[1] L. S. Blackford, J. Demmel, J. Dongarra, I. S. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. An updated set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math. Softw., 28(2):135-151, June 2002.
BibTeX entry
[2] I. S. Duff, M. A. Heroux, and R. Pozo. An overview of the Sparse Basic Linear Algebra Subprograms: The new standard from the BLAS Technical Forum. ACM Trans. Math. Softw., 28(2):239-267, 2002.
BibTeX entry
[3] I. S. Duff, M. A. Heroux, and R. Pozo. An overview of the Sparse Basic Linear Algebra Subprograms: the new standard from the BLAS Technical Forum. ACM Trans. Math. Softw., 28(2):239-267, 2002.
BibTeX entry
[4] I. S. Duff and C. Vömel. Algorithm 818: A reference model implementation of the Sparse BLAS in Fortran 95. ACM Trans. Math. Softw., 28(2):268-283, 2002.
BibTeX entry
[5] I. S. Duff and C. Vömel. Algorithm 818: A Reference Model Implementation of the Sparse BLAS in Fortran 95. ACM Trans. Math. Softw., 28(2):268-283, 2002. Implementation available from URL: http://www.netlib.org/netlib/toms/818.
BibTeX entry
[6] I. S. Duff and C. Vömel. Incremental Norm Estimation for Dense and Sparse Matrices. BIT, 42(2):300-322, 2002.
BibTeX entry
[7] L. Giraud. Combining shared and distributed memory programming models on clusters of symmetric multiprocessors: Some basic promising experiments. Int. J. of High Performance Computing Applications, 16(4):425-430, 2002.
BibTeX entry
[8] L. Giraud and J. Langou. When modified Gram-Schmidt generates a well-conditioned set of vectors. IMA J. Numerical Analysis, 22(4):521-528, 2002.
BibTeX entry
[9] N. I. M. Gould, D. Orban, A. Sartenaer, and Ph. L. Toint. Componentwise fast convergence in the solution of full-rank systems of nonlinear equations. Mathematical Programming, Series B, 92(3):481-508, 2002.
BibTeX entry
[10] D. Kay, D. Loghin, and A. J. Wathen. A preconditioner for the Steady-State Navier-Stokes equations. SIAM J. Scientific Computing, 24(1):237-256, 2002.
BibTeX entry
[11] D. Loghin and A. J. Wathen. Schur complement preconditioners for the Navier-Stokes equations. Int. J. Num. Meth. in Fluids, 40(3-4):403-412, 2002.
BibTeX entry
[12] D. Orban and S. J. Wright. Properties of the Log-Barrier Function on Degenerate Nonlinear Programs. Mathematics of Operations Research, 27(3):585-613, 2002.
BibTeX entry
[13] J. Rahola and S. Tissari. Iterative solution of dense linear systems arising from the electrostatic integral equation in MEG. Physics in Medicine and Biology, 47(6):961-975, 2002.
BibTeX entry
[14] M. Rojas and D. C. Sorensen. A trust-region approach to the regularization of large-scale discrete ill-posed problems. SIAM J. Scientific Computing, 26(3):1843-1861, 2002.
BibTeX entry
[15] M. Rojas and T. Steihaug. An interior-point trust-region-based method for large-scale nonnegative regularization. Inverse Problems, 18(5):1291-1307, 2002.
BibTeX entry

This file has been generated by bibtex2html 1.46