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Abstract. The backward error analysis is of the great importance in theanalysis of numerical stability of
algorithms in finite precision arithmetic and backward errors are also often employed in stopping criteria of iterative
methods for solving systems of linear algebraic equations.The backward error measures how far we must perturb the
data of the linear system so that the computed approximationsolves it exactly. We assume that the linear systems are
algebraic representations of partial differential equations discretised using the Galerkin finite element method. Inthis
context, we try to find reasonable interpretations of the perturbations of the linear systems which are consistent with
the problem they represent and consider the backward perturbations optimal with respect to the energy norm naturally
present in the underlying variational formulation. We alsoinvestigate its behaviour in the conjugate gradient method
by constructing approximations in the underlying Krylov subspaces which actually minimise such a backward error.
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1. Introduction. The backward error analysis, pioneered by von Neumann and Gold-
stein [26], Turing [25], Givens [10], and further developed and popularised by Wilkinson
(see, e.g., [28, 29]), is a widely used technique employed in the study of effects of rounding
errors in numerical algorithms. When solving a given problem for some data by means of
certain numerical algorithm, we would be normally satisfiedwith an approximate solution
with a small relative error (the forward error) close to the precision of our arithmetic. This
is however not always possible so we may ask instead for what data we actually solved our
problem. Thus we interpret the computed solution as a solution of the perturbed problem
and identify the norm of the data perturbation with the backward error associated with the
computed approximate solution (there might be many such perturbations so we are interested
in the smallest one).

In practical problems, the data are often affected by errorsdue to measurements, trun-
cation, and round-off resulting in data uncertainties. We could therefore be satisfied with a
solution which solves the problem for some data lying withinthe range of these uncertainties.
The backward error thus provides natural means for quantifying the accuracy of computed so-
lutions with respect to the accuracy of the problem data. In addition, the bounds on forward
errors can often be obtained from backward errors using the perturbation theory associated
with the problem to be solved which is independent on the algorithm used to obtain the solu-
tion. For more details, see [12, Chapter 1].

The backward error analysis provides an elegant way how to study numerical stability of
algorithms, that is, their sensitivity with respect to rounding errors. If an algorithm is guaran-
teed to provide a solution with a backward error close to the machine precision of the given
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finite precision arithmetic for any data (the backward stable algorithm), one could be satisfied
with such an algorithm and solution it provides. Indeed the problem data cannot be stored
exactly in finite precision arithmetic anyway independently on the means how they were ob-
tained. It is therefore perfectly reasonable to consider the backward error as a meaningful
accuracy measure for quantities obtained from algorithms which would (in the absence of the
rounding errors) deliver the exact solution of the given problem.

The backward error concept is sometimes used to construct accuracy criteria for compu-
tations which are inherently inexact even in exact arithmetic. In particular, we are interested
in the use of backward error concepts in stopping criteria for iterative solvers for linear alge-
braic systems

Au = f , A ∈ R
N×N . (1.1)

We assumeA to be nonsingular. For a given approximationû of the solution of (1.1) the
backward error represents a measure by whichA andf have to be perturbed so thatû solves
the problem(A + Ê)û = f + ĝ. The norm-wise relative backward error

min{ε : (A + Ê)û = f + ĝ, ‖Ê‖ ≤ ε‖A‖, ‖ĝ‖ ≤ ε‖f‖}

was shown by Rigal and Gaches [21] to be given by

‖f − Aû‖
‖A‖‖û‖ + ‖f‖ , (1.2)

where‖·‖ is any vector norm and its associated matrix norm, although in practice one usually
chooses the standard Euclidean one. There are reasons why the backward error (1.2) should
be preferred over the standard relative residual norm as theguide for stopping the iterative
solvers when more relevant and sophisticated measures are not available; see, e.g., [3], [12],
[17, Section 5.8]. This might be certainly supported by the factthat some iterative methods,
e.g., the methods based on the generalised minimum residualmethod [23, 27] are backward
stable [8, 19, 2, 13] and thus may deliver solutions with an accuracy close to themachine
precision if required.

Iterative methods are in practice chiefly applied for solving linear systems (1.1) aris-
ing from discretised partial differential equations (PDE), e.g., by the finite element method
(FEM). Here the main source of the “uncertainty” is due to thetruncation errors with respect
to the continuous differential operator which however doesnot need to be reflected simply
by the uncertainty of the coefficients of the resulting linear algebraic system. The basic FEM
discretisation of the one-dimensional Poisson equation considered in Section2 represents this
fact; the coefficient matrix can be stored exactly even in finite precision arithmetic and in a
matrix as such, there is not much left to be considered uncertain. The stopping criteria for
iterative solvers based on norm-wise backward error (in theEuclidean norm) might be at least
questionable in this context. More sophisticated criteriabalancing the inaccuracy of the so-
lution obtained by the iterative solver and the inaccuracy due to truncation (the discretisation
error) should be used; see, e.g., [4] and the references therein.

We believe that when a certain stopping criterion based on data perturbations such as the
backward error is considered, the effects of these perturbations in the original problem to be
solved should be considered. Here the system (1.1) is the algebraic representation of a FEM
discretisation of an elliptic PDE and solved inaccurately,e.g., by an iterative method. When a
stopping criterion based on backward error is used and hencethe computed approximation is
interpreted as the solution of a perturbed linear system, wemay ask how such perturbations
can be interpreted in the underlying discretisation.
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In Section2 we consider a general weak formulation of a self-adjoint elliptic PDE which
can be characterised by a variational equation involving a continuous, symmetric, and elliptic
bilinear form defined on a real Hilbert space and a general discretisation by the Galerkin finite
element method. We also introduce a simple one-dimensionalmodel problem which we use
throughout the paper to illustrate our results. In Section3 we assume to have an approximate
solution û of the algebraic representation (1.1) of the discretised variational problem in a
fixed basis of the discrete space, which we associate with perturbed problems

Aû = f + ĝ and (A + Ê)û = f , (1.3)

and look for possible interpretations of the data perturbations ĝ andÊ in the discrete varia-
tional equation. Although the role ofĝ in (1.3) is well known (see, e.g., [1]), the interpretation
of Ê is in our opinion worth some clarification. A similar idea of perturbing the operator was
considered before by Arioli et al. [5] as so called functional backward error. It is however
not obvious whether such an operator perturbation still maybe identified with a (discretised)
PDE or how it “physically” affects the original PDE. We try inSection3 to interpretÊ as
certain perturbation of the FEM basis for which the second system in (1.3) can be associated
with the algebraic form of the original discretised PDE. In addition, we look for thêE optimal
with respect to the norm relevant in our setting, that is, theenergy norm, and find a simple
characterisation of such a definition of the backward error (called the energy backward error
here) in the functional setting. Our approach is related to the work [20] where the inexact
solution of the discrete problem is shown to correspond to the solution of the original PDE
but with a different discretisation, which we, on the other hand, keep fixed.

Throughout the paper we illustrate our observations on a simple one-dimensional model
problem introduced in Section2 and consider solving the resulting algebraic system by the
conjugate gradient method (CG) [11] which is known to minimise theA-norm (the discrete
representation of the energy norm) of the error over certainKrylov subspace. It appears that
the energy backward error introduced in Section3 is closely related to the relativeA-norm of
the error, that is, the forward error. According to this fact, we look in Section4 for an approx-
imation in the same Krylov subspace which actually minimises the energy backward error
and show that it is just a scalar multiple of the CG approximation and there is an interesting
“symmetry” with the CG approximations showing that they arein a sense equivalent. We do
not consider the effects of rounding errors throughout Section 4 although we are aware of the
limits of the presented results in practice.

2. Galerkin FEM and model problem. We recall in this section the abstract weak
formulation of a linear partial differential equation and its discretisation using the Galerkin
finite element method. For more details, see, e.g., [6, 7]. Although we use a simple one-
dimensional Poisson equation as an illustrative model problem, our ideas can be kept in this
very general setting.

We consider an abstract variational problem on a real Hilbert spaceV : find u ∈ V such
that

a(u, v) = 〈f, v〉 ∀v ∈ V , (2.1)

where we assume thata is a continuous, symmetric, and elliptic bilinear form onV , f ∈ V ′,
V ′ denotes the space of continuous linear functionals onV , and〈·, ·〉 is the duality pairing
betweenV andV ′. The bilinear forma(·, ·) defines an inner product onV and its associated
norm is‖·‖a ≡ [a(·, ·)]1/2 (called usually the energy norm). Due to Lax-Milgram lemma [16]
(see also, e.g., [7, Theorem 1.1.3]) the problem (2.1) is uniquely solvable.
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Let Vh be a subspace ofV of the finite dimensionN . The Galerkin method for approxi-
mating the solutionu of (2.1) reads: finduh ∈ Vh such that

a(uh, vh) = 〈f, vh〉 ∀vh ∈ Vh. (2.2)

It is well known that the discrete problem (2.2) has a unique solution. The discretisation error
u − uh is orthogonal toVh with respect to the inner producta(·, ·) and, equivalently, the
discrete solutionuh minimises the energy norm ofu− uh overVh, that is,

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a.

In order to transform the discrete problem (2.2) to a system of linear algebraic equations,
we choose a basisΦ ≡ [φ1, . . . , φN ] of Vh, so that we can express the solutionuh in terms
of the basisΦ asuh = Φu for some vectoru ∈ R

N representing the coordinates ofuh in the
basisΦ. Then (2.2) holds if and only ifa(uh, φi) = 〈f, φi〉 for i = 1, . . . , N , which leads to
a system of algebraic equations (1.1) with

A = (Aij), Aij = a(φj , φi), i, j = 1, . . . , N, (2.3a)

f = (fi), fi = 〈f, φi〉. (2.3b)

As an illustrative example used in further sections, we consider a simple one-dimensional
Poisson problem

− u′′(x) = f(x), x ∈ Ω ≡ (0, 1), u(0) = u(1) = 0, (2.4)

wheref is a given continuous function on[0, 1]. The weak formulation of (2.4) is given
by (2.1) with

V ≡ H1
0 (Ω), a(u, v) ≡

∫

Ω

u′(x)v′(x)dx, 〈f, v〉 ≡
∫

Ω

f(x)v(x)dx,

whereH1
0 (Ω) = {v ∈ L2(Ω) : v′ ∈ L2(Ω), v(0) = v(1) = 0} is the Sobolev space

of square integrable functions on the intervalΩ which have square integrable (weak) first
derivatives and vanish at the end points of the interval (in the sense of traces). We use here
f(x) = 2α[1 − 2α(x − 1/2)2] exp[−α(x − 1/2)2] for which the solution of (2.4) is given
by u(x) = exp[−α(x− 1/2)2]− exp(−α/4) with α = 5. For the discretisation of (2.4), we
partitionΩ to N + 1 intervals of the constant lengthh = 1/(N + 1) and identifyVh with
the space of continuous functions linear on each interval[ih, (i + 1)h] (i = 0, . . . , N ) and
choose the standard “hat-shaped” basisΦ = [φ1, . . . , φN ] of piecewise linear functions such
thatφi(jh) = 1 if i = j andφi(jh) = 0 if i 6= j. The matrixA and the right-hand side
vectorf are respectively given by

A = h−1















2 −1
−1 2 −1

. . .
. . .

. . .
−1 2 −1

−1 2















∈ R
N×N ,

f = (fi), fi =

∫ 1

0

f(x)φi(x)dx, i = 1, . . . , N.

(2.5)

We setN = 20 but the actual dimension is not important for the illustrative purpose.
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3. Energy backward error and its interpretation in Galerkin FEM. Let û ∈ R
N be

an approximation to the solutionu of (1.1). In the backward error analysis, the vectorû is
interpreted as the solution of a problem (1.1), where the system dataA andf are perturbed.
We restrict ourselves here to the extreme cases where we consider perturbations only in the
right-hand side or the system matrix.

In this section, we discuss how such perturbations in the linear algebraic system may be
interpreted in the problem it represents, that is, in the discrete problem (2.2). The represen-
tation of the residual vector is quite straightforward and well known (see, e.g., [1, 5]) but we
include this case for the sake of completeness. We are however mainly interested in inter-
preting the perturbations in the matrixA itself where some interesting questions may arise,
e.g., whether the symmetry and positive definiteness of the perturbed matrix is preserved and
whether the perturbed problem still represents a discrete variational problem.

In order to measure properly the perturbation norms in the algebraic environment, we
discuss first the choice of the vector norms relevant to the original variational problem, more
precisely its discretisation (2.2), where the energy norm induced by the bilinear forma(·, ·)
is considered. Letvh, wh ∈ Vh and letv,w ∈ R

N be respectively the coordinates ofvh and
wh in the basisΦ so thatvh = Φv andwh = Φw. From (2.3a) we have

a(vh, wh) = a(Φv,Φw) = wT Av, ‖vh‖a = ‖v‖A ≡
√

vT Av. (3.1)

The energy norm ofvh is hence equal to theA-norm of the vector of their coordinates
with respect to the basisΦ. Let gh ∈ V ′

h be such that〈gh, φi〉 = gi, i = 1, . . . , N ,
g = [g1, . . . , gN ]T , that is, the vectorg ∈ R

N represents the discrete functionalgh with
respect to the basisΦ. For the dual norm ofgh, we have

‖gh‖a,⋆ ≡ max
vh∈Vh\{0}

〈gh, vh〉
‖vh‖a

= max
v∈RN\{0}

gTv

‖v‖A

= ‖g‖A−1 , (3.2)

that is, the dual norm ofgh is equal to theA−1-norm of the vector of its coordinates with
respect toΦ. We can thus consider the matrixA as the mapping fromRN to R

N equipped,
respectively, with theA-norm andA−1-norm:

A : (RN , ‖ · ‖A) → (RN , ‖ · ‖A−1). (3.3)

The accuracy of the given approximationû of the solution of (1.1) is characterised by
the residual vector̂r = [r̂1, . . . , r̂N ]T ≡ f − Aû. By definition, the vector̂u satisfies the
perturbed algebraic system

Aû = f − r̂. (3.4)

Let ûh = Φû ∈ Vh be the approximation to the solutionuh of the discrete problem (2.2)
obtained from the inexact solution̂u of the system (1.1) and let r̂h ∈ V ′

h be defined by
〈r̂h, φi〉 = r̂i, i = 1, . . . , N . It is straightforward to verify that the system (3.4) is the
algebraic representation of the perturbed discrete problem2

a(ûh, vh) = 〈f, vh〉 − 〈r̂h, vh〉 ∀vh ∈ Vh. (3.5)

From (3.2), the relationA(u − û) = r̂, and (3.1), we have for the dual norm of the residual
functionalr̂h the relation

‖r̂h‖a,⋆ = ‖r̂‖A−1 = ‖u− û‖A = ‖uh − ûh‖a.

2For the sake of simplicity, we restrict ourselves to the discrete spaceVh, although we could interpret (3.5) as
the discretisation of a perturbed (continuous) variational problem (2.1) with r̂h replaced by a proper norm-preserving
extension toV ′ due to Hahn-Banach theorem (see, e.g., [22]).
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Note that (3.5) still represents a discretisation of a PDE. In particular for our model Poisson
equation, the functional̂rh can be identified with a piecewise linear perturbation of theright-
hand sidef and the approximate discrete solutionûh can be considered as the (exact) solution
of the discretisation of the original problem with the right-hand sidef replaced byf − r̂h.

Now we make an attempt to find a suitable interpretation of theperturbation of the system
matrix A. Let the approximation̂u be nonzero and let the matrix̂E ∈ R

N×N be such that
Êû = r̂ so that the vector̂u satisfies the perturbed system

(A + Ê)û = f . (3.6)

Note that such an̂E is not unique, we will consider finding certain optimal perturbation later.
According to (3.3), we consistently measure the size of the perturbationÊ by the norm

‖Ê‖A,A−1 ≡ max
v∈RN\{0}

‖Êv‖A−1

‖v‖A

= ‖A−1/2ÊA−1/2‖2, (3.7)

where‖ · ‖2 denotes the spectral matrix norm andA1/2 the unique SPD square root of the
matrixA. We will refer to the norm defined by (3.7) as theenergy normof the matrixÊ.

We can consider an approach similar to what is called the functional backward error
in [5]. The matrixÊ = (Êij) can be identified with the bilinear form̂eh onVh defined by
êh(φj , φi) = Êij , i, j = 1, . . . , N . It is then straightforward to show that3

a(ûh, vh) + êh(ûh, vh) = 〈f, vh〉 ∀vh ∈ Vh. (3.8)

That is, the discrete variational problem (3.8) is represented in the basisΦ by the perturbed
system (3.6). The norm of̂eh is given by the energy norm of̂E:

max
vh,wh∈Vh\{0}

êh(vh, wh)

‖vh‖a‖wh‖a
= max

v,w∈RN\{0}

wT Êv

‖v‖A‖w‖A

= ‖Ê‖A,A−1 .

Note that the matrixA + Ê does not need to be sparse nor symmetric (depending on the
structure of the perturbation matrix̂E), and in general it need not to be nonsingular. The form
êh therefore does not need to be symmetric neither.

It is not easy (if possible) to find a reasonable interpretation of the bilinear formêh,
e.g., to find out whether the perturbed variational problem (3.8) still represents a discretised
PDE. We thus look for a different interpretation of (3.6) which might preserve the character
of the original problem. In particular, we will see that the perturbed system (3.6) can be con-
sidered as certain perturbation of the basisΦ in which the approximate solution̂u provides
coordinates of the (exact) discrete solutionuh.

Let Φ̂ = [Φ̂1, . . . , Φ̂N ] be a basis ofVh obtained from the basisΦ by perturbing its
individual components by linear combinations of the original basisΦ. We can write

Φ̂ = Φ(I + D̂), that is, φ̂j = φj +

N
∑

k=1

D̂kjφk, j = 1, . . . , N, (3.9)

whereD̂ = (D̂ij) ∈ R
N×N is a matrix of perturbation coefficients andI denotes the identity

matrix. We assume thatI + D̂ is not singular so that̂Φ is indeed a basis ofVh. We look for
the discrete solutionuh given by the linear combination of the modified basisΦ̂. Looking for

3Again, we restrict ourselves to the discrete space and do notconsider the extension of̂eh to V .
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uh in the formuh = Φ̂û and requiring (2.2) to hold forvh = φi for i = 1, . . . , N leads to
the system

(A + Ê)û = f , Ê = AD̂, (3.10)

that is, to the perturbed system (3.6) with Ê = AD̂. Equivalently, given an approximation̂u
of the solution of the algebraic system (1.1) and the perturbation̂E such that̂u satisfies (3.6),
there is a basiŝΦ given byΦ̂ = Φ(I + D̂), whereD̂ = A−1Ê, such that the vector̂u
represents the coordinates of the (exact) discrete solution uh of (2.2) with respect to the
modified basisΦ̂. Note thatΦ̂ is a (linearly independent) basis ofVh if (and only if) the
matrixA + Ê (as well as the matrixI + D̂) is non-singular.

In order to give the interpretation to the energy norm ofÊ = AD̂, we define a relative
distance between the two basesΦ̂ andΦ by

d(Φ̂,Φ) = max
v∈RN\{0}

‖Φ̂v − Φv‖a

‖Φv‖a
. (3.11)

From (3.9) we have

d(Φ̂,Φ) = max
v∈RN\{0}

‖Φ̂v − Φv‖a

‖Φv‖a
= max

v∈RN\{0}

‖ΦD̂v‖a

‖Φv‖a

= max
v∈RN\{0}

‖D̂v‖A

‖v‖A

= max
v∈RN\{0}

‖A−1Êv‖A

‖v‖A

= max
v∈RN\{0}

‖Êv‖A−1

‖v‖A

= ‖Ê‖A,A−1 ,

that is, the relative distance between the basesΦ̂ andΦ related by (3.9) is equal to the energy
norm of the matrix̂E = AD̂. We summarise the discussion above in the following theorem.

THEOREM 3.1. Let û be the nonzero approximate solution of the system(1.1) represent-
ing algebraically the discretised variational problem(2.2) with respect to the basisΦ of Vh.
Let Ê be such that̂u satisfies the perturbed system(3.6) and letA + Ê be nonsingular. Then
the vectorû contains the coordinates of the solutionuh of (2.2) with respect to the basis
Φ̂ given by(3.9) with D̂ = A−1Ê. In addition, the perturbed system(3.6) is the algebraic
representation of the discrete variational problem(2.2) with respect to the baseŝΦ andΦ.
The relative distance(3.11) between̂Φ andΦ is given by the energy norm ofÊ.

For a given nonzerôu, there are “many” perturbationŝE so thatÊû = r̂. Equivalently,
there are many baseŝΦ which can be (linearly) combined touh using the vector of coordi-
natesû. We look hence for the perturbation̂E optimal with respect to the energy norm. For
this purpose we define theenergy backward errorby

ξ(û) ≡ min
{

‖Ê‖A,A−1 : Ê ∈ R
N×N , (A + Ê)û = f

}

. (3.12)

THEOREM 3.2. Let u 6= 0 be an approximation of the solution of(1.1) and let r̂ =
f − Aû be the associated residual vector. Then

ξ(û) =
‖r̂‖A−1

‖û‖A

=
‖u− û‖A

‖û‖A

. (3.13)

The matrixÊ∗(û), for which the minimum in(3.12) is attained, is given by

Ê∗(û) ≡ r̂ûT A

‖û‖2
A

. (3.14)
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The matrixA + Ê∗(û) is nonsingular ifξ(û) < 1.
Proof. The proof essentially follows the proof of [12, Theorem 7.1]. For anŷE satisfy-

ing (3.6), it follows from Êû = r̂ thatA−1/2ÊA−1/2A1/2û = A−1/2r̂. Hence by taking
the 2-norm on both sides and using (3.7) we get

ξ(û) =
‖r̂‖A−1

‖û‖A

≤ ‖Ê‖A,A−1 ,

that is, (3.12) is a lower bound for the energy norm ofÊ. It can be verified that the matrix
Ê∗(û) satisfies (3.6) and its energy norm is equal toξ(û). It is well known (see, e.g., [24,
Corollary 2.7]) thatA + Ê∗(û) is nonsingular if

‖Ê∗(û)‖A,A−1

‖A‖A,A−1

<
1

κA,A−1(A)
,

where for a nonsingular matrixX,

κA,A−1(X) = ‖X‖A,A−1‖X−1‖A−1,A.

Since‖A‖A,A−1 = ‖A−1‖A−1,A = 1, we have thatA + Ê∗(û) is nonsingular ifξ(û) =

‖Ê∗(û)‖A,A−1 < 1.
The optimal perturbation̂E∗(û) defined in Theorem3.2 is related to certain optimal

perturbation of the basisΦ. In fact, combining Theorems3.1 and3.2, we get the following
result.

THEOREM 3.3. Let û be the nonzero approximate solution of the system(1.1) represent-
ing algebraically the discretised variational problem(2.2) with respect to the basisΦ of Vh

and letξ(û) < 1. Thenû is the solution of the perturbed problem

[A + Ê∗(û)]û = f (3.15)

with the perturbation matrix̂E∗(û) given by(3.14). LetD̂∗(û) ≡ A−1Ê∗(û) andΦ̂∗(û) ≡
Φ[I + D̂∗(û)]. ThenΦ̂∗(û) is a basis ofVh which is closest to the basisΦ in terms of
the relative distance(3.11) in which the vector̂u represents the coordinates of the solution
uh of (2.2). In addition, the perturbed system(3.15) is the algebraic representation of the
discrete variational equation(2.2) with respect to the baseŝΦ∗(û) and Φ. The relative
distance between the bases is given by the energy backward error (3.12),

d[Φ̂∗(û),Φ] = ξ(û).

Remark. Backward errors provide bounds on forward errors (relativenorms of the error)
via the condition number of the matrixA (with respect to consistently chosen norms). Ifû

satisfies the perturbed system (3.6) andκ(A) = ‖A‖‖A−1‖ is such thatκ(A)‖Ê‖/‖A‖ < 1,
the forward error can be bounded by

‖u− û‖
‖u‖ ≤ κ(A)‖Ê‖/‖A‖

1 − κ(A)‖Ê‖/‖A‖
, (3.16)

see, e.g., [24, Theorem 2.11]. With our choice of norms, both forward and backward errors
do coincide since the condition number and the norm of the matrix A are equal to one. The
bound (3.16) then (withÊ = Ê∗(û)) becomes

‖u− û‖A

‖u‖A

≤ ξ(û)

1 − ξ(û)
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provided thatξ(û) < 1. In addition, from‖u‖A ≤ ‖û‖A[1 + ξ(û)], we have

‖u− û‖A

‖u‖A

≥ ξ(û)

1 + ξ(û)

and hence the forward and backward error in theA-norm are equivalent in the sense that

ξ(û)

1 + ξ(û)
≤ ‖u− û‖A

‖u‖A

≤ ξ(û)

1 − ξ(û)
if ξ(û) < 1.

Note that this is simply due to the fact that the conditioningof A is one with respect to the
chosen matrix norms.

The perturbation matrix̂E∗(û) is determined by the errors in solving the system (1.1).
Minimising the energy norm of̂E generally leads to dense (and non-symmetric) perturbation
matrix Ê∗(û) (although structured, in our case of the rank one). The corresponding transfor-
mation matrixD̂∗(û) = A−1Ê∗(û) is dense as well which means that the perturbed matrix
Φ̂∗(û) has global supports even though the supports ofΦ can be local. This would be the
case even if we considered the component-wise perturbations Ê [18] since the inverse ofA
(and hence the transformation matrix̂D) is generally dense. This is however not important
for the interpretation of the perturbation coefficients itself.

We illustrate our observations on the model problem described in Section2 which we
solve approximately using the conjugate gradient (CG) method [11]. It is well known that,
given an initial guessu0, CG generates the approximationsuCG

n ∈ u0 + Kn, whereKn is a
Krylov subspace of the dimensionn, such that

‖u− uCG
n ‖A = min

û∈u0+Kn

‖u− û‖A. (3.17)

In Figure3.1, we show the exact solution of the discrete problem, the relative A-norms

ǫCG
n ≡ ‖u− uCG

n ‖A

‖u‖A

(3.18)

of the errors of the CG approximationsuCG
n and their associated energy backward errors

ξ(uCG
n ) (we setu0 = 0 here). The backward errors of the CG approximations, although

monotonically decreasing as we will see in the next section,need not to be necessarily smaller
than one as it is the case for the relative error normsǫCG

n . For our model problem, we have
(note thatξ is not defined for the initial guessu0 = 0)

ξ(uCG
1 ) = 1.2718, ξ(uCG

3 ) = 1.0572, ξ(uCG
4 ) = 0.8658.

In Figure3.2 we show (together with the exact solutionuh of the discrete problem) the ap-
proximationsuCG

h,n = ΦuCG
n for n = 1 andn = 5. The entries of the perturbation and

transformation matriceŝE∗(u
CG
n ) andD̂∗(u

CG
n ), respectively, corresponding to these ap-

proximate solutions are visualised in Figures3.3and3.4.

4. Conjugate gradient method and energy backward error.The conjugate gradient
method constructs, starting from the initial guessu0, the sequence of approximationsuCG

n

from the (shifted) Krylov subspaceu0 + Kn. Similarly to the Galerkin method, the approxi-
mationsuCG

n minimise the discrete energy norm (A-norm) of the erroru−uCG
n in the sense

of (3.17). Equivalently, the erroreCG
n ≡ u− uCG

n is A-orthogonal toKn.
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FIG. 3.1.The discrete solutionuh of the model problem on the left plot and the convergence of CGin terms of
the relativeA-norm of the errorǫCG

n = ‖u − u
CG
n ‖A/‖u‖A and of the energy backward errorξ(uCG

n ) on the
right plot.
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FIG. 3.2. The discrete solutionuh and the approximate solutionuCG

h,n
= Φu

CG
n for n = 1 (left plot) and

n = 5 (right plot).

Remark. In the Galerkin finite element method, there is even more about the optimality of
CG than in the iterative method itself. IfuCG

h,n = ΦuCG
n is the associated approximation of

the solution of the discrete problem (2.2), we have

‖u− uCG
h,n‖a = min

vh∈Φ(u0+Kn)
‖u− vh‖a,

whereΦ(u0 +Kn) = {vh ∈ Vh : vh = Φv, u0 −v ∈ Kn}. It means that CG provides op-
timal approximations to the solutionu of the (continuous) problem (2.1) from the subspaces
of Vh which consist of all linear combinations of the basisΦ with the coefficients taken from
the associated Krylov subspaces. This follows from the identity

‖u− vh‖2
a = ‖u− uh‖2

a + ‖uh − vh‖2
a = ‖u− uh‖2

a + ‖u− v‖2
A,

which holds for anyvh = Φv ∈ Vh, and is a consequence of thea-orthogonality ofu − uh

to Vh; see also [9, Section 2.1] and [20].

In the following we assume thatu0 = 0. We use a simple relation between theA-norms
of the CG erroreCG

n , the solutionu, and the CG approximationuCG
n of the form

‖eCG
n ‖2

A
= ‖u‖2

A
− ‖uCG

n ‖2
A
, (4.1)
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FIG. 3.3. Surface plots of the perturbation matrix̂E∗(uCG
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FIG. 3.4. Surface plots of the perturbation matrix̂E∗(uCG
5

) (left plot) and the transformation matrix

D̂∗(uCG
5

) (right plot).

which follows from the fact thatuCG
n ∈ Kn and theA-orthogonality ofu− uCG

n toKn:

u = uCG
n + (u − uCG

n ) ⇒ ‖u‖2
A

= ‖uCG
n ‖2

A
+ ‖u− uCG

n ‖2
A
.

Using using (4.1), the energy backward error of the CG approximationuCG
n can be expressed

as

ξ(uCG
n ) =

‖eCG
n ‖A

‖uCG
n ‖A

=
ǫCG
n

√

1 − (ǫCG
n )2

, (4.2)

whereǫCG
n is the relativeA-norm of the erroreCG

n , see (3.18). The energy backward error is
well defined for every CG iteration except for the zero initial guess. It is due to the fact that
the energy norm of the error in CG decreases strictly monotonically at each step. SinceǫCG

n

is decreasing, the energy backward error (4.2) decreases as well in CG. Bothξ(uCG
n ) and

ǫCG
n are close (as observed in Figure3.1 for our model problem) provided thatǫCG

n is small
enough due to

ǫCG
n

ξ(uCG
n )

= 1 − ǫCG
n .

Note also thatξ(uCG
n ) < 1 if ǫCG

n < 1/
√

2.
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One could ask whether it is possible (instead of theA-norm of the error) to minimise the
energy backward errorξ over the same Krylov subspaceKn. Letun = Vnyn be an arbitrary
vector fromKn and leten ≡ u − un be the associated error vector. FromuCG

n − un ∈ Kn,
theA-orthogonality ofeCG

n toKn, and the Pythagorean theorem, we get that

‖en‖2
A = ‖eCG

n + (uCG
n − un)‖2

A = ‖eCG
n ‖2

A + ‖uCG
n − un‖2

A. (4.3)

From (3.13) and (4.3), we have

ξ2(un) =
‖eCG

n ‖2
A

+ ‖uCG
n − un‖2

A

‖un‖2
A

. (4.4)

LEMMA 4.1. Letv ∈ R
n be a given nonzero vector,α ∈ R, and

ϕ(w) =
α2 + ‖v − w‖2

2

‖w‖2
2

.

Thenw∗ = γv with γ = 1+(α/‖v‖2)
2 is the unique minimiser ofϕ over all nonzerow and

ϕ(w∗) = α2/(α2 + ‖v‖2
2).

Proof. Let w = ηv + v⊥ whereη ∈ R andv⊥ be an arbitrary vector orthogonal tov,
that is,vT

⊥v = 0. From Pythagorean theorem, we have

ϕ(ηv + v⊥) =
α2 + (1 − η)2‖v‖2

2 + ‖v⊥‖2
2

η2‖v‖2
2 + ‖v⊥‖2

2

. (4.5)

Note thatϕ does not depend on the vectorv⊥ but on its norm. Dividing both the numerator
and denominator in (4.5) by (nonzero)‖v‖2, we obtain

ϕ(ηv + v⊥) =
α̃2 + (1 − η)2 + ζ2

η2 + ζ2
≡ ψ(η, ζ),

whereα̃ ≡ α/‖v‖2 andζ ≡ ‖v⊥‖2/‖v‖2. Hence the statement is proved by showing thatψ
has a global minimum at(η, ζ) = (γ, 0) = (1 + α̃2, 0) and thatψ(1 + α̃2, 0) = α̃2/(1 + α̃2)
which can be shown by standard calculus. The functionψ is smooth everywhere except for
(η, ζ) = 0. We have

∇ψ(η, ζ) = − 2

(η2 + ζ2)2

[

η(α̃2 + 1) − η2 + ζ2

ζ(1 + α̃2 − 2η)

]

and thus we have∇ψ(η, ζ) = 0 if (and only if) η = 1 + α̃2 andζ = 0. The minimum can
be verified by checking the positive definiteness of the matrix of second derivatives at the
stationary point(η, ζ) = (1 + α̃2, 0), which holds since

∇2ψ(1 + α̃2, 0) =
2

(α̃2 + 1)3

[

1 0
0 1

]

.

Substituting the stationary point toψ givesψ(1+α̃2, 0) = α̃2/(1+α̃2) = α2/(α2+‖v‖2
2) <

1. The minimum is also global sinceϕ(tw) → 1 ast→ ∞ for any fixedw.
THEOREM 4.2. LetuCG

n be the approximation of CG with the initial guessu0 = 0 at the
stepn > 1. Then the uniqueu∗

n minimising the energy backward errorξ over allvn ∈ Kn is
given by

u∗
n = γnuCG

n ,
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where

γn = 1 + ξ2(uCG
n ) =

1

1 − (ǫCG
n )2

.

The energy backward error ofu∗
n is equal to the relativeA-norm of the CG error,

ξ(u∗
n) =

‖u− uCG
n ‖A

‖u‖A

= ǫCG
n .

Proof. The relation (4.4) can be written as

ξ2(un) =
‖eCG

n ‖2
A

+ ‖A1/2(uCG
n − un)‖2

2

‖A1/2un‖2
2

.

If we setw ≡ A1/2un, v ≡ A1/2uCG
n , α ≡ ‖eCG

n ‖A we have from Lemma4.1 that the
minimum ofξ2(un) is attained byu∗

n = γnuCG
n , where

γn = 1 +
α2

‖v‖2
2

= 1 +
‖eCG

n ‖2
A

‖uCG
n ‖2

A

= 1 + ξ2(uCG
n )

and also from (4.1)

γn =
1

1 − ‖eCG
n ‖2

A
/‖u‖2

A

=
1

1 − (ǫCG
n )2

.

The minimum is given by

ξ(u∗
n) =

α
√

α2 + ‖v‖2
2

=
‖eCG

n ‖A
√

‖eCG
n ‖2

A
+ ‖uCG

n ‖2
A

=
‖eCG

n ‖A

‖u‖A

= ǫCG
n

using (4.1) again.
The approximationsu∗

n minimising the energy backward errorξ over the Krylov sub-
spaceKn are thus given by a simple scalar multiple of the CG approximationsuCG

n . It is
clear thatu∗

n ≈ uCG
n provided that the relative errorǫCG

n is small enough and the difference
between both approximations gets smaller with the decreasing A-norm of the CG approxi-
mations.

Remark. There is an interesting “symmetry” between the relativeA-norms of the errors and
energy backward errors of the approximationsuCG

n andu∗
n illustrated in Table4.1. The ex-

pression for the relative energy norm of the error ofu∗
n follows from (3.12) and Theorem4.2:

ξ(u∗
n) = ǫCG

n =
‖u− u∗

n‖A

‖u∗
n‖A

and hence together with (4.1)

‖e∗n‖A

‖u‖A

= ξ(u∗
n)

‖u∗
n‖A

‖u‖A

= γnξ(u
∗
n)

‖uCG
n ‖A

‖u‖A

=
ǫCG
n

√

1 − (ǫCG
n )2

1 − (ǫCG
n )2

=
ǫCG
n

√

1 − (ǫCG
n )2

.

In fact, we can also say that the forward error ofuCG
n is equal to the backward error ofu∗

n

and vice versa.
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uCG
n : minimises‖en‖A u∗

n: minimisesξ(un)

‖en‖A
‖u‖A

ǫCG
n ǫCG

n [1 − (ǫCG
n )2]−1/2

ξ(un) ǫCG
n [1 − (ǫCG

n )2]−1/2 ǫCG
n

TABLE 4.1
Symmetry betweenuCG

n andu
∗
n.
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FIG. 4.1. The discrete solutionuh and the approximate solutionsuCG

h,n
= ΦuCG

n and u∗
h,n

= Φu∗
n for

n = 1 (left plot) andn = 5 (right plot).

In Figure4.1we show, together with the discrete solutionuh of our model problem, the
approximationsuCG

h,n = ΦuCG
n obtained from the CG iterates at stepsn = 1 andn = 5

and the approximationsu∗h,n = Φu∗
n obtained from the CG approximations according to

Theorem4.2. In Figures4.2 and4.3 we also show the surface plots of the corresponding
perturbations and transformation matrices. It is interesting to observe that although the per-
turbation matriceŝE∗(u

CG
n ) andÊ∗(u

∗
n) (left plots of Figures3.3, 3.4, 4.2, and4.3) look

very similar, this is not the case for the transformation matricesD̂∗(u
CG
n ) andD̂∗(u

∗
n) (right

plots of the same figures).

5. Conclusions.Motivated by the use of backward errors in stopping criteriafor itera-
tive solvers, we made an attempt to find an “easy-to-touch” interpretation of the data pertur-
bations in linear algebraic systems arising from discretisations of elliptic partial differential
equations. In particular, we were interested in finding a possible meaning of the perturbations
of the system matrixA and related them to certain perturbations of the basis of theapprox-
imation space where the discrete solution of the underlyingvariational problem is sought.
Although we are aware of the limited usability of our resultsin practice while bearing in
mind recent results on dealing with discretisation and algebraic errors in numerical solution
of PDEs, we believe that they might be of certain interest andmotivate designers of stopping
criteria for iterative processes to justify their relevance to the problem to be solved.

In addition, we showed that minimising the backward error associated with theA-norm
over the Krylov subspace generated by the conjugate gradient method leads to approxima-
tions which are closely related to the approximations computed by CG. This is similar to
the ideas behind the methods called GMBACK and MINPERT in [14, 15] for general non-
symmetric problems. In contrast to the iterates computed bythese methods, we showed that
the optimal approximations minimising the backward error are just the scalar multiples of
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the CG approximations and they are closer to each other as soon as theA-norm of the CG
approximations decreases. Nevertheless, we do not claim that approximations constructed in
this way have any superiority with respect to CG which is optimal itself with respect to the
closely related measure.
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sentation of our results.
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