing the deflation to be also performed at the beginning of each cycle. This
change leads to a modified least-squares problem to be solved at each iteration and gives
raise to a different behavior especially when the method is often restarted. Additionally we
investigate truncation techniques aiming at reducing the computational cost of the iteration.
This is particularly useful when the number of right-hand sides is large. Finally we address
the case of variable preconditioning, an important feature when iterative methods are used
as preconditioners as investigated here. The numerical experiments performed in a parallel
environment show the relevance of the proposed variant on a challenging application related
to geophysics. A saving of up to 35% in terms of computational time - at the same memory
cost - is obtained with respect to the original method on this application.

Key words. Block Krylov space method; Block size reduction; Deflation at each iteration;
Flexible preconditioning; Multiple right-hand sides

1 Introduction

We consider block Krylov space methods for the solution of linear systems of equations with
p right-hand sides given at once of the form AX = B, where A ∈ Cn×n is supposed to be
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a nonsingular non-Hermitian matrix, B ∈ Cn×p is supposed to be full rank and X ∈ Cn×p.
Although the number of right-hand sides p might be relatively large we suppose here that the
dimension of the problem n is always much larger. Later we denote by X0 ∈ Cn×p the initial
block iterate and by R0 = B−AX0 the initial block residual. As stated in [23, 24] a block Krylov
space method for solving the p systems is an iterative method that generates approximations
Xm ∈ Cn×p with m ∈ N such that

Xm −X0 ∈ K�
m(A,R0)

where the block Krylov space K�
m(A,R0) (in the non preconditioned case) is defined as

K�
m(A,R0) =

{
m−1∑
k=0

AkR0γk, ∀ γk ∈ Cp×p, with k | 0 ≤ k ≤ m− 1

}
⊂ Cn×p.

We refer the reader to [23] for a recent detailed overview on block Krylov subspace methods
and note that most of the standard Krylov subspace methods have a block counterpart (see,
e.g., block GMRES [44], block BiCGStab [22], block IDR(s) [14] and block QMR [20]). In this
paper we mainly focus on restarted block Krylov subspace methods that satisfy a minimum norm
property as introduced in [38, Section 6.12].

Block Krylov subspace methods are increasingly popular in many application areas in compu-
tational science and engineering (e.g. electromagnetic scattering (monostatic radar cross section
analysis) [8, 28, 40], lattice quantum chromodynamics [39], model reduction in circuit simula-
tion [19], stochastic finite element with uncertainty restricted to the right-hand side [16], and
sensitivity analysis of mechanical systems [5] to name a few). To be effective in terms of compu-
tational operations it is recognized that these methods must incorporate a strategy for detecting
when a linear combination of the systems has approximately converged [23]. This explicit block
size reduction is called deflation as discussed in [23]. First a simple strategy to remove useless
information from a block Krylov subspace - called initial deflation - consists in detecting pos-
sible linear dependency in the block right-hand side B or in the initial block residual R0 ([23,
Section 12] and [28, Section 3.7.2]). When a restarted block Krylov subspace method is used,
this block size reduction can be also performed at each initial computation of the block resid-
ual, i.e., at the beginning of each cycle [23, Section 14]. In addition Arnoldi deflation [23] may
be also considered; it aims at detecting a near rank deficiency occurring in the block Arnoldi
procedure to later reduce the current block size. These three strategies based on rank-revealing
QR-factorizations [9] or singular value decompositions [21] have been notably proposed both in
the hermitian [32, 37] and nonhermitian cases [1, 3, 12, 20, 30, 33] for block Lanczos methods.
They have been shown to be effective with respect to standard block Krylov subspace meth-
ods. While initial deflation or deflation at the beginning of a cycle are nowadays popular, block
Krylov subspace methods based on a norm minimization property incorporating deflation at
each iteration have been rarely studied. In this paper we only focus on block GMRES based
methods [44] and refer the reader to [5, 20, 30, 31] for advanced block Lanczos methods with
deflation. In [36] Robbé and Sadkane have introduced the notion of inexact breakdown to study
block size reduction techniques in block GMRES. Two criteria have been proposed either based
on the numerical rank of the generated block Krylov basis (W-criterion) or on the numerical
rank of the block residual (R-criterion). Numerical experiments on academic problems of small
dimension with a reduced number of right-hand sides illustrated the advantages and drawbacks
of each variant versus standard block GMRES. Further numerical experiments can be found in
[27]. Another method relying on such a strategy is the Dynamic BGMRES (DBGMRES) [13],
which is an extension of block Loose GMRES [4]. Nevertheless, to the best of our knowledge,
we are not aware of any publication showing the interest of block GMRES with deflation at
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each iteration on a concrete real-life application. Moreover the combination of block GMRES
performing deflation at each iteration and variable preconditioning has been rarely addressed in
the literature. Variable preconditioning is often required when solving large linear systems of
equations. This is notably the case when inexact solutions of the preconditioning system using,
e.g., nonlinear smoothers in multigrid [34] or approximate interior solvers in domain decomposi-
tion methods [42, Section 4.3] are considered. Thus the main purpose of the paper is to derive
a flexible minimal norm block Krylov subspace method that incorporates block size reduction
at each iteration suited to the solution of large-scale linear systems (where expensive variable
preconditioners are often used) with possibly a large number of right-hand sides.
The paper is organized as follows. First we will introduce in Section 2 the block GMRES method
with deflation at each iteration proposed in [36] since it will constitute the basis for further de-
velopments. We will notably describe how deflation at each iteration is performed. In Section 3
we first explain the main motivations for deriving the proposed variant and analyze its main
mathematical properties. Algorithmic details are then presented in Section 4 together with an
analysis of the computational cost and memory requirements. Then in Section 5 we demonstrate
the effectiveness of the proposed algorithm on an application related to geophysics. Finally we
draw some conclusions in Section 6.

2 Block GMRES with deflation at each iteration

In this section we review the block GMRES method with deflation at each iteration (later denoted
BGMRES-R1) [36] for the solution of linear systems with a non-Hermitian matrix and multiple
right-hand sides given at once. We first introduce notation used in the manuscript and then
describe the main mathematical properties of BGMRES-R.

2.1 Notation

Throughout this paper we denote ‖.‖2 the Euclidean norm, ‖.‖F the Frobenius norm, Ik ∈ Ck×k

the identity matrix of dimension k and 0i×j ∈ Ci×j the zero rectangular matrix with i rows and
j columns. The superscript H denotes the transpose conjugate operation. Given a vector d ∈ Ck

with components di, D = diag(d1, . . . , dk) is the diagonal matrix D ∈ Ck×k such that Dii = di.
If C ∈ Ck×l we denote the singular values of C by σ1(C) ≥ · · · ≥ σmin(k,l)(C) > 0 and nul(C) the
deficiency of C respectively. Finally em ∈ Cn denotes the mth canonical vector of Cn. Regarding
the algorithmic part (Algorithms 1-4), we adopt notation similar to those of MATLAB in the
presentation. For instance, U(i, j) denotes the Uij entry of matrix U , U(1 : m, 1 : j) refers to
the submatrix made of the first m rows and first j columns of U and U(:, j) corresponds to its
jth column.

2.2 Overview

Next we provide a brief overview of the block GMRES method with deflation at each iteration
introduced in [36] and specifically focus on the variant with a block size reduction strategy based
on the numerical rank of the block residual (R-criterion [36, Section 4]). More precisely we
propose to analyze a given cycle of this method in the next subsections. Throughout the paper
we denote by X0 ∈ Cn×p the current approximation of the solution, R0 ∈ Cn×p the corresponding
true block residual (R0 = B−AX0), both obtained at the beginning of the cycle that we consider.

1The suffix ”R” is used to emphasize that we exclusively consider the block GMRES method with deflation at
each iteration based on the R-criterion proposed by Robbé and Sadkane in [36].
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D ∈ Cp×p represents a nonsingular diagonal scaling matrix defined as D = diag(b1, . . . , bp) with
bl = ||B(:, l)||2, (1 ≤ l ≤ p). Finally, we assume that the QR factorization of R0D

−1 has been
performed as:

R0D
−1 = V̂1Λ̂0, (1)

with V̂1 ∈ Cn×p having orthonormal columns, Λ̂0 ∈ Cp×p assuming2 rank(R0D
−1) = p. R0

(R0D
−1) is named the initial block residual (scaled initial block residual, respectively), where

the term initial refers to the beginning of the cycle that we consider.

2.2.1 Deflated Arnoldi relation

If K ∈ Cn×p denotes a matrix with orthonormal columns containing all the p new Krylov direc-
tions at iteration j − 1, the most expensive part of the algorithm at the j-th iteration lies in the
p applications of the variable preconditioner supposed to be expensive. To be effective in terms
of computational operations it is widely recognized that block Krylov subspace methods must
rely on a strategy for detecting when a linear combination of the systems has approximately
converged [23, 28]. In the framework of block Krylov subspace methods based on a norm mini-
mization property, Robbé and Sadkane [36] have first proposed a block GMRES algorithm that
relies on deflation at each iteration of a given cycle. To do so, they have introduced a modified
version of the block Arnoldi algorithm - later called deflated block Arnoldi - in which range(K)
is judiciously decomposed into:

range(K) = range(Vj)⊕ range(Pj−1), with
[
Vj Pj−1

]H [
Vj Pj−1

]
= Ip, (2)

where Vj ∈ Cn×kj , Pj−1 ∈ Cn×dj with kj + dj = p. In other words, kj Krylov directions are
effectively considered at iteration j, while dj directions are left aside (or deflated) at the same
iteration. We note that literally the ”best” subspace of range(K) of dimension kj is chosen
(not only kj columns of K) defining Vj , leaving the remaining subspace in range(Pj−1) (i.e. the
deflated subspace is spanned by range(Pj−1) at iteration j). Based on this decomposition the
deflated orthonormalization procedure will apply preconditioning and matrix-vector products
only over the chosen kj directions of Vj . Next we briefly describe the j-th iteration of the
resulting method.

Defining s0 = 0, sj = sj−1+kj and given
[
Vj Pj−1

]
∈ Cn×(sj+dj) with orthonormal columns,

the following block Arnoldi relation is assumed to hold at the beginning of the j-th iteration of
the deflated block Arnoldi procedure (j > 1):

AVj−1 =
[
Vj Pj−1

]
Hj−1 (3)

with Vj−1 ∈ Cn×sj−1 , Vj ∈ Cn×sj , Pj−1 ∈ Cn×dj and Hj−1 ∈ C(sj−1+p)×sj−1 . The j-th iteration
of the deflated block Arnoldi procedure produces matrices V̂j+1 ∈ Cn×kj , Ĥj ∈ C(sj+p)×sj which
satisfy:

A
[
Vj−1 Vj

]
=

[
Vj Pj−1 V̂j+1

]
Ĥj , (4)

where Ĥj has the following block structure:

Ĥj =
[
Hj−1 Hj

0kj×sj−1 Hj+1,j

]
,

2The situation of R0D−1 being rank-deficient in exact arithmetic is often referred to as initial breakdown [23].
However, as in [36], for the sake of simplicity we consider that rank(R0D−1) = p holds at each cycle. We refer
the reader to [23] for details on how to workaround initial deflation, and we point out that this phenomenon has
not been observed in our numerical experiments.
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with Hj ∈ C(sj−1+p)×kj and Hj+1,j ∈ Ckj×kj (see Algorithm 1 for a complete description of this
iteration). Ĥj is full rank unless Hj+1,j is singular, a phenomenon usually referred to as Arnoldi
breakdown. Nevertheless Arnoldi breakdowns rarely happen in practice (see, e.g., [23, Section
13]). Therefore the possibility of an Arnoldi breakdown has not been considered in this paper,
similarly as in recent contributions [11, 23, 36]. Defining V̂j+1 ∈ Cn×(sj+p) as

V̂j+1 =
[
Vj Pj−1 V̂j+1

]
, (5)

the block Arnoldi relation (4) can then be stated as:

AVj = V̂j+1Ĥj . (6)

Next the key idea is to perform the subspace decomposition previously mentioned in (2) as[
Vj Vj+1 Pj

]
=

[
Vj Pj−1 V̂j+1

]
Fj+1,[

Vj+1 Pj

]
= V̂j+1Fj+1, (7)

where Fj+1 ∈ C(sj+p)×(sj+p) is a unitary matrix. We address how to determine Fj+1 later in
Section 2.2.4. Hence we obtain:

AVj = V̂j+1Fj+1FH
j+1Ĥj .

DefiningHj ∈ C(sj+p)×sj asHj = FH
j+1Ĥj we then deduce (since Fj+1 is supposed to be unitary):

AVj =
[
Vj+1 Pj

]
Hj ,

which is precisely the block Arnoldi relation required at the beginning of the next iteration
(compare with relation (3)). This last relation can be written as:

AVj =
[
Vj+1 Pj

] [Lj

Gj

]
,

where Lj corresponds to the (sj + kj+1) × sj upper part of Hj and Gj to the dj+1 × sj lower
part of Hj , respectively. This is exactly the core relation proposed in [36, Section 5, Algorithm
2].

2.2.2 Representation of the scaled initial block residual

At the beginning of the cycle the initial subspace decomposition is supposed to hold in BGMRES-
R:

V1 = V̂1. (8)

Consequently p Krylov directions are effectively considered at the first iteration of a given cycle
(k1 = p), while no directions are deflated at the same iteration (d1 = 0). At iteration j of the
cycle (1 ≤ j ≤ m), we define the quantity Λ̂j ∈ C(sj+p)×p as:

Λ̂j =
[

Λ̂0

0sj×p

]
. (9)

It is then straightforward to prove that R0D
−1 can be written as:

R0D
−1 = V̂j+1Λ̂j , (10)

which means that Λ̂j is the reduced representation of the scaled initial block residual in the V̂j+1

basis.
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2.2.3 Minimization property

We denote by Yj ∈ Csj×p the solution of the reduced minimization problem Pr considered in
BGMRES-R:

Pr : Yj = argmin
Y ∈Csj×p

||Λ̂j − ĤjY ||F , (11)

with Ĥj and Λ̂j defined in (6) and (9), respectively. We also denote by R̂j ∈ C(sj+p)×p the block
residual of the reduced least-squares problem Pr, i.e., R̂j = Λ̂j − ĤjYj (1 ≤ j ≤ m) and define
R̂0 ∈ Cp×p as R̂0 = Λ̂0. We recall in Proposition 1 the norm minimization property occurring
in BGMRES-R.

Proposition 1. In block GMRES with deflation at each iteration (BGMRES-R), solving the
reduced minimization problem Pr (11) amounts to minimizing the Frobenius norm of the block
true residual ||B − AX||F over the space X0 + range(VjY D) at iteration j (1 ≤ j ≤ m) of a
given cycle, i.e.,

argmin
Y ∈Csj×p

||Λ̂j − ĤjY ||F = argmin
Y ∈Csj×p

||R0D
−1 −AVjY ||F ,

= argmin
Y ∈Csj×p

||B −A(X0 + VjY D)||F ,

with Ĥj and Λ̂j defined in (6) and (9), respectively.

2.2.4 Subspace decomposition based on a singular value decomposition

We next address the question of subspace decomposition, i.e., given V̂j+1 =
[
Vj

[
Pj−1 V̂j+1

]]
obtained after the j-th iteration of the deflated block Arnoldi procedure we want to determine
kj+1, dj+1 and the unitary matrix Fj+1 ∈ C(sj+p)×(sj+p) such that the decomposition (7) holds.
To limit the computational cost related to the construction of Vj+1, we consider the following
splitting Vj+1 =

[
Vj Vj+1

]
with Vj ∈ Cn×sj obtained at the previous iteration and Vj+1 ∈

Cn×kj+1 to be determined. Thus the decomposition (7) can be written as:[
Vj

[
Vj+1 Pj

]]
=
[
Vj

[
Pj−1 V̂j+1

]]
Fj+1, (12)

with Pj ∈ Cn×dj+1 and kj+1 + dj+1 = p. Given the block form for Fj+1

Fj+1 =
[
F11 F12

F21 F22

]
,

where F11 ∈ Csj×sj , F12 ∈ Csj×p, F21 ∈ Cp×sj and F22 ∈ Cp×p, the relation (12) becomes[
Vj

[
Vj+1 Pj

]]
=
[
VjF11 +

[
Pj−1 V̂j+1

]
F21 VjF12 +

[
Pj−1 V̂j+1

]
F22

]
.

Since VH
j

[
Pj−1 V̂j+1

]
= 0sj×p we deduce the following matrix structure:

Fj+1 =
[
Isj

0sj×p

0p×sj
Fj

]
, (13)

where the unitary matrix Fj ∈ Cp×p remains to be determined. The criterion proposed in [36] to
deduce Fj , kj+1 and dj+1 aims at finding a possible linear combination of the columns of RjD

−1
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that are approximately dependent (with respect to a certain threshold) to determine the set of
directions that we do not want to consider when defining Vj+1 in Vj+1 =

[
Vj Vj+1

]
. Since

RjD
−1 = V̂j+1R̂j we rather perform this analysis based on the singular value decomposition

of R̂j as R̂j = UΣWH . We note that the thin singular value decomposition of R̂j is rather
inexpensive since R̂j does not depend on the problem size n. Heuristically, tol being the conver-
gence threshold used in the stopping criterion of BGMRES-R, we first choose a relative positive
deflation threshold εd and then determine kj+1 according to the following condition:

σl(R̂j) > εd tol ∀ l such that 1 ≤ l ≤ kj+1. (14)

Since dj+1 = p − kj+1 the following decomposition of R̂j at iteration j is then obtained with
R̂sj
∈ Csj×p and R̂p ∈ Cp×p :

R̂j =
[
R̂sj

R̂p

]
=
[
U+

sj

U+
p

]
Σ+W

H
+ +

[
U−sj

U−p

]
Σ−WH

− , (15)

with U+ ∈ C(sj+p)×kj+1 , U− ∈ C(sj+p)×dj+1 , Σ+ ∈ Ckj+1×kj+1 , Σ− ∈ Cdj+1×dj+1 , W+ ∈ Cp×kj+1

and W− ∈ Cp×dj+1 . Based on this splitting, Robbé and Sadkane have then proposed to perform
such a subspace decomposition at iteration j:

range((In − VjVH
j )RjD

−1) = range(Vj+1)⊕ range(Pj),

where

range(Vj+1) = range((In − VjVH
j )RjD

−1W+), range(Pj) = range((In − VjVH
j )RjD

−1W−),

that is, the kj+1 directions associated to (In−VjVH
j )RjD

−1W+ (the kept ones) lie in Vj+1, while
the dj+1 directions associated to (In − VjVH

j )RjD
−1W− (the deflated ones, i.e., postponed and

reintroduced later in next iterations if necessary) lie in Pj . Due to (15), this decomposition is
also equivalent to:

range(Vj+1) = range(
[
Pj−1 V̂j+1

] [
U+

p

]
Σ+),

range(Pj) = range(
[
Pj−1 V̂j+1

] [
U−p
]

Σ−).

Since
[
Vj+1 Pj

]
=
[
Pj−1 V̂j+1

]
Fj , the unitary matrix Fj is then simply obtained as the

orthogonal factor of the QR decomposition of the p× p matrix
[
U+

p U−p
]
. This decomposition

is summarized later in Section 4, Algorithm 2.

3 Modified block flexible GMRES with deflation at each
iteration

In this section we present a modified block GMRES method with deflation at each iteration
which allows variable preconditioning and truncation, two features of significant interest when
targeting the solution of large scale non-Hermitian linear systems with possibly many right-hand
sides. We first briefly introduce the motivations for these novelties and then describe the main
mathematical properties of the resulting method named BFGMRES-S3.

3The suffix ”S” is used to emphasize that the method is based on a subspace selection at each iteration, both
in the standard and truncated cases.
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3.1 Motivations

As discussed in Section 2.2.2, BGMRES-R relies on the subspace decomposition V1 = V̂1 (relation
(8)). At the first iteration of each cycle, k1 = p directions are effectively considered in the block
orthonormalization procedure including preconditioning and matrix-vector product phases. In
BGMRES-R the norm minimization property induces a non-increasing behavior of the number
of selected directions kj in a given cycle as shown later in Proposition 3. However performing no
deflation at restart (k1 = p, d1 = 0) leads to a non-monotone behavior of kj along cycles (see top-
right part of Figure 1 for an illustration) which may induce a significant additional computational
overhead if the method is often restarted. The situation with possibly multiple cycles is precisely
of interest in real life applications since a moderate restart size m is usually selected to limit
the memory requirements when large scale problems are considered and/or when the number of
right-hand sides p is large. To circumvent this difficulty, we propose to incorporate the subspace
decomposition at the beginning of each cycle of the block Krylov subspace method leading to:[

V1 P0

]
= V̂1F1, (16)

with k1 + d1 = p, V1 ∈ Cn×k1 , P0 ∈ Cn×d1 , F1 ∈ Cp×p with d1 6= 0 in general. The purpose of
this whole section is to analyze the properties of the resulting modified block flexible GMRES
with deflation at each iteration. First we will show in Section 3.4 that performing this subspace
decomposition at the beginning of each cycle will insure a non-increasing behavior for kj , the
number of selected directions along cycles which is a desirable property. This is a major difference
with respect to BGMRES-R. Second it turns out that this modification allows us to easily
incorporate truncation in the block Krylov subspace method as shown later in Section 3.6. This
is particularly useful when the number of right-hand sides is large. Third we extend the block
Krylov subspace method to the case of variable preconditioning, a mandatory feature when,
e.g., iterative methods are used as preconditioners as later investigated in Section 5. This last
property is described next.

3.2 Flexible deflated Arnoldi relation

In a given cycle of the modified block Krylov subspace method, we assume that the precondition-
ing operation at iteration j (1 ≤ j ≤ m) can be represented as Zj = M−1

j Vj where Zj ∈ Cn×kj ,
Vj ∈ Cn×kj and Mj ∈ Cn×n is supposed to be nonsingular. In this setting, the block orthonor-
malization procedure then leads to the following relation:

AZj = V̂j+1Ĥj , (17)

where Zj ∈ Cn×sj (see Algorithm 1 for further details). Equation (17) - called later the flexible
deflated Arnoldi relation - can be stated as:

AZj =
[
Vj+1 Pj

]
Hj ,

where
[
Vj+1 Pj

]
is defined as in (7) and Hj = FH

j+1Ĥj . Based on this flexible deflated Arnoldi
relation the block Krylov subspace method will minimize ||B − AX||F over the space X0 +
range(ZjY D) with Y ∈ Csj×p.

3.3 Representation of the scaled initial block residual

At iteration j of a given cycle of BFGMRES-S (1 ≤ j ≤ m), we recursively define the quantity
Λ̂j ∈ C(sj+p)×p as:

Λ̂j =
[
FH

j Λ̂j−1

0kj×p

]
. (18)
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In the next lemma we derive the representation of the scaled initial block residual R0D
−1 with

respect to the V̂j+1 basis.

Lemma 1. In the modified block flexible GMRES with deflation at each iteration (BFGMRES-S),
the scaled initial block residual R0D

−1 can be expressed in the V̂j+1 basis as:

R0D
−1 = V̂j+1Λ̂j , (19)

with Λ̂j defined as in (18).

Proof. We prove this lemma by induction. Let Aj denote the assumption R0D
−1 = V̂j+1Λ̂j at

index j. We note that A0 holds by construction (see relation (1)). We suppose that Aj−1 is
satisfied and want to prove that Aj−1 implies Aj . Due to (7) and the unitary character of Fj ,
the quantity V̂jΛ̂j−1 can be expressed as:

V̂jΛ̂j−1 =
[
Vj Pj−1

]
FH

j Λ̂j−1,

which can be written as

V̂jΛ̂j−1 =
[
Vj Pj−1 V̂j+1

] [FH
j Λ̂j−1

0kj×p

]
,

= V̂j+1Λ̂j ,

due to (5) and (18), respectively. Since V̂jΛ̂j−1 = R0D
−1, Aj is then satisfied.

Due to the initial subspace decomposition (16), we remark that the representation of the
scaled initial block residual in the V̂j+1 basis in BFGMRES-S involves the matrices Fl (1 ≤ l ≤ j).
In BGMRES-R this representation differs (compare relations (9) and (18), respectively).

3.4 Minimization property

We denote by Yj ∈ Csj×p the solution of the reduced minimization problem Ps considered in
BFGMRES-S:

Ps : Yj = argmin
Y ∈Csj×p

||Λ̂j − ĤjY ||F , (20)

with Ĥj and Λ̂j defined in (17) and (18), respectively. We denote by R̂j ∈ C(sj+p)×p the block
residual of the reduced least-squares problem Ps, i.e., R̂j = Λ̂j − ĤjYj (1 ≤ j ≤ m) and define
R̂0 ∈ Cp×p as R̂0 = Λ̂0. We analyze in Proposition 2 the norm minimization property occurring
in BFGMRES-S.

Proposition 2. In the modified version of the block Krylov subspace method with deflation at
each iteration (BFGMRES-S), solving the reduced minimization problem Ps (20) amounts to
minimizing the Frobenius norm of the block true residual ||B − AX||F over the space X0 +
range(ZjY D) at iteration j (1 ≤ j ≤ m) of a given cycle, i.e.,

argmin
Y ∈Csj×p

||Λ̂j − ĤjY ||F = argmin
Y ∈Csj×p

||R0D
−1 −AZjY ||F , (21)

= argmin
Y ∈Csj×p

||B −A(X0 + ZjY D)||F , (22)

with Ĥj and Λ̂j defined in (17) and (18) respectively.
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Proof. Due to Lemma 1 and to the flexible deflated Arnoldi relation (17), ||R0D
−1 − AZjY ||F

can be written as:

||R0D
−1 −AZjY ||F = ‖V̂j+1(Λ̂j −HjY )‖F .

Since Vj+1 has orthonormal columns, the last equality becomes:

||R0D
−1 −AZjY ||F = ‖Λ̂j − ĤjY ‖F .

D being a diagonal matrix, the relation (22) is due to elementary properties of the Frobenius
norm.

3.5 Behavior of the number of selected kj directions along convergence

We prove the important property that the number of new directions to consider in BFGMRES-S
enjoys a non-increasing behavior along convergence as stated in Proposition 3.

Proposition 3. Let denote by kj,c the number of Krylov directions effectively considered as best
directions to keep at the j-th iteration of the c-th cycle of BFGMRES-S (1 ≤ j ≤ m and c ≥ 1)
and assume that Zj is of full column rank at iteration j of cycle c. Then the following relations
are satisfied:

∀c, kj+1,c ≤ kj,c , (23)
∀c, k1,c+1 = km+1,c . (24)

Proof. BFGMRES-S is based on a standard norm minimization procedure as recalled in Propo-
sition 2. Hence at iteration j of cycle c, RjD

−1 can be expressed as:

RjD
−1 = (In −WjWH

j )Rj−1D
−1,

where Wj ∈ Cn×sj denotes a matrix the columns of which form an orthonormal basis of
range(AZj); see, e.g., [15, Section 3.1]. From [26, Theorem 3.3.16] we conclude that the sin-
gular values of the scaled block true residual are monotonically decreasing, i.e.,

∀ i | 1 ≤ i ≤ p σi(RjD
−1) ≤ σi(Rj−1D

−1). (25)

As stated in Section 2.2.4 (relation (14)), the determination of kj+1,c is directly related to the
singular values of RjD

−1 in the cycle c. Hence from the inequality (25) we immediately deduce
the relation (23). Finally the equality (24) is just due to the initial subspace decomposition (16)
performed at the beginning of the (c+ 1)-th cycle in BFGMRES-S.

We deduce from Proposition 3 that we insure a monotonically non-increasing behavior for
the number of kj selected directions along convergence (as depicted later in bottom-left part of
Figure 1) in BFGMRES-S. This is a major difference with BGMRES-R where a non-increasing
behavior of kj is guaranteed only inside a cycle and not along cycles. Indeed the equality (24) is
not satisfied in BGMRES-R due to the initial subspace decomposition (8). Hence BFGMRES-S
is not equivalent to BGMRES-R if deflation at the beginning of a cycle occurs.
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3.6 Incorporating truncation

We first detail the subspace selection in BFGMRES-S when truncation in operations is performed
and then discuss consequences on the convergence properties. Truncation in BFGMRES-S cor-
responds to impose an upper bound on the number of directions that we keep in the set of active
directions. This constraint is imposed both in the initial subspace decomposition (k1 ≤ pf , where
1 ≤ pf ≤ p) and at each iteration of the current cycle (kj+1 ≤ pf , (1 ≤ j ≤ m)). This mainly
aims at reducing the computational cost of the cycle. Truncation just implies a modified selection
of kj+1 and dj+1, whereas Fj+1 is obtained similarly as in Section 2.2.4. More precisely, with
notation of Section 2.2.4, we first choose the relative deflation threshold εd and define pd ∈ N
according to

σl(R̂j) > εd tol ∀ l such that 1 ≤ l ≤ pd. (26)

Truncation then consists of defining kj+1 as kj+1 = min(pd, pf ) and setting dj+1 as dj+1 =
p−kj+1. When pd > pf we note that the inequality σl(R̂j) ≤ εd tol does not hold for pf < l ≤ pd.
Hence combination of residuals that have not approximately converged are indeed deflated. As
in the non-truncated case, the corresponding directions are kept and later introduced if needed.
We remark that both Propositions 2 and 3 hold in the truncated case (see bottom-right part
of Figure 1 for an illustration). We stress the fact that no directions are discarded; this is the
major difference with BFGMREST(m) a flexible variant of BFGMRES(m) based on deflation
and truncation performed at restart only [11, Section 3.2.1 and Algorithm 4]4. Nevertheless
due to truncation, BFGMRES-S may require more iterations to converge than its non-truncated
version. However this drawback has to be balanced with the reduced computational cost of
the iterations when pd > pf . The subspace selection based on truncation is summarized later
in Section 4, Algorithm 2. Finally we remark that performing truncation along cycles is made
possible only because of the initial subspace decomposition (16) realized at the beginning of each
cycle in BFGMRES-S.

4 Algorithmic details, computational cost and memory
requirements

We next present the algorithmic details of the methods introduced so far in Sections 2 and 3.
Finally we conclude this section by analyzing the computational cost and memory requirements
of BFGMRES-S.

4.1 Deflated block Arnoldi

Algorithm 1 introduces the j-th iteration of the deflated block Arnoldi procedure with block
modified Gram-Schmidt assuming that deflation has occurred at the previous iteration (dj 6= 0).
If not, this algorithm then reduces to the standard flexible block Arnoldi procedure that is
described in, e.g., [11, Algorithm 1]. As in standard block Arnoldi, Algorithm 1 proceeds by or-
thonormalizing AZj against all the previous preconditioned Krylov directions, but additionally,
the orthonormalization against Pj−1 is performed (lines 10 and 11 of Algorithm 1). The block
modified Gram-Schmidt version is presented in Algorithm 1, but a version of block Arnoldi due
to Ruhe [37] or block Householder orthonormalization [2, 41] could be used as well.

4In addition we note that BFGMRES-S can use truncation at each iteration instead of only at each beginning
of cycle in the case of BFGMREST(m).
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Algorithm 1 j-th iteration of flexible deflated block Arnoldi with block modified Gram-Schmidt:
computation of V̂j+1, Zj and sj ∈ N with Vi ∈ Cn×ki such that V H

i Vi = Iki
(1 ≤ i ≤ j),

p = kj + dj , Pj−1 ∈ Cn×dj and [V1, . . . , Vj , Pj−1]H [V1, . . . , Vj , Pj−1] = Isj−1+p.

1: Define sj−1 =
∑j−1

l=1 kl (s0 = 0)
2: # Choose preconditioning operator M−1

j

3: Zj = M−1
j Vj

4: S = AZj

5: # Orthogonalization of S with respect to [V1, . . . , Vj , Pj−1]
6: for i = 1, . . . , j do
7: Hi,j = V H

i S
8: S = S − ViHi,j

9: end for
10: Hp = PH

j−1S
11: S = S − Pj−1Hp

12: Define Hj ∈ C(sj−1+p)×kj as HT
j = [H1,j , . . . ,Hj,j , Hp]T

13: Compute the QR decomposition of S as S = QT , Q ∈ Cn×kj and T ∈ Ckj×kj

14: Set V̂j+1 = Q, Hj+1,j = T
15: Define sj = sj−1 + kj

16: Define Zj ∈ Cn×sj as Zj = [Z1, . . . , Zj ], Vj ∈ Cn×sj as Vj = [V1, . . . , Vj ] and V̂j+1 ∈

Cn×(sj+p) as V̂j+1 =
[
Vj Pj−1 V̂j+1

]
such that AZj = V̂j+1

[
Hj

Hj+1,j

]
.

4.2 Subspace decomposition

The subspace decomposition at the heart of the deflation at each iteration is described in Al-
gorithm 2 and includes the possibility of truncation. The deflation threshold εd is usually fixed
and doest not depend on the cycle. The non-truncated variant of the algorithm introduced in
Section 2.2.4 is simply recovered by setting pf = p. In practice, we point out that only the p× p
Fj matrix has to be stored in memory.

Algorithm 2 Determination of kj+1, dj+1 and of Fj+1 (0 ≤ j ≤ m)
1: Choose a relative deflation threshold εd and the upper bound pf (1 ≤ pf ≤ p)
2: Compute the SVD of R̂j as R̂j = UΣWH with U ∈ C(sj+p)×p, Σ ∈ Cp×p and W ∈ Cp×p

3: Select pd singular values of R̂j such that σl(R̂j) > εd tol for all l such that 1 ≤ l ≤ pd

4: Set kj+1 = min(pd, pf ) and dj+1 = p− kj+1

5: Define Up ∈ Cp×p as Up = U(sj + 1 : sj + p, 1 : p)
6: Compute the QR decomposition of Up as Up = FjTj , with Fj ∈ Cp×p, FH

j Fj = Ip

7: Define Fj+1 ∈ C(sj+p)×(sj+p) as Fj+1 =
[
Isj

0sj×p

0p×sj
Fj

]

4.2.1 Algorithm of block GMRES method with deflation at each iteration

Algorithm 3 shows the restarted block GMRES method with deflation at each iteration in the
case of variable preconditioning that is considered in Section 5. This algorithm is later named
BFGMRES-R(m). We note that the original algorithm ([36, Algorithm 2]) is simply recovered
if each preconditioning operator Mj is chosen as the identity operator In in Algorithm 1.
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Algorithm 3 BFGMRES-R(m)
1: Choose a convergence threshold tol, a relative deflation threshold εd, the size of the restart
m and the maximum number of cycles cyclemax

2: Choose an initial guess X0 ∈ Cn×p

3: Compute the initial block residual R0 = B −AX0

4: Define the scaling diagonal matrix D ∈ Cp×p as D = diag(b1, . . . , bp) with bl = ||B(:, l)||2 for
l such that 1 ≤ l ≤ p

5: Set s0 = 0
6: for cycle = 1, cyclemax do
7: Compute the QR decomposition of R0D

−1 as R0D
−1 = V̂1Λ̂0 with V̂1 ∈ Cn×p and Λ̂0 ∈

Cp×p

8: Set k1 = p, d1 = 0 and s1 = k1

9: Define5
[
V1 P0

]
= V̂1, with V1 ∈ Cn×s1 (P0 ∈ Cn×d1) as the first s1 (last d1) columns of

V̂1 and define V1 = V1

10: for j = 1,m do
11: Completion of V̂j+1, Zj and Ĥj: Apply Algorithm 1 to obtain Zj ∈ Cn×sj , V̂j+1 ∈

Cn×(sj+p), and Ĥj ∈ C(sj+p)×sj such that

AZj = V̂j+1 Ĥj with V̂j+1 =
[
V1, V2, . . . , Vj , Pj−1, V̂j+1

]

12: Set Λ̂j ∈ C(sj+p)×p as Λ̂j =
[

Λ̂0

0sj×p

]
13: Solve the minimization problem Pr: Yj = argminY ∈Csj×p ||Λ̂j − ĤjY ||F
14: Compute R̂j = Λ̂j − ĤjYj

15: if ||R̂j(:, l)||2 ≤ tol, ∀ l | 1 ≤ l ≤ p then
16: Compute Xj = X0 + ZjYjD; stop;
17: end if
18: Determine deflation unitary matrix Fj+1 ∈ C(sj+p)×(sj+p) and kj+1, dj+1 such that

kj+1 + dj+1 = p (see Algorithm 2 with pf = p)
19: Set sj+1 = sj + kj+1

20: Define
[
Vj+1 Pj

]
= V̂j+1Fj+1, with Vj+1 ∈ Cn×sj+1 (or Pj ∈ Cn×dj+1) as the first sj+1

(or last dj+1) columns of V̂j+1Fj+1

21: Define Hj = FH
j+1Ĥj , with Hj ∈ C(sj+p)×sj

22: end for
23: Xm = X0 + ZmYmD
24: Rm = B −AXm

25: Set R0 = Rm and X0 = Xm

26: end for

5We have made the abuse of notation
ˆ
V1 P0

˜
= V̂1 to allow an easy-to-read comparison with line 9 of

Algorithm 4. In BFGMRES-R(m) we have V1 = V̂1 and P0 = [ ] in practice.
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4.3 Algorithm of modified block flexible GMRES with deflation at
each iteration

Algorithm 4 BFGMRES-S(m, pf )
1: Choose a convergence threshold tol, a relative deflation threshold εd, the size of the restart
m, the maximum number of cycles cyclemax and maximal number of directions to keep pf

2: Choose an initial guess X0 ∈ Cn×p

3: Compute the initial block residual R0 = B −AX0

4: Define the scaling diagonal matrix D ∈ Cp×p as D = diag(b1, . . . , bp) with bl = ||B(:, l)||2 for
l such that 1 ≤ l ≤ p

5: Set s0 = 0
6: for cycle = 1, cyclemax do
7: Compute the QR decomposition of R0D

−1 as R0D
−1 = V̂1Λ̂0 with V̂1 ∈ Cn×p and Λ̂0 ∈

Cp×p

8: Determine deflation unitary matrix F1 ∈ Cp×p and k1, d1 such that k1 + d1 = p (see
Algorithm 2) and set s1 = k1

9: Define
[
V1 P0

]
= V̂1F1, with V1 ∈ Cn×s1 (P0 ∈ Cn×d1) as the first s1 (last d1) columns

of V̂1F1 and define V1 = V1

10: for j = 1,m do
11: Completion of V̂j+1, Zj and Ĥj: Apply Algorithm 1 to obtain Zj ∈ Cn×sj , V̂j+1 ∈

Cn×(sj+p), and Ĥj ∈ C(sj+p)×sj such that

AZj = V̂j+1 Ĥj with V̂j+1 =
[
V1, V2, . . . , Vj , Pj−1, V̂j+1

]

12: Set Λ̂j ∈ C(sj+p)×p as Λ̂j =
[
FH

j Λ̂j−1

0kj×p

]
13: Solve the minimization problem Ps: Yj = argminY ∈Csj×p ||Λ̂j − ĤjY ||F
14: Compute R̂j = Λ̂j − ĤjYj

15: if ||R̂j(:, l)||2 ≤ tol, ∀ l | 1 ≤ l ≤ p then
16: Compute Xj = X0 + ZjYjD; stop;
17: end if
18: Determine deflation unitary matrix Fj+1 ∈ C(sj+p)×(sj+p) and kj+1, dj+1 such that

kj+1 + dj+1 = p (see Algorithm 2)
19: Set sj+1 = sj + kj+1

20: Define
[
Vj+1 Pj

]
= V̂j+1Fj+1, with Vj+1 ∈ Cn×sj+1 (or Pj ∈ Cn×dj+1) as the first sj+1

(or last dj+1) columns of V̂j+1Fj+1

21: Define Hj = FH
j+1Ĥj , with Hj ∈ C(sj+p)×sj

22: end for
23: Xm = X0 + ZmYmD
24: Rm = B −AXm

25: Set R0 = Rm and X0 = Xm

26: end for

Algorithm 4 introduces the modified block flexible GMRES method with deflation at each
iteration. This algorithm is later named BFGMRES-S(m, pf ) where m denotes the maximal
number of iterations performed in a given cycle and pf the upper bound on the number of
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directions to consider at iteration j of a given cycle when performing truncation (1 ≤ pf ≤
p). The non-truncated variant is simply recovered if pf = p is satisfied. In such a case, the
algorithm is simply named BFGMRES-S(m). A comparison of BFGMRES-R (Algorithm 3)
with BFGMRES-S (Algorithm 4) reveals the three main differences discussed in Section 3: the
initial subspace decomposition (performed at lines 8 and 9), the modified representation of the
reduced right-hand side (line 12) and the resulting different minimization problem to be solved
(line 13).

4.4 Computational cost and memory requirements

The question of the total computational cost of BFGMRES-S is now addressed. For that pur-
pose we summarize in Table 1 the costs occurring during a given cycle of BFGMRES-S(m, pf )
(considering Algorithms 1, 2 and 4) excluding matrix-vector products and preconditioning oper-
ations which are problem dependent. We have included the costs proportional to both the size
of the original problem n and the number of right-hand sides p, assuming a QR factorization
based on modified Gram-Schmidt and a Golub-Reinsch SVD6; see, e.g, [21, Section 5.4.5] and
[25, Appendix C] for further details on operation counts. The total cost of a given cycle is then
found to grow as C1np

2 +C2p
3 +C3np and we note that this cost is always nonincreasing along

convergence due to Proposition 3.
Compared to BGMRES-R, additional operations are related to the computations of F1 and

Λ̂j , operations that behave as p3 respectively. The computation of
[
Vj+1 Pj

]
is in practice

the most expensive one in a given iteration of BFGMRES-S(m, pf ). Concerning the truncated
variant, the computational cost of a cycle will be reduced only if pd > pf since the upper bound
on kj+1 will be then active. This situation occurs at the beginning of the convergence due to the
nonincreasing behavior of the singular values of R̂j shown in Proposition 3.

Step Computational cost

Computation of R0D
−1 np

QR factorization of R0D
−1 2np2 + np

Computation of F1 14p3

Computation of
[
V1 P0

]
2np2

Block Arnoldi procedure1 Cj

Computation of Λ̂j 2(sj−1 + p)2p
Computation of Yj 2s3

j + 3ps2
j

Computation of R̂j (2sj + 1)(sj + p)p
Computation of Fj+1 4sjp

2 + 14p3

Computation of
[
Vj+1 Pj

]
2np2

Computation of Hj 2p3

Computation of Xm np+ (2n+ 1)smp

Table 1: Computational cost of a cycle of BFGMRES-S(m, pf ) (Algorithm 4). This excludes
the cost of matrix-vector operations and preconditioning operations.

6The Golub-Reinsch SVD decomposition R = UΣV H with R ∈ Cm×n requires 4mn2 + 8n3 operations when
only Σ and V have to be computed.
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Concerning storage proportional to the problem size n, BFGMRES-S(m, pf ) requires Rm,
X0, Xm, Vm+1 and Zm respectively leading to a memory requirement of 2nsm + 4np at the end
of a given cycle. Since sm varies from cycle to cycle, an upper bound of the memory requirement
can be given as n(2m+1)p+3np when p linear systems have to be considered at the beginning of
a given cycle. We note that the storage is monotonically decreasing along convergence, a feature
than can be for instance exploited if dynamic memory allocation is used.

5 Numerical experiments

We investigate the numerical behavior of block flexible Krylov subspace methods including de-
flation at each iteration on a challenging application in geophysics where the multiple right-hand
side situation frequently occurs. The source terms correspond to Dirac sources in this exam-
ple. Thus the block right-hand side B ∈ Cn×p is extremely sparse (only one nonzero element
per column) and the initial block residual corresponds to a full rank matrix. We compare both
BFGMRES-R(m) and BFGMRES-S(m) with various preconditioned iterative methods based on
flexible (block) GMRES(m) with a zero initial guess (X0) and a moderate value of the restart
parameter m. The iterative procedures are stopped when the following condition is satisfied:

||B(:, l)−AX(:, l)||2
||B(:, l)||2

≤ tol, ∀ l = 1, . . . , p.

A primary concern will be to evaluate if BFGMRES-S(m) can be efficient when solving problems
with multiple right-hand sides both in terms of preconditioner applications and total computa-
tional cost. Finally the tolerance is set to tol = 10−5 in the numerical experiments and we fix
the parameter εd of Algorithm 2 to 1.

5.1 Acoustic full waveform inversion

We focus on a specific application in geophysics related to the simulation of wave propagation
phenomena in the Earth [43]. Given a three-dimensional physical domain Ωp, the propagation
of a wave field in a heterogeneous medium can be modeled by the Helmholtz equation written
in the frequency domain:

− ∂2u

∂x2
− ∂2u

∂y2
− ∂2u

∂z2
− (2πf)2

c2(x, y, z)
u = gs(x), x = (x, y, z) ∈ Ωp. (27)

u represents the pressure field in the frequency domain, c the variable acoustic-wave velocity
in ms−1, and f the frequency in Hertz. The source term gs(x) = δ(x − xs) represents a har-
monic point source located at (xs, ys, zs). A popular approach — the Perfectly Matched Layer
formulation (PML) [6, 7] — has been used in order to obtain a satisfactory near boundary so-
lution, without many artificial reflections. As in [11] we consider a second-order finite difference
discretization of the Helmholtz equation (27) on an uniform equidistant Cartesian grid of size
nx × ny × nz. The same stability condition (12 points per wavelength) relating f the frequency
with h the mesh grid size and c(x, y, z) the heterogeneous velocity field has been considered
(12fh = min(x,y,z)∈Ωh

c(x, y, z)). In consequence A is a sparse complex matrix which is non
Hermitian and nonsymmetric due to the PML formulation that leads to complex-valued variable

1Algorithm 1: the block Arnoldi method based on modified Gram-Schmidt requires
Pm

j=1

Pj
i=1(4nkikj +

nkj + 4ndjkj) operations (lines 6 to 11) plus
Pm

j=1 2nk2
j operations for the QR decomposition of S (line 13).

Thus Cj =
Pm

j=1(
Pj

i=1(4nkikj + nkj + 4ndjkj) + 2nk2
j ).
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coefficients in the partial differential equation [34, Appendix A]. The resulting linear systems
are known to be challenging for iterative methods [17, 18]. We consider the same approximate
geometric two-level preconditioner presented in [11] that has been shown to be relatively efficient
for the solution of three-dimensional heterogeneous Helmholtz problems in geophysics. We refer
the reader to [11, Algorithm 5] for a complete description of the geometric preconditioner and
to [34] for additional theoretical properties in relation with Krylov subspace methods. In this
section we consider this variable two-grid preconditioner in the multiple right-hand side case and
next investigate the performance of the block flexible Krylov methods on this challenging real-
life application. The numerical results have been obtained on Babel, a Blue Gene/P computer
located at IDRIS (PowerPC 450 850 Mhz with 512 MB of memory on each core) using a Fortran
90 implementation with MPI in single precision arithmetic. This code was compiled by the IBM
compiler suite with standard compiling options and linked with the vendor BLAS and LAPACK
subroutines.

Acoustic full waveform inversion - Grid : 433× 433× 126

p = 4 p = 8 p = 16
Method It Pr T It Pr T It Pr T
FGMRES(5p) 56 56 624 112 112 629 224 224 665
BFGMRES(5) 14 56 622 14 112 631 14 224 668
BFGMRESD(5) 14 43 489 15 70 401 15 120 371
BFGMRES-R(5) 16 44 503 16 74 431 16 134 417
BFGMRES-S(5) 16 39 452 16 57 339 18 102 328
BFGMREST(5,p/2) 24 48 542 23 80 447 20 140 410
BFGMRES-S(5,p/2) 16 40 459 15 68 392 17 124 384
Combined(5,p/2) 15 41 471 15 62 359 15 103 323
Combined(5,p/4) 18 41 474 15 59 346 15 102 320

p = 32 p = 64 p = 128
Method It Pr T It Pr T It Pr T
FGMRES(5p) 434 434 670 1152 1152 925 2531 2531 1187
BFGMRES(5) 14 448 713 18 1152 962 19 2432 1187
BFGMRESD(5) 15 225 371 20 490 422 25 1015 509
BFGMRES-R(5) 18 283 466 25 618 537 28 1489 762
BFGMRES-S(5) 19 181 316 25 413 375 28 915 497
BFGMREST(5,p/2) 20 255 396 25 550 444 28 1125 524
BFGMRES-S(5,p/2) 16 189 310 24 444 396 29 976 523
Combined(5,p/2) 15 184 305 20 409 348 25 899 442
Combined(5,p/4) 20 191 320 20 398 342 25 898 448

Table 2: Acoustic full waveform inversion (SEG/EAGE Overthrust model). Case of f = 3.64 Hz
(h = 50 m), with p = 4 to p = 128 right-hand sides given at once. It denotes the number of
iterations, Pr the number of preconditioner applications on a single vector and T denotes the
total computational time in seconds.

As in [11] we consider the velocity field issued from the public domain SEG/EAGE Overthrust
model and analyze the performance of the numerical methods at a given frequency f = 3.64 Hz.
Both the problem dimension (about 23 million of unknowns) and the maximal number of right-
hand sides to be considered (128) correspond to a task that geophysicists typically must face on
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a daily basis. Thus efficient numerical methods must be then developed for that purpose. In [11]
we have considered block flexible Krylov subspace methods including deflation at restart only
on this application for a reduced number of right-hand sides (from 4 to 16). We continue this
detailed analysis and investigate the performance of both BFGMRES-S(m, pf ) and BFGMRES-
R(m) with a larger number of right-hand sides. In addition we consider the standard block
flexible GMRES method (BFGMRES(m)), the block flexible GMRES(m) with deflation per-
formed at restart only (BFGMRESD(m) [11, Algorithm 3]) and the block flexible GMRES(m)
with deflation and truncation performed at restart only (BFGMREST(m, pf ) [11, Algorithm 4]).
We also investigate a combination of BFGMRES-S and BFGMRESD. This method named later
Combined(m, ps) corresponds to BFGMRES-S(m) at the beginning of the convergence history.
Then as soon as the number of Krylov directions effectively considered at iteration j (kj) reaches
a given prescribed value (ps) the method switches to BFGMRESD(m) at the next restart. This
mainly aims at reducing the computational cost in the next cycles by performing deflation only
at the restart instead of at each iteration. Finally the number of cores is set to 8p, ranging from
32 for p = 4 to 1024 for p = 128. This aims at imposing the same memory constraint on each
core for all numerical experiments as in [11]. The maximal memory requested is about 488 Gb
for p = 128.

Table 2 collects in addition to iterations (It)7 and preconditioner applications on a single vec-
tor (Pr)8 the computational times in seconds (T ). Among the different strategies BFGMRES-
S(5) most often delivers the minimal number of preconditioner applications and computational
times (see italic and bold values respectively in Table 2). This clearly highlights the interest of
performing deflation at each iteration both in terms of preconditioner applications and compu-
tational operations on this given application. The improvement over BFGMRES-R(5) ranges
from 10% for p = 4 to 35% for p = 128 which is a very satisfactory behavior. BFGMRES-S(5) is
also found to be competitive with respect to methods incorporating deflation at restart only (a
gain of up to 15% in terms of computational time is obtained for instance for p = 8) as well as
BFGMRES-S(5,p/2) (maximal gain of 21% (for p = 32) when compared to BFGMREST(5,p/2)).
This is a satisfactory improvement since methods including deflation at restart only are already
quite efficient in this application as shown in [11]. We also note that the improvement over
classical block flexible GMRES method is quite large as expected (a maximal gain of about 60%
is obtained for p = 64).

Figure 1 shows the evolution of kj along convergence for the various block subspace methods
in the case of p = 32. Regarding BFGMRESD(5) and BFGMREST(5,p/2) deflation is performed
only at the beginning of each cycle, thus kj is found to be constant in a given cycle. Variations
at each iteration can only happen in BFGMRES-R(5) or in BFGMRES-S(5). As expected
BFGMRES-S(5) enjoys a nonincreasing behavior for kj along convergence, while peaks occur for
BFGMRES-R(5) at the beginning of each cycle (see Proposition 3). On this example the use of
truncation within BFGMRES-S(5, p/2) tends to delay the beginning of the decreasing behavior
of kj . After a certain phase deflation is nevertheless active and proves to be useful.

We also remark that the use of truncation techniques in BFGMRES-S(m, pf ) leads to an ef-
ficient method. In certain cases BFGMRES-S(5, p/2) is as efficient as BFGMRES-S(5) in terms
of computational times (see, e.g., the case p = 32 in Table 2). This feature is really important in
this given application due to the large size of the linear systems. Furthermore BFGMRES-S(5,
p/2) requires usually less preconditioner applications than BFGMREST(5, p/2). This satisfac-

7A complete cycle of BFGMRES(m), BFGMRES-R(m) or BFGMRES-S(m) always corresponds to m itera-
tions, whereas a complete cycle of FGMRES(mp) involves mp iterations.

8A complete cycle of BFGMRES(m) corresponds to mp preconditioner applications, whereas a complete cycle
of either BFGMRES-R(m) or BFGMRES-S(m) corresponds to

Pm
j=1 kj,c preconditioner applications. A complete

cycle of FGMRES(mp) requires mp preconditioner applications.
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Figure 1: Acoustic full waveform inversion (SEG/EAGE Overthrust model). Case of p = 32.
Evolution of kj versus iterations for p = 32 in BFGMRES(5), BFGMRESD(5) (top, left part),
BFGMRES-R(5) (top, right part), BFGMRES-S(5) (bottom, left part) and truncated variants
(BFGMREST(5,p/2), BFGMRES-S(5,p/2)) (bottom, right part).

tory behavior has indeed a reason: due to Proposition 2, we guarantee that the truncated variant
of BFGMRES-S(m, pf ) minimizes the entire residual at each iteration (regardless of the value of
pf ), whereas BFGMREST(m) chooses just a subset of the residual to be minimized at each cycle.
We consider that this is indeed a critical feature of the truncated variant of BFGMRES-S(m, pf ).
Furthermore as shown in Table 2 the Combined(5, ps) method (with ps = p/2 or ps = p/4) leads
to further reductions in computational times and is especially appropriate when the number of
right-hand sides becomes large on this given application.

Finally in [10, Section 6.1] the first five strategies (FGMRES(mp), BFGMRES(m),
BFGMRESD(m), BFGMRES-R(m) and BFGMRES-S(m)) have been evaluated on an academic
test case related to a two-dimensional partial differential equation (complex-valued advection
diffusion reaction problem) with a number of right-hand sides ranging from 4 to 32. A cycle of
GMRES(m) has been used as a variable preconditioner in all methods. Whatever the value of
the restart parameter m (two values have been considered m = 5 and m = 10, respectively), it
has been found that BFGMRES-S(m) has always led to the minimal number of preconditioner
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applications and has delivered the best efficiency in terms of computational operations. This is
thus a similar behavior compared to the proposed application in geophysics.

6 Conclusion

We have proposed a block restarted GMRES method for the solution of non-Hermitian linear
systems with multiple right-hand sides that allows both the use of deflation at each iteration and
variable preconditioning. This method uses a subspace decomposition based on the singular value
decomposition of the block residual of the reduced least-squares problem. This decomposition
aims at selecting a set of kj new Krylov directions at iteration j, while dj directions are deflated
(i.e. kept and reintroduced later if needed) at the same iteration. The new method insures a non-
increasing behavior of kj along convergence which leads to possibly considerable computational
savings with respect to the existing reference method [36]. We have also proposed a variant based
on truncation. All these features are particularly of interest when tackling the solution of large-
scale linear systems with many right-hand sides. BFGMRES-S has proved to be efficient in terms
of both preconditioner applications and computational operations on an application related to
geophysics. It has been found superior to recent block flexible methods including deflation at
restart only. This satisfactory behavior has been observed on an industrial simulation, where
large linear systems with multiple right-hand sides have been successfully solved in a parallel
distributed memory environment. Further reductions in terms of computational times have been
obtained by combining methods including deflation at each iteration and deflation at restart only
in a second phase.

It is worthwhile to note that the theoretical properties of BFGMRES-S hold for any unitary
matrix Fj+1. Hence different subspace decompositions could be investigated. We also note that
the analysis proposed in this paper can be extended as well to other block Krylov subspace
methods based on a norm minimization property such as block FOM [35], block GCRO [45],
and block simpler GMRES [29]. All these methods do rely on block orthogonalizations that
require global communications. These latter operations usually become a bottleneck on massively
parallel platforms and we plan in a near future to investigate algorithmic variants, where these
global communications can be overlapped with calculations or local communications. This is
especially interesting for large-scale problems.

To give a broader picture on the performance of the block Krylov subspace methods in-
vestigated here, we finally mention that a comparison with flexible variants of block Lanczos
algorithms including deflation at each iteration should be performed. This is a topic of a forth-
coming study.
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