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Abstract. The backward error analysis is of the great importance inatteysis of numerical stability of
algorithms in finite precision arithmetic and backward esrare also often employed in stopping criteria of iterative
methods for solving systems of linear algebraic equati®hg.backward error measures how far we must perturb the
data of the linear system so that the computed approximatitues it exactly. We assume that the linear systems are
algebraic representations of partial differential equragidiscretised using the Galerkin finite element methothin
context, we try to find reasonable interpretations of théupkations of the linear systems which are consistent with
the problem they represent and consider the backward pattoms optimal with respect to the energy norm naturally
present in the underlying variational formulation. We afs@stigate its behaviour in the conjugate gradient method
by constructing approximations in the underlying Krylovspaces which actually minimise such a backward error.

Key words. symmetric positive definite systems, elliptic problemsitdirelement method, conjugate gradient
method, backward error
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1. Introduction. The backward error analysis, pioneered by von Neumann atd Go
stein 26], Turing [25], Givens [L(], and further developed and popularised by Wilkinson
(see, e.g.,38, 29)), is a widely used technique employed in the study of effedtrounding
errors in numerical algorithms. When solving a given probfer some data by means of
certain numerical algorithm, we would be normally satisfieith an approximate solution
with a small relative error (the forward error) close to thegision of our arithmetic. This
is however not always possible so we may ask instead for wdtatwle actually solved our
problem. Thus we interpret the computed solution as a swiudf the perturbed problem
and identify the norm of the data perturbation with the baamidrerror associated with the
computed approximate solution (there might be many sudiftions so we are interested
in the smallest one).

In practical problems, the data are often affected by emlassto measurements, trun-
cation, and round-off resulting in data uncertainties. \&fkld therefore be satisfied with a
solution which solves the problem for some data lying withiarange of these uncertainties.
The backward error thus provides natural means for quamgifyre accuracy of computed so-
lutions with respect to the accuracy of the problem data.difiteon, the bounds on forward
errors can often be obtained from backward errors using éneibation theory associated
with the problem to be solved which is independent on therélyn used to obtain the solu-
tion. For more details, se&?, Chapter 1].

The backward error analysis provides an elegant way howattystumerical stability of
algorithms, that is, their sensitivity with respect to rding errors. If an algorithm is guaran-
teed to provide a solution with a backward error close to thehine precision of the given
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finite precision arithmetic for any data (the backward stagorithm), one could be satisfied
with such an algorithm and solution it provides. Indeed thabfem data cannot be stored
exactly in finite precision arithmetic anyway independgnoth the means how they were ob-
tained. It is therefore perfectly reasonable to considerttaickward error as a meaningful
accuracy measure for quantities obtained from algorithtnskwvould (in the absence of the
rounding errors) deliver the exact solution of the giveriglem.

The backward error concept is sometimes used to constrogtay criteria for compu-
tations which are inherently inexact even in exact aritienéh particular, we are interested
in the use of backward error concepts in stopping criteniatéoative solvers for linear alge-
braic systems

Au="f, A e RVXV, (1.1)

We assumeA to be nonsingular. For a given approximatiarof the solution of {.1) the
backward error represents a measure by wiichndf have to be perturbed so thasolves
the problem(A + E)u = f + g. The norm-wise relative backward error

min{e: (A+E)a=~f+g, Bl <cl|Al, |&] <e[f]}
was shown by Rigal and GacheXl] to be given by

If — Aql

—_— (1.2)
[l + (]

where||- || is any vector norm and its associated matrix norm, althonginactice one usually
chooses the standard Euclidean one. There are reasonsevbhgdkward errorl(.2) should
be preferred over the standard relative residual norm agufte for stopping the iterative
solvers when more relevant and sophisticated measuresbawailable; see, e.g.3], [17],
[17, Section 5.8]. This might be certainly supported by the faat some iterative methods,
e.g., the methods based on the generalised minimum resigthbd P3, 27] are backward
stable B, 19, 2, 13] and thus may deliver solutions with an accuracy close tontlaehine
precision if required.

Iterative methods are in practice chiefly applied for sajvimear systemsi1(1) aris-
ing from discretised partial differential equations (PD&)., by the finite element method
(FEM). Here the main source of the “uncertainty” is due totthi@cation errors with respect
to the continuous differential operator which however doesneed to be reflected simply
by the uncertainty of the coefficients of the resulting linalgebraic system. The basic FEM
discretisation of the one-dimensional Poisson equatiosidered in Sectiof represents this
fact; the coefficient matrix can be stored exactly even iridiprecision arithmetic and in a
matrix as such, there is not much left to be considered uaicerThe stopping criteria for
iterative solvers based on norm-wise backward error (ifEtheidean norm) might be at least
guestionable in this context. More sophisticated critbakancing the inaccuracy of the so-
lution obtained by the iterative solver and the inaccuragy @ truncation (the discretisation
error) should be used; see, e.g],&nd the references therein.

We believe that when a certain stopping criterion based tagizrturbations such as the
backward error is considered, the effects of these peftiorisin the original problem to be
solved should be considered. Here the syster (s the algebraic representation of a FEM
discretisation of an elliptic PDE and solved inaccurately,, by an iterative method. When a
stopping criterion based on backward error is used and teeamputed approximation is
interpreted as the solution of a perturbed linear systenmas ask how such perturbations
can be interpreted in the underlying discretisation.
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In Section?2 we consider a general weak formulation of a self-adjoifp#d PDE which
can be characterised by a variational equation involvingrdicuous, symmetric, and elliptic
bilinear form defined on a real Hilbert space and a generatetisation by the Galerkin finite
element method. We also introduce a simple one-dimensinadel problem which we use
throughout the paper to illustrate our results. In Sectiare assume to have an approximate
solution of the algebraic representatioh.{) of the discretised variational problem in a
fixed basis of the discrete space, which we associate withnbexd problems

Au=f+g and (A+E)a="T, (1.3)

and look for possible interpretations of the data pertiobatg andE in the discrete varia-
tional equation. Although the role éfin (1.3) is well known (see, e.g.1]), the interpretation
of E is in our opinion worth some clarification. A similar idea afrpurbing the operator was
considered before by Arioli et al5] as so called functional backward error. It is however
not obvious whether such an operator perturbation still beidentified with a (discretised)
PDE or how it “physically” affects the original PDE. We try Bection3 to interpretE as
certain perturbation of the FEM basis for which the secorstiesy in (L.3) can be associated
with the algebraic form of the original discretised PDE. dilsion, we look for thefs optimal
with respect to the norm relevant in our setting, that is,ehergy norm, and find a simple
characterisation of such a definition of the backward erali¢d the energy backward error
here) in the functional setting. Our approach is relatechowork P0] where the inexact
solution of the discrete problem is shown to correspond ¢éosthiution of the original PDE
but with a different discretisation, which we, on the othand, keep fixed.

Throughout the paper we illustrate our observations on alsimne-dimensional model
problem introduced in Sectiahand consider solving the resulting algebraic system by the
conjugate gradient method (CG)1] which is known to minimise theé\-norm (the discrete
representation of the energy norm) of the error over ceKaytov subspace. It appears that
the energy backward error introduced in Secfias closely related to the relativ&-norm of
the error, that is, the forward error. According to this faet look in Sectiont for an approx-
imation in the same Krylov subspace which actually minimitee energy backward error
and show that it is just a scalar multiple of the CG approxiomaand there is an interesting
“symmetry” with the CG approximations showing that they iara sense equivalent. We do
not consider the effects of rounding errors throughoutiSeétalthough we are aware of the
limits of the presented results in practice.

2. Galerkin FEM and model problem. We recall in this section the abstract weak
formulation of a linear partial differential equation ans discretisation using the Galerkin
finite element method. For more details, see, efy.7]. Although we use a simple one-
dimensional Poisson equation as an illustrative modellpropour ideas can be kept in this
very general setting.

We consider an abstract variational problem on a real HilgaiceV: find u € V such
that

a(u,v) = (f,v) Yv ey, (2.1)

where we assume thatis a continuous, symmetric, and elliptic bilinear form¥nf € V',
V' denotes the space of continuous linear functional® pand(-, -) is the duality pairing
between) and)’. The bilinear formu(-, -) defines an inner product dnand its associated
normis||-||l. = [a(-,-)]*/? (called usually the energy norm). Due to Lax-Milgram lemm@ [
(see also, e.g.7| Theorem 1.1.3]) the problem () is uniquely solvable.
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Let V), be a subspace of of the finite dimensionV. The Galerkin method for approxi-
mating the solution: of (2.1) reads: findu;, € V), such that

a(un,vp) = (f,vn) Vop € Vh. (2.2)

Itis well known that the discrete probler.) has a unique solution. The discretisation error
u — wy, is orthogonal toV;, with respect to the inner produat-, -) and, equivalently, the
discrete solution;, minimises the energy norm af — u; overVy, thatis,

lu — uplle = min ||u— vp|la.
v EVh

In order to transform the discrete probletd) to a system of linear algebraic equations,
we choose a basi® = [¢1, ..., ¢n] Of V3, so that we can express the solutignin terms
of the basigp asu;, = ®u for some vecton € RY representing the coordinateswgf in the
basis®. Then @.2) holds if and only ifa(un, ¢;) = (f, ¢;) fori =1,..., N, which leads to
a system of algebraic equatioris1) with

A= (Aij)7 Aij :a((bj,(bi), Z,j: 1,...,N, (23&)
f=(fi), fi={f, i) (2.3b)

As an illustrative example used in further sections, we ictars simple one-dimensional
Poisson problem

—u"(z) = f(z), reQ=(0,1), u(0) = u(1) =0, (2.4)

where f is a given continuous function 0, 1]. The weak formulation of4.4) is given
by (2.1 with

V= HHQ), a(u,v) = /Q o' ()0 (z)dx, (f,v) = A f(z)v(z)de,

where H} () = {v € L?(Q) : o € L*(Q), v(0) = v(1) = 0} is the Sobolev space
of square integrable functions on the interéawhich have square integrable (weak) first
derivatives and vanish at the end points of the intervali{ingense of traces). We use here
f(x) = 2a[l — 2a(x — 1/2)?] exp[—a(x — 1/2)?] for which the solution ofZ.4) is given

by u(z) = exp[—a(r — 1/2)?] — exp(—a/4) with a = 5. For the discretisation oP(4), we
partition() to N + 1 intervals of the constant length= 1/(N + 1) and identify}}, with
the space of continuous functions linear on each intdial: + 1)h] (: = 0,..., N) and
choose the standard “hat-shaped” baBis- [¢1, . . ., ¢n] Of piecewise linear functions such
thato;(jh) = 1if i« = j and;(jh) = 0if ¢ # j. The matrixA and the right-hand side
vectorf are respectively given by

19 (2.5)

1
f=(f), fi:/of(x)gbi(a?)dx, i=1,...,N.

We setNV = 20 but the actual dimension is not important for the illustragpurpose.
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3. Energy backward error and its interpretation in Galerkin FEM. Leta € RY be
an approximation to the solutiom of (1.1). In the backward error analysis, the vectois
interpreted as the solution of a probleini), where the system dath andf are perturbed.
We restrict ourselves here to the extreme cases where waeopgrturbations only in the
right-hand side or the system matrix.

In this section, we discuss how such perturbations in thealimlgebraic system may be
interpreted in the problem it represents, that is, in therdie problemZ.2). The represen-
tation of the residual vector is quite straightforward aradl\nown (see, e.g. /1| 5]) but we
include this case for the sake of completeness. We are howmaialy interested in inter-
preting the perturbations in the matik itself where some interesting questions may arise,
e.g., whether the symmetry and positive definiteness ofénteifbed matrix is preserved and
whether the perturbed problem still represents a disciiational problem.

In order to measure properly the perturbation norms in tgetabic environment, we
discuss first the choice of the vector norms relevant to thggral variational problem, more
precisely its discretisatior?(2), where the energy norm induced by the bilinear farfn -)
is considered. Lety,, w;, € V), and letv, w € R be respectively the coordinates:gf and
wy, in the basigp so thatv;, = &v andw;, = &w. From .39 we have

a(vp,wp) = a(Pv, Pw) = wlAv, lvrlle = [v]|a = VVT Av. (3.1)

The energy norm ofy, is hence equal to thd-norm of the vector of their coordinates
with respect to the basi®. Letg, € V; be such thatg,,¢;) = g;, 4 = 1,...,N,

g = [g1,...,9n]7, that is, the vectog € RY represents the discrete functiongl with
respect to the bas#®. For the dual norm of;,, we have

(gn,vn) glv
= max —_— = -1, 3.2
vneVi\{0} [[vnlla  verRN\{0} [[V]a lglla- (3:2)

lgnllax =
that is, the dual norm ofy, is equal to theA—!-norm of the vector of its coordinates with
respect tob. We can thus consider the matik as the mapping frol®"Y to RY equipped,
respectively, with theA-norm andA —!-norm:

A RY ) la) = ®Y ] [la-r)- (3.3)

The accuracy of the given approximati@rof the solution of {.1) is characterised by
the residual vectot = [f,...,7n]T = f — Ad. By definition, the vecton satisfies the
perturbed algebraic system

At=f— i (3.4)

Leta, = ®u € V), be the approximation to the solutian, of the discrete problen2(2)

obtained from the inexact solutioi of the system1.1) and let?, € Vj; be defined by
(Pr, i) = 74, ¢ = 1,...,N. Itis straightforward to verify that the systeri.{) is the
algebraic representation of the perturbed discrete pnwble

a(tin, vn) = (f,vn) = (Fh,vn)  Yon € Vh. (3.5)
From 3.2), the relationA (u — 0) = #, and @.1), we have for the dual norm of the residual
functional?;, the relation

1Pnllax = IF]a-r = lu—tlla = [[un — @nla-

2For the sake of simplicity, we restrict ourselves to the mise spacd’y,, although we could interpre8(5) as
the discretisation of a perturbed (continuous) variatipnablem @.1) with #;, replaced by a proper norm-preserving
extension toV’ due to Hahn-Banach theorem (see, e22))[
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Note that 8.5 still represents a discretisation of a PDE. In particutardur model Poisson
equation, the functiona}, can be identified with a piecewise linear perturbation ofrtykt-
hand sidef and the approximate discrete soluti@ncan be considered as the (exact) solution
of the discretisation of the original problem with the rigtend sidef replaced byf — 7.

Now we make an attemptto find a suitable interpretation optiréurbation of the system
matrix A. Let the approximatiorii be nonzero and let the matr& € RY*Y be such that
Ea = # so that the vectoa satisfies the perturbed system

(A+E)a=f. (3.6)

Note that such akt is not unique, we will consider finding certain optimal peption later.
According to @.3), we consistently measure the size of the perturbdfidary the norm

. JEVIA |y 1j2p -
||E||A_’A,1 = ve%lj\%\%{O} W =|lA 1PEA 1/2H27 (3.7)

where| - || denotes the spectral matrix norm aAd/? the unique SPD square root of the
matrix A.. We will refer to the norm defined bya(7) as theenergy nornof the matrixE.

We can consider an approach similar to what is called thetiiwmal backward error
in [5]. The matrixﬁ) (E”) can be identified with the bilinear fora, on V), defined by
én(¢j,¢:) = Eij,i,j = 1,..., N. Itis then straightforward to show tHat

(uh, 'Uh) + eh(uh,vh) <f, Uh> Y, € Vh. (38)

That is, the discrete variational problet§) is represented in the basis by the perturbed
system 8.6). The norm of¢;, is given by the energy norm &:

én (v, wp) wlEv
max ————— = max ————— = |E|sa-1.
viwn€Vi\O} [vnllallwnlla  viwerN\ {0} [[V]allwla ’
Note that the matribA + E does not need to be sparse nor symmetric (depending on the
structure of the perturbation mati), and in general it need not to be nonsingular. The form
éy, therefore does not need to be symmetric neither.

It is not easy (if possible) to find a reasonable interpretatf the bilinear formé,,
e.g., to find out whether the perturbed variational problarf) (still represents a discretised
PDE. We thus look for a different interpretation &€ which might preserve the character
of the original problem. In particular, we will see that therfurbed systen3(6) can be con-
sidered as certain perturbation of the baBim which the approximate solutioi provides
coordinates of the (exact) discrete solution

Let d = [<I>1, . tI)N] be a basis o/, obtained from the basi® by perturbing its
individual components by linear combinations of the oragipasis®. We can write

N
& =®(I+D), thatis, ¢;=¢;+» Dijdr, j=1,....N, (3.9)
k=1

whereD = (D /) € RV*N is a matrix of perturba‘uon coefficients ahdenotes the identity
matrix. We assume thdt+ D is not singular so thab is indeed a basis O,Ph We look for
the discrete solution;, given by the linear combination of the modified ba®isLooking for

3Again, we restrict ourselves to the discrete space and doamstider the extension éf, to V.
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uy, in the formu;, = & and requiring 2.2) to hold forv;, = ¢; fori = 1,..., N leads to
the system

(A+Eya=f  E=AD, (3.10)

that is, to the perturbed system §) with E = AD. Equivalently, given an approximatian
of the solution of the algebraic systei 1) and the perturbatloE such thati satisfies 8.6),
there is a basi® given by® = ®(I+ D) whereD = A~'E, such that the vectoi
represents the coordinates of the (exact) discrete solutioof (2.2) with respect to the
modified basish. Note that® is a (linearly independent) basis o, if (and only if) the
matrix A + E (as well as the matrix + D) is non-singular.

In order to give the interpretation to the energy nornfof= AD, we define a relative
distance between the two baseand® by

R dv — dv,
A ®) = max 12V =PVl (3.11)
veRNM\{0}  [|®V]q
From (3.9 we have

. dv — v, ®Dv|,
d(®,®) = max 7” v vll = max 7H vl
veRM\{0}  [[®V]4 veRN\{0} [[®V]4

_ [Dvila _ JAT'Ev|a _ |Ev]a-:

veRM{0} [[v[a  verM\{o} [v]a  verM\{o} |[V[]a

= ||El|a,a-1,

that is, the relative distance between the basesd® related by 8.9) is equal to the energy
norm of the matrixk = AD. We summarise the discussion above in the following theorem

THEOREM3.1. Letu be the nonzero approximate solution of the sydter) represent-
ing algebraically the discretised variational problg 2) with respect to the bas® of V..
LetE be such thati satisfies the perturbed systém6) and letA + E be nonsingular. Then
the vectora contains the coordinates of the solution of (2.2) with respect to the basis
& given by(3.9 with D = A~'E. In addition, the perturbed syste{8.6) is the algebraic
representation of the discrete variational probl¢t?) with respect to the baseB and ®.
The relative distancé3.11) between® and® is given by the energy norm Bf

For a given nonzer@, there are “many” perturbatiors so thatEa = . Equivalently,
there are many basds which can be (linearly) combined to, using the vector of coordi-
natesi. We look hence for the perturbatidhoptimal with respect to the energy norm. For
this purpose we define tlenergy backward erroby

£(a) Emm{uﬁzuA,Afl : B e RV, (A+E)ﬁ:f}. (3.12)

THEOREM 3.2. Letu # 0 be an approximation of the solution ¢1.1) and lett =
f — Au be the associated residual vector. Then

ey - JElaz _ Ju—dja (3.13)
[afa [afa
The matrixE*(ﬁ), for which the minimum i(3.12) is attained, is given by
R AT
B.a)= 3 A (3.14)

lald



8 S. GRATTON, P. JIANEK, AND X. VASSEUR

The matrixA + E, () is nonsingular if (i) < 1.
Proof. The proof essentially follows the proof af, Theorem 7.1]. For ani satisfy-
ing (3.6), it follows from Ea = 1 that A~1/?2EA~1/2A1/24 = A~1/2f. Hence by taking
the 2-norm on both sides and usir&yq) we get
N Flla- -
g = Il gy,

)

that is, §.12) is a lower bound for the energy norm Bf It can be verified that the matrix
E.(a) satisfies 8.6) and its energy norm is equal tda). It is well known (see, e.g.28,
Corollary 2.7]) thatA + E, (&) is nonsingular if

B, (0)]|a,a- 1
|Alla,a-1 Kaa-1(A)’

where for a nonsingular matriX,
raa-1(X) = [X[aa- X a1

Since||A[la.a-1 = [[A7!|a-1.a = 1, we have tha!A + E, (1) is nonsingular if¢ (41) =
B, (@) 4,1 < 1.0 A
The optimal perturbatiof, (1) defined in Theoren3.2 is related to certain optimal

perturbation of the basi®. In fact, combining Theorem3.1 and3.2, we get the following
result.

THEOREM 3.3. Letu be the nonzero approximate solution of the sydter) represent-
ing algebraically the discretised variational problegfd.2) with respect to the basi® of V),
and let¢(1) < 1. Thena is the solution of the perturbed problem

[A+E.(d)a="f (3.15)

with the perturbation matris, (1) given by(3.19. LetD, (i) = A~'E,(a) and®., (4) =
®[I + D.(a)]. Thend,(u) is a basis of);, which is closest to the basi® in terms of
the relative distanc€3.11) in which the vectori represents the coordinates of the solution
up, Of (2.2). In addition, the perturbed systef8.15 is the algebraic representation of the
discrete variational equatioii2.2) with respect to the basetf}*(ﬁ) and ®. The relative
distance between the bases is given by the energy backward@rl2),

d[®.(1), ®] = £().

Remark. Backward errors provide bounds on forward errors (relativans of the error)
via the condition number of the matrik (with respect to consistently chosen norms) lf
satisfies the perturbed systefnf) andx(A) = ||A||||A || is such thak(A)||E|| /| A| < 1,
the forward error can be bounded by

lu—al _ _s(A)E]/|A]
lall = 1= w(A)E[ /A
see, e.g.,44, Theorem 2.11]. With our choice of norms, both forward anddazard errors

do coincide since the condition number and the norm of theixat are equal to one. The
bound @.16 then (withE = E. (1)) becomes

(3.16)

lu-dla _ £@)
e~ 1-£q)
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provided that (1) < 1. In addition, from||uj|a < ||[G||a[1 + £(11)], we have

[u—alla o €@
ulla  ~ 1+&(0)

and hence the forward and backward error inAr@orm are equivalent in the sense that

§0)  u-dla _ &@)
T+e@ = Jula — 1-&(@)

Note that this is simply due to the fact that the conditioniig\ is one with respect to the
chosen matrix norms.

if £(a) < 1.

The perturbation matriE*(ﬁ) is determined by the errors in solving the systeni,
Minimising the energy norm dk generally leads to dense (and non-symmetric) perturbation
matrix E*(ﬁ) (although structured, in our case of the rank one). The spoeding transfor-
mation matrixD, (1) = A~'E, (1) is dense as well which means that the perturbed matrix
é*(ﬁ) has global supports even though the support® afan be local. This would be the
case even if we considered the component-wise perturlsaiida 8] since the inverse oA
(and hence the transformation matfly is generally dense. This is however not important
for the interpretation of the perturbation coefficientslits

We illustrate our observations on the model problem desdribh Sectiorn2 which we
solve approximately using the conjugate gradient (CG) oekfir1]. It is well known that,
given an initial guessy, CG generates the approximatians® € ug + K,,, wherekC,, is a
Krylov subspace of the dimensien such that

C

G . N
— = — . 3.17
Ju—uf®)a = min_u—d]a (3.17)

In Figure3.1, we show the exact solution of the discrete problem, theivel& -norms
ca
ce _ lu—u%a
o= [l PN (3.18)
[[al[a
of the errors of the CG approximationg’“ and their associated energy backward errors
£(uf%) (we setuy = 0 here). The backward errors of the CG approximations, ahou
monotonically decreasing as we will see in the next sectiead not to be necessarily smaller
than one as it is the case for the relative error notffis. For our model problem, we have
(note that is not defined for the initial guess, = 0)

E(uf%) =1.2718, £(uf%) =1.0572, £(uf%) = 0.8658.

In Figure3.2 we show (together with the exact solutiap of the discrete problem) the ap-
proximationsug$ = ®ul® for n = 1 andn = 5. The entries of the perturbation and

transformation matriceE, (u9%) and D, (u$S), respectively, corresponding to these ap-
proximate solutions are visualised in FiguBe8and3.4.

4. Conjugate gradient method and energy backward error. The conjugate gradient
method constructs, starting from the initial guess the sequence of approximation§®
from the (shifted) Krylov subspaag, + /C,,. Similarly to the Galerkin method, the approxi-
mationsu$“ minimise the discrete energy normd{norm) of the errom — u$% in the sense
of (3.17). Equivalently, the erroet¢ = u — u$“ is A-orthogonal tac,,.
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0.7f 1
0.6f 1

0.5F R

0.3t 1 1079 |
0.2} 1

0.1r 1 _15| —*—Relative error eS¢

10 " —+—Backward error £(ufe)

—e— Discrete solution uy, ) ) )
0 0.2 0.4 0.6 0.8 1 0 2 4 . 6 8 10
T iteration number n

F1G. 3.1.The discrete solutiom;, of the model problem on the left plot and the convergence oinG&ms of
the relative A-norm of the errore$G = |ju — u$S||a /||ufla and of the energy backward errg(u$S) on the
right plot.

0.8 T T T T 0.8 T T T T

0.7r

0.61

0.5r

0.4r

0.3r

0.2r

0.1r

Os

O —e— Discrete solution uy,
—=— Approximate solution uj
. . .

—e— Discrete solution uy,
—s— Approximate solution uf;’_(;;
.

CG
h

. . . 01 .
0.2 0.4 0.6 0.8 1 0 0 0.2 0.4 0.6 0.8 1
x z

-0.1
0

FiG. 3.2. The discrete solution;, and the approximate solution¢ = ®ufS for n = 1 (left plot) and
n = 5 (right plot).

Remark. In the Galerkin finite element method, there is even more atheuoptimality of
CG than in the iterative method itself. 45 = ®uf“ is the associated approximation of
the solution of the discrete probler.p), we have
ca .
u—u = min u—v 5

o=l = _gmin flu=vila
where®(ug + K,,) = {vp € V1 v = ®v, ug—v € K, }. It means that CG provides op-
timal approximations to the solutianof the (continuous) problen®(1) from the subspaces
of V;, which consist of all linear combinations of the ba®isvith the coefficients taken from
the associated Krylov subspaces. This follows from thetiten

lu—vnlla = llw = wnllg + llun = onll = llu = unllG + Ju = I3,

which holds for any;, = ®v € V}, and is a consequence of therthogonality ofu — uy,
to V,,; see also9, Section 2.1] and4(].

In the following we assume thaf, = 0. We use a simple relation between thenorms
of the CG erroet®, the solutionu, and the CG approximationC“ of the form

le 12 = llullz — luy A, (4.1)
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FiG. 3.3. Surface plots of the perturbation matrﬁ}*(u?G) (left plot) and the transformation matrix
D.. (u$€) (right plot).
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FiG. 3.4. Surface plots of the perturbation matrﬁ}*(ugc) (left plot) and the transformation matrix
D. (u$C) (right plot).

which follows from the fact that$“ € KC,, and theA-orthogonality ofu — u$% to KC,,:
u=u %+ (u-u®) = Julli = [uC)A + [u—uCA.

Using using ¢.1), the energy backward error of the CG approximatigf¥ can be expressed

as

CG”A 6CG

cuoe) = lenlla _ & 4.2)

[uFCla /1—(59)%

whereeC¢ is the relativeA -norm of the erroeS“, see 8.189. The energy backward error is
well defined for every CG iteration except for the zero initjaess. It is due to the fact that
the energy norm of the error in CG decreases strictly moricatiy at each step. Sineé’“

is decreasing, the energy backward errb®) decreases as well in CG. Botiu$“) and
¢SG are close (as observed in Figutel for our model problem) provided that' is small
enough due to

ECG
n =1-— %G,

e

Note also that(uS%) < 1if 5¢ < 1/v/2.
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One could ask whether it is possible (instead of Ar@orm of the error) to minimise the
energy backward err@rover the same Krylov subspakg,. Letu,, = V,,y,, be an arbitrary
vector from/C,, and lete,, = u — u,, be the associated error vector. Frafi® — u,, € K,,,
the A-orthogonality ofe$“ to KC,,, and the Pythagorean theorem, we get that

lealla = llef® + (uy® —wa) A = llef ¢ lIA + [[uy® —ualA. (4.3)
From 3.13 and @.3), we have
len I + [[up® — w3
[unz

& (uy) = (4.4)

LEMMA 4.1.Letv € R™ be a given nonzero vecter, € R, and

Thenw, = yv withy = 1+ (a/||v|]2)? is the unique minimiser af over all nonzerov and
p(w.) = a?/(a® + ||v]3). _

Proof. Letw = v + v, wheren € R andv be an arbitrary vector orthogonal tq
thatis,vl v = 0. From Pythagorean theorem, we have

o+ (1= n)?[[vll3 + l[voli3
VI3 +Ilvil3

pnv+vy) = (4.5)
Note thaty does not depend on the vector but on its norm. Dividing both the numerator
and denominator in4(5) by (nonzero)|v||2, we obtain

32+ (1—n)%+¢2
ov+v,) =12 572 +n<)2 = 91,0,

wherea = a/||v]|2 and¢ = ||v||2/]|v|2- Hence the statement is proved by showing that
has a global minimum dty, ¢) = (v,0) = (1 + a2,0) and that)(1 + a2,0) = a%/(1 + &?)
which can be shown by standard calculus. The functidga smooth everywhere except for
(n,¢) = 0. We have

2 @@+ —nr e
Vo (n,¢) = 2 + (2)2 [ C(1+a2—2n) }

and thus we hav&+(n,¢) = 0 if (and only ify, = 1 + &* and¢ = 0. The minimum can
be verified by checking the positive definiteness of the matfisecond derivatives at the
stationary pointn, ¢) = (1 4+ a2, 0), which holds since

- 2 10

2 2 _

V(1 4+ a%,0) = (CEEE [0 1] .

Substituting the stationary pointtogivesy(1+a?%,0) = a%/(1+a%) = a?/(a?+||v[3) <

1. The minimum is also global singg(tw) — 1 ast — oo for any fixedw. O
THEOREM4.2. Letu$“ be the approximation of CG with the initial guess = 0 at the

stepn > 1. Then the unique’;, minimising the energy backward errgrover allv,, € KC,, is

given by

* CG
un - Vnun )
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where
o= 1 €SS = e
" m T (O
The energy backward error af;, is equal to the relativéd-norm of the CG error,

_ i€

* _ _CG

— tn

Proof. The relation 4.4) can be written as

lef 1A + A2 (ui® — )3
A 20,3

52(1171) =

If we setw = A/?u,, v = A/?ulC, a = ||eS¢||a we have from Lemmad.1 that the
minimum of¢2(u,,) is attained byu? = ~,,u$“, where

a? e 1A

[uf %A

T = =1+& ;)
VI3

and also from4.1)

1 1
Yn = = .
T 1= eRClA/ulR 1= (eR9)?

The minimum is given by

a _ lef,lla _ llefClla _ ce

= = =€
Var+ VI3 VIefCIR +TulClR  lula "

§(uy,)

using ¢.1) again.O

The approximationst minimising the energy backward errérover the Krylov sub-
spacekC,, are thus given by a simple scalar multiple of the CG approtionau®®. It is
clear thatn? ~ u$© provided that the relative erref’ is small enough and the difference
between both approximations gets smaller with the deargasinorm of the CG approxi-
mations.

Remark. There is an interesting “symmetry” between the relaiv@orms of the errors and
energy backward errors of the approximatiar}$* andu? illustrated in Tablet.1. The ex-
pression for the relative energy norm of the erroagffollows from (3.12 and Theorerd.2

u—ullla
ut) = ECG _ H n
B T

and hence together with (1)

HGZHA g(u*)Hu:HA =~ é—(u*)”ugG”A _ ercsz 1- (GSG)Q _ ESG )
[ufla "ala T ufla 1—(eg9)? V1= (e56)2

In fact, we can also say that the forward errongf¢ is equal to the backward error of;
and vice versa.
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u$¢: minimises|e, | a u’: minimisesé (uy,)
llen I _
Falla € enOlL = (€79)7] 2
§(un) e[ — (7)1 €
TABLE 4.1

Symmetry betweenS¢ andu,.

1 ‘ ‘ ‘ ‘ 0.8

0.7r
0.8-

0.61
0.61
0.5r
0.4r
0.4r

0.2r
0.31

0.2r

—e— Discrete solution uy, —e— Discrete solution uy,

0.1r

—=— Approximate solution u§$ —=— Approximate solution ugﬁ
—&— Approximate solution uj —— Approximate solution uj .,
-04 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
z x

FiG. 4.1. The discrete solution,, and the approximate solutions;¢ = ®u$“ andwu} , = ®uj for
n = 1 (left plot) andn = 5 (right plot).

In Figure4.1we show, together with the discrete solutignof our model problem, the
approximations.$ = ®uf“ obtained from the CG iterates at steps= 1 andn = 5
and the approximations;, ,, = ®u;, obtained from the CG approximations according to
Theorem4.2. In Figures4.2 and4.3 we also show the surface plots of the corresponding
perturbations and transformation matrices. It is intémgsto observe that although the per-
turbation matriced, (uS%) andE, (u*) (left plots of Figures3.3 3.4, 4.2, and4.3) look
very similar, this is not the case for the transformationrinasD., (u$%) andD. (u*) (right
plots of the same figures).

5. Conclusions. Motivated by the use of backward errors in stopping critéoratera-
tive solvers, we made an attempt to find an “easy-to-toudietpretation of the data pertur-
bations in linear algebraic systems arising from discagitieis of elliptic partial differential
equations. In particular, we were interested in finding ajtds meaning of the perturbations
of the system matriXA and related them to certain perturbations of the basis ofpipeox-
imation space where the discrete solution of the underlyariational problem is sought.
Although we are aware of the limited usability of our resuftspractice while bearing in
mind recent results on dealing with discretisation andlzaigie errors in numerical solution
of PDEs, we believe that they might be of certain interestrantvate designers of stopping
criteria for iterative processes to justify their relevane the problem to be solved.

In addition, we showed that minimising the backward errepagmted with theA-norm
over the Krylov subspace generated by the conjugate gradietnod leads to approxima-
tions which are closely related to the approximations camgblby CG. This is similar to
the ideas behind the methods called GMBACK and MINPERTL# [L5] for general non-
symmetric problems. In contrast to the iterates computetthése methods, we showed that
the optimal approximations minimising the backward ernar jast the scalar multiples of
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FIG. 4.2. Surface plots of the perturbation matrﬁ*(u’{) (left plot) and the transformation matmf)*(u’{)
(right plot).
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FI1G. 4.3. Surface plots of the perturbation matrﬁ*(ug) (left plot) and the transformation matmf)*(u;)
(right plot).

the CG approximations and they are closer to each other asasotheA-norm of the CG
approximations decreases. Nevertheless, we do not clainafiproximations constructed in

this way have any superiority with respect to CG which is mliitself with respect to the
closely related measure.

6. Acknowledgments. We would like to thank to Zdenék Strako3 and the anonymous

referee for their comments and suggestions which conditlehelped to improve the pre-
sentation of our results.

REFERENCES

[1] MARIO ARIOLI, A stopping criterion for the conjugate gradient algorithma finite element method frame-
work, Numer. Math., 97 (2004), pp. 1-24.

[2] MARIO ARIOLI AND IAIN S. DUFF, Using FGMRES to obtain backward stability in mixed preaisiglec-
tron. Trans. Numer. Anal., 33 (2009), pp. 31-44.

[3] MARIO ARiOLI, IAIN S. DUFF, AND DANIEL Rulz, Stopping criteria for iterative solverSIAM J. Matrix
Anal. Appl., 13 (1992), pp. 138-144.

[4] MARIO ARIOLI, JORG LIESEN, AGNIESZKA MIEDLAR, AND ZDENEK STRAKOS, Interplay between dis-
cretization and algebraic computation in adaptive numargolution of elliptic PDE problemso appear
in GAMM Mitteilungen 2013.

[5] MARIO ARIOLI, E. NOULARD, AND A. RUSSQ Stopping criteria for iterative methods: applications to
PDE'’s, Calcolo, 38 (2001), pp. 97-112.



16

(6]

[7]
(8]

El

[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

(18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]
[26]

[27]

[28]
[29]

S. GRATTON, P. JIANEK, AND X. VASSEUR

SUSANNE C. BRENNER AND L. RIDGWAY ScoTT, The Mathematical Theory of Finite Element Methods
vol. 15 of Texts in Applied Mathematics, Springer, New YaxkY, third ed., 2008.

PHILIPPEG. CIARLET, The Finite Element Method for Elliptic Problepfdorth-Holland, 1978.

JITKA DRKOSOVA, ANNE GREENBAUM, MIROSLAV ROZLOZNIK, AND ZDENEK STRAKOS, Numerical
stability of GMRESBIT, 35 (1995), pp. 309-330.

HOWARD C. ELMAN, DAVID J. SLVESTER, AND ANDREW J. WATHEN, Finite Elements and Fast Iterative
Solvers with Applications in Incompressible Fluid Dynasnislumerical Mathematics and Scientific
Computation, Oxford University Press, New York, NY, 2005.

W. GIVENS, Numerical computation of the characteristic values of al anmetric matrix tech. report,
ORNL, Oak Ridge, TN, 1957.

MAGNUS R. HESTENES ANDEDUARD STIEFEL, Methods of conjugate gradients for solving linear systems
J. Res. Natl. Bur. Stand., 49 (1952), pp. 409-436.

NicHoLAS J. HIGHAM, Accuracy and Stability of Numerical AlgorithmSIAM, Philadelphia, PA, sec-
ond ed., 2002.

PAVEL JIRANEK AND MIROSLAV ROZLOZNiK, Adaptive version of Simpler GMRERumer. Algor., 53
(2010), pp. 93-112.

EBRAHIM M. KASENALLY, GMBACK: a generalized minimum backward error algorithm f@nsymmetric
linear systemsSIAM J. Sci. Comput., 16 (1995), pp. 698-719.

EBRAHIM M. KASENALLY AND VALERIA SIMONCINI, Analysis of a minimum perturbation algorithm for
nonsymmetric linear systep8IAM J. Numer. Anal., 34 (1997), pp. 48-66.

P. D. LAX AND A. N. MILGRAM, Parabolic equationsAnn. Math. Studies, 33 (1954), pp. 167-190.

JORG LIESEN AND ZDENEK STRAKOS, Krylov Subspace Methods: Principles and Analy$lsimerical
Mathematics and Scientific Computation, Oxford Univer§itgss, Oxford, 2012.

W. OETTLI AND W. PRAGER, Compatibility of approximate solution of linear equatioritiwgiven error
bounds for coefficients and right-hand sidisimer. Math., 6 (1964), pp. 405-409.

CHRISTOPHERC. PAIGE, MIROSLAV ROZLOZNiK, AND ZDENEK STRAKOS, Modified Gram-Schmidt
(MGS), least squares, and backward stability of MGS-GMRESM J. Matrix Anal. Appl., 28 (2006),
pp. 264-284.

JAN PAPEZ, JORG LIESEN, AND ZDENEK STRAKOS, On distribution of the discretization and algebraic
error in 1D Poisson model problensubmitted tdNumer. Linear Algebra Appl2012.

J. L. RIGAL AND J. GACHES, On the compatibility of a given solution with the data of eelmn systemJ.
ACM, 14 (1967), pp. 543-548.

WALTER RUDIN, Functional AnalysisMcGraw-Hill, Inc., second ed., 1991.

YOUSEFSAAD AND MARTIN H. ScHULTZ, GMRES: a generalized minimal residual algorithm for safvin
nonsymmetric linear systerr8IAM J. Sci. Stat. Comput., 7 (1986), pp. 856—869.

G. W. STEWART AND JI-GUANG SUN, Matrix Perturbation TheoryComputer Science and Scientific Com-
puting, Academic Press, 1990.

ALAN M. TURING, Rounding-off errors in matrix processé3uart. J. Mech., 1 (1948), pp. 287-308.

J.VON NEUMANN AND H. H. GoLDSTEIN, Numerical inverting of matrices of high ordeBull. Amer. Math.
Soc., 53 (1947), pp. 1021-1099.

HOMER F. WALKER, Implementation of the GMRES method using Householderfoemations SIAM J.
Sci. Stat. Comput., 9 (1988), pp. 152-163.

JAMES H. WILKINSON, Rounding Errors in Algebraic Processd&entice-Hall, Englewood Cliffs, NJ, 1963.

, Algebraic Eigenvalue Problen©xford University Press, New York, NY, 1965.




