
Cantera User’s Guide

Fortran Version

Release 1.2

D. G. Goodwin

November, 2001

Division of Engineering and Applied Science
California Institute of Technology

Pasadena, CA
E-mail: dgoodwin@caltech.edu



(draft November 29, 2001)

CONTENTS

1 Getting Started 3
1.1 What is Cantera? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Installing Cantera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Running Stand-Alone Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 The Cantera Fortran 90 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 The canteraModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.7 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.8 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.9 Useful Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.10 An Example Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Mixtures 13
2.1 Mixture Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Utilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Number of Elements, Species, and Reactions . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Mixture Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Properties of the Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.8 Properties of the Species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Mixture Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.10 Mean Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.11 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.12 The Thermodynamic State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.13 Species Ideal Gas Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.14 Attributes of the Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.15 Mixture Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.16 Potential Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.17 Critical State Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.18 Saturation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.19 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

i



(draft November 29, 2001)

3 Chemical Equilibrium 61

4 Homogeneous Kinetics 65
4.1 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Transport Properties 75
5.1 Derived Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Stirred Reactors 85
6.1 Reactor Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.5 Setting Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6 Specifying the Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.7 Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.8 Reactor Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.9 Mixture Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Flow Devices 99
7.1 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Constructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.3 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.4 Setting Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Utility Functions 105

9 Utilities 107
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.2 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
9.3 Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A Glossary 109

Index 113

ii



(draft November 29, 2001)

This document is the Fortran 90 version of the Cantera tutorial. If you are interested in
using Cantera from C++ or Python, versions of this document exist for those languages as
well.

Contents 1



(draft November 29, 2001)

2



(draft November 29, 2001)

CHAPTER

ONE

Getting Started

1.1 What is Cantera?

Cantera is a collection of object-oriented software tools for problems involving chemical kinetics, ther-
modynamics, and transport processes. Among other things, it can be used to conduct kinetics simulations
with large reaction mechanisms, to compute chemical equilibrium, to evaluate thermodynamic and transport
properties of mixtures, to evaluate species chemical production rates, to conduct reaction path analysis, to
create process simulators using networks of stirred reactors, and to model non-ideal fluids. Cantera is still
in development, and more capabilities continue to be added.

1.2 Typical Applications

Cantera can be used in many different ways. Here are a few.

Use it in your own reacting-flow codes. Cantera can be used in Fortran or C++ reacting-flow simulation
codes to evaluate properties and chemical source terms that appear in the governing equations. Can-
tera places no limits on the size of a reaction mechanism, or on the number of mechanisms that you
can work with at one time; it can compute transport properties using a full multicomponent formu-
lation; and uses fast, efficient numerical algorithms. It even lets you switch reaction mechanisms or
transport property models dynamically during a simulation, to adaptively switch between inexpen-
sive/approximate models and expensive/accurate ones based on local flow conditions.

It is well-suited for numerical models of laminar flames, flow reactors, chemical vapor deposition
reactors, fuel cells, engines, combustors, etc. Any existing code that spends most of its time evaluating
kinetic rates (a common situation when large reaction mechanisms are used) may run substantially
faster if ported to Cantera. (Cantera’s kinetics algorithm, in particular, runs anywhere from two to
four times faster, depending on the platform, than that used in some other widely-used packages.)

Use it for exploratory calculations. Sometimes you just need a quick answer to a simple question, for
example:

• if air is heated to 3000 K suddenly, how much NO is produced in 1 sec?

• What is the adiabatic flame temperature of a stoichiometric acetylene/air flame?

• What are the principal reaction paths in silane pyrolysis?

3



(draft November 29, 2001)

With Cantera, answering any of these requires only writing a few lines of code. If you are comfortable
with Fortran or C++ you can use either of these, or you can write a short Python script, which has
the advantage that it can be run immediately without compilation. Python can also be used interac-
tively. Or you can use one of the stand-alone applications that come with Cantera, which requires no
programming at all, other than writing an input file.

Use it in teaching. Cantera is ideal for use in teaching courses in combustion, reaction engineering, trans-
port processes, kinetics, or similar areas. Every student can have his or her own copy and use it
from whatever language or application he or she prefers. There are no issues of cost, site licenses,
license managers, etc., as there are for most commercial packages. For this reason, Cantera-based
applications are also a good choice for software that accompanies textbooks in these fields.

Run simulations with your own kinetics, transport, or thermodynamics models. Cantera is designed
to be customized and extended. You are not locked in to using a particular equation of state, or
reaction rate expressions, or anything else. If you need a different kinetics model than one provided,
you can write your own and link it in. The same goes for transport models, equations of state, etc.
[Currently this requires C++ programming, but in an upcoming release this will be possible to do from
Fortran.]

Make reaction path diagrams and movies. One of the best ways to obtain insight into the most important
chemical pathways in a complex reaction mechanism is to make a reaction path diagram, showing the
fluxes of a conserved element through the species due to chemistry. But producing these by hand is a
slow, tedious process. Cantera can automatically generate reaction path diagrams at any time during
a simulation. It is even possible to create reaction path diagram movies, showing how the chemical
pathways change with time, as reactants are depleted and products are formed.

Create stirred reactor networks. Cantera implements a general-purpose stirred reactor model that can be
linked to other ones in a network. Reactors can have any number of inlets and outlets, can have a
time-dependent volume, and can be connected through devices that regulate the flow rate between
them in various ways. Closed-loop controllers may be installed to regulate pressure, temperature, or
other properties.

Using these basic components, you can build models of a wide variety of systems, ranging in com-
plexity from simple constant-pressure or constant-volume reactors to complete engine simulators.

Simulate multiphase pure fluids. Cantera implements several accurate equations of state for pure fluids,
allowing you to compute properties in the liquid, vapor, mixed liquid/vapor, and supercritical states.
(This will soon be expanded to include multiphase mixture models.)

These capabilities are only the beginning. Some new features scheduled to be implemented in an upcom-
ing release are non-ideal and multiphase reacting mixtures, surface and interfacial chemistry, sensitivity
analysis, models for simple reacting flows ( laminar flames, boundary layers, flow in channels, etc.), and
electrochemistry. Other capabilities, or interfaces to other applications, may also be added, depending on
available time, support, etc. If you have specific things you want to see Cantera support, you are encouraged
to become a Cantera developer, or support Cantera development in other ways to make it possible. See
http://www.cantera.org/support for more information.

4 Chapter 1. Getting Started



(draft November 29, 2001)

1.3 Installing Cantera

If you’ve read this far, maybe you’re thinking you’d like to try Cantera out. All you need to do is download
a version for your platform from http://www.cantera.org and install it.

1.3.1 Windows

If you want to install Cantera on a PC running Windows, download and run ‘cantera12.msi’. (If for some
reason this doesn’t work, you can download ‘cantera12.zip’ instead.)

If you only intend to run the stand-alone applications that come with Cantera, then you don’t need a compiler.
The executable programs are in folder ‘bin’ within the main Cantera folder.

If you intend to use Cantera in your own Fortran applications, you need to have Compaq (formerly Digital)
Visual Fortran 6.0 or later. If you do, look in the ‘win32’ folder within the main Cantera folder. There you
will find project and workspace files for Cantera.

To load the Cantera Fortran workspace into Visual Studio, open file ‘Cantera F90.dsw’.

1.3.2 unix/linux

If you use unix or linux, you will need to download the source code and build Cantera yourself, unless the
web site contains a binary version for your platform. To build everything, you will need both a C++ compiler
and a Fortran 90 compiler. A configuration script is used to set parameters for Makefiles. In most cases, the
script correctly configures Cantera without problem.

1.3.3 The Macintosh

Cantera has not been ported to the Macintosh platform, but there is no reason it cannot be. If you successfully
port it to the Macintosh, please let us know and we will add the necessary files to the standard distribution.

Note that the Cantera Fortran interface requires Fortran 90, so if you are using the free g77
compiler, you will need to upgrade.

1.3.4 Environment Variables

Before using Cantera, environment variable CANTERA ROOT should be set to the top-level Can-
tera directory. If you are using Cantera on a PC running Windows, you can alternatively set
WIN CANTERA ROOT. (This is defined so that users of unix-like environments that run under Win-
dows (e.g. CygWin) can define CANTERA ROOT in unix-like format (/usr/local/cantera-1.2)
and WIN CANTERA ROOT in DOS-like format (C:\CANTERA-1.2).

In addition, you can optionally set CANTERA DATA DIR to a directory where input files should be looked
for, if not found in the local directory. By default, Cantera will look in ‘CANTERA ROOT/data’.

1.3. Installing Cantera 5



(draft November 29, 2001)

1.4 Running Stand-Alone Applications

Cantera is distributed with a few simple application programs. These are located in the ‘apps’ subdirectory.
For example, one such program is zero, a general-purpose zero-dimensional kinetics simulator. All of
these applications include the source code, unix Makefiles, and Visual Studio project files, so they can also
function as starting points to build your own applications.

1.5 The Cantera Fortran 90 Interface

Cantera consists of a kernel written in C++, and a set of language interface libraries that allow using Cantera
from other programming languages. The kernel is object-oriented, and defines a set of classes that represent
important entities for a reacting-flow simulation. The kernel is described in more detail elsewhere.

Much of the object-oriented character of the C++ kernel is retained even in languages that are not themselves
object-oriented, like Fortran. Fortran 90 actually does implement a number of things that allow some degree
of object-oriented programming; as a front end for C++ objects it works very well.

From Fortran 90, you can create objects that represent reacting mixtures, or various types of reactors, or
ODE integrators, or many other useful things. A great advantage of an object-oriented framework is that
objects can be combined together to build more complex dynamic system and process models. For example,
it is a simple matter to quickly put together a complex network of stirred reactors, complete with sensors,
actuators, and closed-loop controllers, if desired.

1.6 The cantera Module

To use Cantera from Fortran 90, put the statement

use cantera

at the top of any program unit where you need to access a Cantera object, constant, or procedure. Module
cantera contains the Cantera Fortran 90 interface specification, and handles calling the C++ kernel pro-
cedures. It in turn uses othe Cantera modules. You do nor have to include a use statement for these others
in your program, but the module information files must be available for them.

All module files are located in directory ‘Cantera/fortran/modules’. You should either tell your Fortran
compiler to look for module files there, or else copy them all to the directory where your application files
are.

1.6.1 Declaring an Object

Cantera represents objects in Fortran 90 using Fortran derived types. Derived types are not part of the older
Fortran 77, which is one reason why Cantera implements a Fortran 90 interface, but not one for Fortran 77.

A few of the object types Cantera defines are

mixture t
Reacting mixtures.

6 Chapter 1. Getting Started



(draft November 29, 2001)

cstr t
Continuously-stirred tank reactors.

flowdev t
Flow control devices.

eos t
Equation of state managers.

kinetics t
Kinetics managers.

transport t
Transport managers.

By convention, all type names end in ’ t’. This serves as a visual reminder that these are object types, and
is consistent with the C/C++ naming convention (e.g., size t, clock t).

Objects may be declared using a syntax very similar to that used to declare simple variables:

type(mixture_t) mix1, mix2, a, b, c
type(cstr_t) r1, r2, d, e, f

The primary difference is that the type name is surrounded by type(...).

1.6.2 Constructing An Object

The objects that are “visible” in your program are really only a Fortran facade covering an object belonging
to one of the Cantera C++ classes (which we will call a “kernel object.”) The Fortran object is typically very
small — in many cases, it holds only a single integer, which is the address of the C++ object, converted to
a form representable by a Fortran variable (usually an integer). We call this internally-stored variable the
handle of the C++ object.

When a Fortran derived-type object is declared, no initialization is done, and there is no underlying C++
object for the handle to point to. Therefore, the first thing you need to do before using an object is call
a procedure that constructs an appropriate kernel object, stores its address (converted to an integer) in the
Fortran object’s handle, and performs any other initialization needed to produce a valid, functioning object.

We refer to such procedures as constructors. In Cantera, constructors are Fortran functions that return an
object. The syntax to construct an object is shown below.

type(mixture_t) gasmix
...
gasmix = GRIMech30()

After the object is declared, but before its first use, it is assigned the return value of a constructor function.
In this example, constructor GRIMech30 is called, which returns an object representing a gas mixture that
conforms to the widely-used natural gas combustion mechanism GRI-Mech version 3.0 [Smith et al., 1997].

Object construction is always done by assignment, as shown here. The assignment simple copies the handle
from the object returned by GRIMech30() to object gasmix. Once this has been done, the handle inside
gasmix points to a real C++ object, and it is one that models a gas mixture containing the 53 species and
325 reactions of GRI-Mech 3.0.

1.6. The cantera Module 7



(draft November 29, 2001)

We can check this by printing some attributes of the mixture:
use cantera
type(mixture_t) mix
character*10 elnames(5), spnames(53)
character*20 rxn
mix = GRIMech30()
write(*,*) nElements(mix), nSpecies(mix), nReactions(mix)
call getElementNames(mix, elnames)
write(*,*) ’elements: ’
write(*,*) (elnames(m),m=1,nElements(mix))
call getSpeciesNames(mix, spnames)
write(*,*) ’species: ’
write(*,*) (spnames(k),k=1,nSpecies(mix))
write(*,*) ’first 10 reactions:’
do i = 1,10

call getReactionString(mix, i, rxn)
write(*,*) rxn

end do

The resulting output is

5 53 325
elements:
O H C N AR
species:
H2 H O O2 OH H2O HO2
H2O2 C CH CH2 CH2(S) CH3 CH4
CO CO2 HCO CH2O CH2OH CH3O CH3OH
C2H C2H2 C2H3 C2H4 C2H5 C2H6 HCCO
CH2CO HCCOH N NH NH2 NH3 NNH
NO NO2 N2O HNO CN HCN H2CN
HCNN HCNO HOCN HNCO NCO N2 AR
C3H7 C3H8 CH2CHO CH3CHO
first 10 reactions:
2 O + M <=> O2 + M
O + H + M <=> OH + M
O + H2 <=> H + OH
O + HO2 <=> OH + O2
O + H2O2 <=> OH + HO
O + CH <=> H + CO
O + CH2 <=> H + HCO
O + CH2(S) <=> H2 +
O + CH2(S) <=> H + H
O + CH3 <=> H + CH2O

These attributes are in fact correct for GRI-Mech 3.0.

Sometimes the constructor function can fail. For example, constructor GRIMech30 will fail if you don’t
have CANTERA ROOT set properly, since it uses this to find data files it needs to build the mixture.

8 Chapter 1. Getting Started



(draft November 29, 2001)

Cantera implements a LOGICAL function ready to test whether or not an object is ready to use. Before
calling a constructor for some object objct, ready(objct) returns .FALSE.. After successful construc-
tion, it returns .TRUE..

Some object constructors also write log files, which may contain warning or error messages. If the construc-
tion process fails for no apparent reason, check the log file if one exists.

1.7 Methods

In object-oriented languages, every class of objects has an associated set of methods or member functions
that operate specifically on objects of that class. An object that has a “temperature” attribute might have
method setTemperature(t) to set the value, and temperature() to read it.

The syntax to invoke these methods on an object in C++ or Java would be

x.setTemperature(300.0); // set temp. of x to 300 K
y.setTemperature(x.temperature()); // set y temp. to x temp.

Here object y might belong to an entirely different class than x, and the process of setting its temperature
might involve entirely different internal operations. Both classes can define methods with the same name,
since it is always clear which one should be called — the one that belongs to the class of the object it is
“attached” to.

Fortran is not an object-oriented language, and has only functions and subroutines, not object-specific meth-
ods. Therefore, the Cantera Fortran 90 interface uses functions and subroutines to serve the role of methods.
Thus, the temperature attribute of an object is retrieved by calling function temperature(object).

What happens if you try to access a temperature attribute as object%temperature?
Actually, the compiler will complain that the object has no member temperature and
will abort. Property values are not stored in the Fortran derived type objects. They are
either stored in the kernel object, or computed on-the-fly, depending on which attribute you
request.

Mixtures and reactors are two of the Cantera object types that have a temperature attribute. We would like
to be able to write something like this:

use cantera
type(mixture_t) mix
type(cstr_t) reactor
write(*,*) temperature(mix), temperature(reactor)

This presents an immediate problem (but one that Fortran 90 fortunately provides a solution for). If we
just define function temperature in the usual way, we would have to specify the argument type. If the
function were then called with an argument of a different type, then (depending on the compiler and compile
options) the compile might abort (good), or the compiler might warn you (ok), or it might accept it (bad),
resulting in code that runs but gives erroneous results.

To fix this problem, we could define seperate function names for each (mixture temperature,
cstr temperature, etc. but this would be awkward at best. (This is precisely what we would have
to do in Fortran 77.)

1.7. Methods 9



(draft November 29, 2001)

Fortunately, Fortran 90 provides a mechanism so that we can call functions temperature(object),
setTemperature(object,t) (or any other function) for any type of object. This is done using generic
names. Cantera really does define different function names for each type of object — there is a function
mix temperature() that returns the temperature attribute of a mixture t object, an entirely different
function reac temperature() that does the same for cstr t objects, and so on. But in module
cantera, temperature is declared to be a generic name that any of these functions can be called by.
When a call to temperature is made, the compiler looks at the argument list, and then looks to see if
any function that takes these argument types has been associated with this generic name. If so, the call to
temperature is replaced by one to the appropriate function, and if not, a compile error results.

This procedure is analogous to using generic names for intrinsic Fortran function — if you call sin(x)
with a double precision argument, function dsin(x) is actually called; if x has type real(4), then
function asin(x) is called. Fortran 90 simply extends this capability to any function.

1.8 Units

Cantera uses the SI unit system. The SI units for some common quantities are listed in Table 1.8, along with
conversion factors to cgs units.

Property SI unit cgs unit SI to cgs multiplier
Temperature K K 1
Pressure Pa dyne/cm2 10
Density kg/m3 gm/cm3 0.001
Quantity kmol mol 1000
Concentration kmol/m3 mol/cm3 0.001
Viscosity Pa-s gm/cm-s 10
Thermal Conductivity W/m-K erg/cm-s-K 105

1.9 Useful Constants

The cantera module defines several useful constants, including the ones listed here.

Constant Value Description
OneAtm 1.01325 × 105 Atmospheric pressure in Pascals.
Avogadro 6.022136736 × 1026 Number of particles in one kmol.
GasConstant 8314.0 The universal ideal gas constant R̂.
StefanBoltz 5.6705 × 10−8 The Stephan-Boltzmann constant σ [W/m2-K4].
Boltzmann GasConstant / Avogadro Boltzmann’s constant k [J/K].

1.10 An Example Program

To see how this all works, let’s look at a complete, functioning Cantera Fortran 90 program. This program
is a simple chemical equilibrium calculator.

10 Chapter 1. Getting Started



(draft November 29, 2001)

program eq
use cantera
implicit double precision (a-h,o-z)
character*50 xstring
character*2 propPair
type(mixture_t) mix

mix = GRIMech30()
if (.not.ready(mix)) then

write(*,*) ’error encountered constructing mixture.’
stop

end if

write(*,*) ’enter T [K] and P [atm]:’
read(*,*) temp, pres
pres = OneAtm * pres ! convert to Pascals

! the initial composition should be entered as a string of name:<moles> pairs
! for example ’CH4:3, O2:2, N2:7.52’. The values will be normalized
! internally

write(*,*) ’enter initial composition:’
read(*, 10) xstring

10 format(a)

! set the initial mixture state
call setState_TPX(temp, pres, xstring)

! determine what to hold constant
write(*,*) ’enter one of HP, TP, UV, or SP to specify the
write(*,*) ’properties to hold constant:’
read(*,10) propPair

! equilibrate the mixture
call equilibrate(mix, propPair)

! print a summary of the new state
call printSummary(mix)

stop
end

Each of the functions or subroutines used here is described in detail in later chapters.

1.11 Summary

So in summary, the procedure to write a Cantera-based Fortran 90 program is simple:

1.11. Summary 11



(draft November 29, 2001)

1. Put the statement use cantera at the top of any program unit where you want to use Cantera.

2. Declare one or more objects.

3. Construct the objects that you declared by assigning them the return value of a constructor function.

4. Use the object in your program.

In the following chapters, the objects Cantera implements, their constructors, and their methods will be
described in detail. Many examples will also be given. You should try programming a few of these yourself,
to verify that you get the same results as shown here. Once you have done that, you’re ready to use Cantera
for your own applications.

12 Chapter 1. Getting Started



(draft November 29, 2001)

CHAPTER

TWO

Mixtures

Some of the most useful objects Cantera provides are ones representing mixtures. Mixture objects have a
modular structure, allowing many different types of mixtures to be simulated by combining different mixture
components. You can build a mixture object to suit your needs by selecting an equation of state, a model
for homogeneous kinetics (optional), and one for transport properties (also optional). You can then specify
the elements that may be present in the mixture, add species composed of these elements, and add reactions
among these species. Mixture objects also can be used to model pure substances, by adding only one species
to the “mixture.”

If you like, you can carry out this process of mixture construction by calling Fortran procedures for each
step. But Cantera also provides a set of turn-key constructors that do all of this for you. For example, if
you want an object representing pure water (including vapor, liquid, and saturated states), all you need to
do is call constructor Water(). It takes care of installing the right equation of state and installing a single
species composed of two atoms of hydrogen and one of oxygen.

Or if you want an object that allows you to do kinetics calculations in in a way that is compatible with
the the CHEMKINTM package, just call constructor CKGas with your reaction mechanism input file as the
argument. CKGas installs the appropriate kinetics model, equation of state, and pure species property
parameterizations, and then adds the elements, species, and reactions specified in your input file. Using
CKGas, a complete object representing your reaction mechanism, ready for use in kinetics simulations, can
be constructed with a single function call.

In this chapter, we will take a first look at objects representing mixtures (and pure substances). We will have
much more to say about mixture objects in the next few chapters, where we will cover their thermodynamic
properties, kinetic rates, and transport properties.

2.1 Mixture Objects

2.1.1 The Fortran Mixture Object

The basic object type used to represent matter is type mixture t. As this name suggests, Cantera regards
all material systems as mixtures, although the term is used somewhat loosely, so that this type can represent
pure substances too. A pure substance is simply regarded as a mixture that happens to contain only one
species.

Objects representing mixtures are implemented in Fortran 90 by the derived type mixture t. Like all
Cantera objects, the mixture t object itself is very thin. It contains only 4 integers – the handle that is

13



(draft November 29, 2001)

used to access the underlying C++ object created by the constructor, the number of elements, the number of
species, and the number of reactions. All other information about the mixture is stored in the kernel-level
C++ object.

2.1.2 The Kernel Mixture Object

As mentioned above, the kernel mixture object has a modular structure, with interchangeable parts. The
basic structure is shown in Figure ??. A mixture object contains three major components, each of which
has specific responsibilities. The thermodynamic property manager handles all requests for thermodynamic
properties of any type; the transport property manager is responsible for everything to do with transport
properties, and the kinetics manager deals with everything related to homogeneous kinetics. We refer to
these three internal objects as the “property managers.”

The mixture object itself does not compute thermodynamic, transport, or kinetic properties; it simply directs
incoming requests for property values to the appropriate manager. It also mediates communication between
the property managers — if the transport manager needs a thermodynamic property, the mixture object gets
it from the thermodynamic property manager and hands it to the transport manager. The managers have
no direct links, making it possible to swap one out for another one of the same type without disrupting the
operation of the other property managers.

The mixture object does handle a few things itself. It serves as the interface to the application program,
maintains lists of species and element properties, stores and retrieves data specifying the state (internally
represented by temperature, density, and mass fractions), and orchestrates property updating when the state
has changed.

mixture t
Object type for mixtures.

nel integer . Number of elements

nsp integer . Number of species

nrxn integer . Number of reactions

hndl integer . Handle encoding pointer to the C++ object

2.2 Procedures

2.3 Constructors

2.3.1 Reacting Gas Mixtures

To carry out a kinetics simulation with Cantera, an object representing a chemically-reacting mixture is
required. While such an object can be created using the basic Mixture constructor and explicitly adding
all necessary components, it is usually more convenient to call a constructor that does all that for you and
returns a finished object, ready to use in simulations.

In this section, constructors that return objects that model reacting gas mixtures are described. These con-
structors typically parse an input file or files, which specify the elements, species, and reactions to be in-
cluded, and provide all necessary parameters needed by kinetic, thermodynamic, and transport managers.

14 Chapter 2. Mixtures



(draft November 29, 2001)

Transport

Mixture

Equation 
of State

Kinetics

Interface to application program
"Traffic director"
State-related operations
Manages elements and species
Property updating

Thermodyamic 
properties
 temperature
 pressure
 enthalpy
 internal energy
 entropy
 chemical potentials

Transport properties
 viscosity
 thermal conductivity
 binary diffusion coefficients
 multicomponent diffusion coefficients

Homogeneous Kinetics
 reaction rates of progress
 species creation and destruction rates
 equilibrium constants

Application Program

Figure 2.1: Top-level structure of mixture objects. Each

2.3. Constructors 15



(draft November 29, 2001)

Release Note: In this early release, the only reacting mixture model implemented is one
compatible with the model described in Kee et al. [1989]. The capability to define other
models is present in the kernel, however.

1) CKGas

Constructor CKGas implements a mixture model consistent with that described by Kee et al. [1989]. This
model is designed to be used to represent low-density, reacting gas mixtures. The mixture components
installed by this constructor are listed below.

Equation of State Manager. The IdealGasEOS equation of state manager is installed.

Species Thermodynamic Properties. The NASA polynomial parameterization is used to represent the
thermodynamic properties of the individual species. See ??

Kinetics. The CK Kinetics kinetics manager is used for homogeneous kinetics. See Chapter ??

Transport. The NullTransport transport manager is installed, disabling evaluation of transport prop-
erties until another manager is installed by calling setTransport. Other compatible transport
managers include MultiTransport and MixTransport.

Homogeneous Kinetics. The CK Kinetics model for homogeneous kinetics is used. See chapter ?? for
more information on this kinetics model.

Transport Properties. Transport properties are disabled by default, since many applications do not require
them. Any supported transport property model can be used, including MultiTransport and MixTrans-
port, which are compatible with the multicomponent and mixture-averaged models, respectively, de-
scribed by Kee et al. [1986], ?.

Syntax
object = CKGas(inputFile, thermoFile, iValidate)

Arguments

inputFile (Input) Input file. The input file defines the elements, species, and reactions the mixture
will contain. It is a text file, and must be in the format1 specified in Kee et al. [1989]. . This
file format is widely used to describe gas-phase reaction mechanisms, and several web sites
have reaction mechanisms in CK format available for download. A partial list of such sites is
maintained at the Cantera User’s Group site http://groups.yahoo.com/group/cantera. If omitted,
an empty mixture object is returned.
Cantera actually defines several extensions to the format of Kee et al. [1989]. See Appendix ??
for a complete description of CK format with Cantera extensions. [character*(*)].

thermoFile (Input) CK-format species property database. Species property data may be specified
either in the THERMO block of the input file, or in thermoFile. If species data is present in both
files for some species, the input file takes precedence. Note that while thermoFile may be any
CK-format file, only its THERMO section will be read. If thermoFile is an empty string, then all
species data must be contained in the input file. [character*(*)].

1We refer to this format as “CK format”

16 Chapter 2. Mixtures



(draft November 29, 2001)

iValidate (Input) This flag determines the degree to which the reaction mechanism is validated
as the file is parsed. If omitted or zero, only basic validation that can be performed quickly is
done. If non-zero, extensive and possibly slow validation of the mechanism will be performed.
[integer].

Result
Returns an object of type mixture t.

Example

type(mixture_t) mix1, mix2, mix3
! all species data in ’mymech.inp’

mix1 = CKGas(’mymech.inp’)
! look for species data in ’thrm.dat’ if not in ’mech2.inp’

mix2 = CKGas(’mech2.inp’, ’thrm.dat’)
! turn on extra mechanism validation

mix3 = CKGas(’mech3.inp’, ’’, 1)

See Also
addDirectory, GRIMech30

2) GRIMech30

This constructor builds a mixture object corresponding to the widely-used natural gas combustion mecha-
nism GRI-Mech version 3.0 [Smith et al., 1997]. The mixture object created contains 5 elements, 53 species,
and 325 reactions.

Syntax
object = GRIMech30()

Result
Returns an object of type mixture t.

Description

The natural gas combustion mechanism GRI-Mech version 3.0 Smith et al. [1997] is widely-used for
general combustion calculations. [more...]

At present, this constructor simply calls the CKGas constructor with input file ‘grimech30.inp’. This
file is located in directory ‘data/CK/mechanisms’ within the ‘cantera-1.2’ tree. For this to work
correctly, environment variable CANTERA ROOT must be set as described in Chapter 1.

In a future relese, calling this constructor will generate a hard-coded version of GRI-Mech
3.0, that may be faster than the one generated by calling CKGas.

For more information on GRI-Mech, see http://www.me.berkeley.edu/gri mech

2.3. Constructors 17



(draft November 29, 2001)

Example

type(mixture_t) mix
mix1 = GRIMech30()

2.3.2 Pure Substance Constructors

In addition to the ideal gas mixtures discussed above, Cantera implements several non-ideal pure fluids.
These use accurate equations of state, and are valid in the vapor, liquid, and mixed liquid/vapor regions of
the phase diagram. In most cases, the equation of state parameterizations are taken from the compilation by
Reynolds [Reynolds, 1979].

The standard-state enthalpy of formation and absolute entropy have been adjusted to match the values in
the JANAF tables. These objects should therefore be thermodymamically consistent with most gas mixture
objects that use thermodynamic data obtained from fits to JANAF data.

3) Water

Constructs an object representing pure water, H2O.

Syntax
object = Water()

Result
Returns an object of type mixture t.

Description
The equation of state parameterization is taken from the compilation by Reynolds [1979]. The original
source is ?. The standard-state enthalpy of formation and the absolute entropy have been adjusted to
match the values in the JANAF tables.

Example

type(substance_t) h2o
h2o = Water()

4) Nitrogen

Construct an object representing nitrogen, N2.

Syntax
object = Nitrogen()

Result
Returns an object of type mixture t.

18 Chapter 2. Mixtures



(draft November 29, 2001)

Description
The equation of state parameterization is taken from the compilation by Reynolds [1979]. The original
source is Jacobsen et al. [1972]. The standard-state enthalpy of formation and the absolute entropy
have been adjusted to match the values in the JANAF tables.

Example

type(substance_t) subst
subst = Nitrogen()

5) Methane

Construct a pure substance object representing methane, CH4.

Syntax
object = Methane()

Result
Returns an object of type mixture t.

Description
The equation of state parameterization is taken from the compilation by Reynolds [1979]. The original
source is ?. The standard-state enthalpy of formation and the absolute entropy have been adjusted to
match the values in the JANAF tables.

Example

type(substance_t) subst
subst = Methane()

6) Hydrogen

Construct a pure substance object representing hydrogen, H2.

Syntax
object = Hydrogen()

Result
Returns an object of type mixture t.

Description
The equation of state parameterization is taken from the compilation by Reynolds [1979]. The original
source is ?. The standard-state enthalpy of formation and the absolute entropy have been adjusted to
match the values in the JANAF tables.

2.3. Constructors 19



(draft November 29, 2001)

Example

type(substance_t) subst
subst = Hydrogen()

7) Oxygen

Construct a pure substance object representing oxygen, O2.

Syntax
object = Oxygen()

Result
Returns an object of type mixture t.

Description
The equation of state parameterization is taken from the compilation by Reynolds [1979]. The original
source is ?. The standard-state enthalpy of formation and the absolute entropy have been adjusted to
match the values in the JANAF tables.

Example

type(substance_t) subst
subst = Oxygen()

Example 2.1

Constant-pressure lines for nitrogen are shown on a volume-temperature plot in Fig. 2.2. The
data for this plot were generated by the program below. Note that the state of the nitrogen object
may correspond to liquid, vapor, or saturated liquid/vapor.

program plotn2
use cantera
implicit double precision (a-h,o-z)
double precision pres(5),v(5)
data pres/1.d0, 3.d0, 10.d0, 30.d0, 100.d0/
type(substance_t) s
s = Nitrogen()
open(10,file=’plot.csv’,form=’formatted’)
t = minTemp(s)
do n = 1,100

t = t + 1.0
do j = 1,5

call setState_TP(s, t, OneAtm*pres(j))
v(j) = 1.0/density(s)

end do

20 Chapter 2. Mixtures



(draft November 29, 2001)

Temperature (K)

S
p

ec
ifi

c
V

ol
u

m
e

(m
3

/k
g)

75 100 125 150

10-2

10-1

1 atm

3 atm

10 atm

30 atm

100 atm

Figure 2.2: Isobars at 1, 3, 10, 30, and 100 atm for nitrogen.

write(10,20) t,(v(j), j = 1,5)
20 format(6(e14.5,’, ’))

end do
close(10)
stop
end

2.4 Utilities

The procedures in this section provide various utility functions.

8) addDirectory

Add a directory to the path to be searched for input files.

Syntax
call addDirectory(dirname)

Arguments

dirname (Input) Directory name [character*(*)].

2.4. Utilities 21



(draft November 29, 2001)

Description
Constructor functions may require data in external files. Cantera searches for these files first in the
local directory. If not found there and environment variable $CANTERA DATA DIR is set to a
directory name, then this directory will be searched. Additional directories may be added to the
search path by calling this subroutine.

Example

call addDirectory(’/usr/local/my_filea’)

9) delete

Deletes the kernel mixture object.

Syntax
call delete(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Description
When a mixture constructor is called, a kernel mixture object is dynamically allocated. This object
stores all data required to compute the mixture thermodynamic, kinetic, and transport properties. For
mixtures of many species, or ones with a large reaction mechanism, the size of the object may be large.
Calling this subroutine frees this memory. After deleting a mixture, the object must be constructed
again before using it.

10) ready

Returns true if the mixture has been successfully constructed and is ready for use.

Syntax
result = ready(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a logical value.

22 Chapter 2. Mixtures



(draft November 29, 2001)

11) copy

Copies one mixture object to another.

Syntax
call copy(dest, src)

Arguments

dest (Output) Mixture object [type(mixture t)].

src (Input) Mixture object [type(mixture t)].

Description
Performs a “shallow” copy of one mixture object to another. Note that the kernel object itself is not
copied, only the handle. Therefore, after calling copy, both objects point to the same kernel object.
The contents of dest are overwritten. Assigning one mixture to another invokes this procedure.

Example

use cantera
type(mixture_t) fluid1, fluid2, fluid3
fluid1 = Water()
fluid2 = Methane()
write(*,*) ’fluid1 ready: ’,ready(fluid1)
call delete(fluid1) ! fluid1 is now empty
write(*,*) ’fluid1 ready: ’,ready(fluid1)
call copy(fluid1, fluid2) ! now fluid1 is Methane too
write(*,*) ’fluid1 ready: ’,ready(fluid1)
fluid3 = fluid2 ! assignment calls ’copy’
write(*,*) critTemperature(fluid1)
write(*,*) critTemperature(fluid2)
write(*,*) critTemperature(fluid3)

Output:

fluid1 ready: T
fluid1 ready: F
fluid1 ready: T
190.555000000000
190.555000000000
190.555000000000

12) saveState

Write the interal thermodynamic state information to an array.

2.4. Utilities 23



(draft November 29, 2001)

Syntax
call saveState(mix, state)

Arguments

mix (Input) Mixture object [type(mixture t)].

state (Output) Array where state information will be stored [double precision array]. Must
be dimensioned at least as large as the number of species in mix + 2.

Description
calling saveStatewrites the internal data defining the thermodynamic state of a mixture object to
an array. It can later be restored by calling restoreState.

Example

use cantera
real(8) state(60) ! dimension at least (# of species) + 2
type(mixture_t) mix
mix = GRIMech30()
call setState_TPX(mix, 400.d0, OneAtm, ’N2:0.2, H2:0.8’)
write(*,*) entropy_mole(mix), moleFraction(mix,’N2’)
call saveState(mix, state)
call setState_TPX(mix, 1000.d0, 1.d3, ’N2:0.8, CH4:0.2’)
write(*,*) entropy_mole(mix), moleFraction(mix,’N2’)
call restoreState(mix, state)
write(*,*) entropy_mole(mix), moleFraction(mix,’N2’)

Output:

155555.372874368 0.200000000000000
236274.031245184 0.800000000000000
155555.372874368 0.200000000000000

13) restoreState

Restore the mixture state from the data in array state. written by a prior call to saveState.

Syntax
call restoreState(mix, state)

Arguments

mix (Input) Mixture object [type(mixture t)].

state (Output) Array where state information will be stored [double precision array]. Must
be dimensioned at least as large as the number of species in mix + 2.

Example see the example for procedure 12.

24 Chapter 2. Mixtures



(draft November 29, 2001)

2.5 Number of Elements, Species, and Reactions

14) nElements

Number of elements.

Syntax
result = nElements(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a integer value.

Example

nel = nElements(mix)

15) nSpecies

Number of species.

Syntax
result = nSpecies(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a integer value.

Example

use cantera
type(mixture_t) mix
mix = GRIMech30()
write(*,*) ’number of species = ’,nSpecies(mix)

Output:

number of species = 53

2.5. Number of Elements, Species, and Reactions 25



(draft November 29, 2001)

16) nReactions

Number of reactions.

Syntax
result = nReactions(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a integer value.

Example

use cantera
type(mixture_t) mix
mix = GRIMech30()
write(*,*) ’number of reactions = ’,nReactions(mix)

Output:

number of reactions = 325

2.6 Mixture Creation

The procedures in this section are designed to allow creation of arbitrary custom mixtures from Fortran. To
use these procedures, first construct a skeleton mixture object using constructor Mixture. This returns an
“empty” mixture — one that has no constituents, and with do-nothing “null” property managers installed. By
adding elements and species, and installing managers for thermodynamic properties, kinetics, and transport
properties, arbitrary mixtures can be constructed.

Release Note: These capabilities are not yet fully functional in the Fortran yet. More pro-
cedures will be added soon.

17) Mixture

Construct an empty mixture object with no constituents or property managers.

Syntax
object = Mixture()

Result
Returns an object of type mixture t.

26 Chapter 2. Mixtures



(draft November 29, 2001)

Description
This constructor creates a skeleton object, to which individual components may be added by calling
the procedures below.

Example

type(mixture_t) mix
mix = Mixture()

18) addElement

Add an element to the mixture.

Syntax
call addElement(mix, name, atomicWt)

Arguments

mix (Input) Mixture object [type(mixture t)].

name (Input) Element name [character*(*)].

atomicWt (Input) Atomic weight in amu [double precision].

Example

type(mixture_t) mix
mix = Mixture()
call addElement(’Si’, 28.0855)
call addElement(’H’, 1.00797)
...
! add species, reactions, etc. (not yet implemented)
...

2.7 Properties of the Elements

The elements in a mixture are the entities that species are composed from, and must be conserved by re-
actions. Usually these correspond to elements of the periodic table, or one of their isotopes. However, for
reactions involving charged species, it is useful to define some charged entity (usually an electron) as an
element, to insure that all reactions conserve charge.

19) getElementNames

Get the names of the elements.

2.7. Properties of the Elements 27



(draft November 29, 2001)

Syntax
call getElementNames(mix, enames)

Arguments

mix (Input) Mixture object [type(mixture t)].

enames (Output) Element names [character*(*) array]. Must be dimensioned at least as large
as the number of elements in mix.

Description
The element names may be strings of any length. If they names are longer than the number of charac-
ters in each entry of the enames array, the returned names will be truncated.

20) elementIndex

Index number of an element.

Syntax
result = elementIndex(mix, name)

Arguments

mix (Input) Mixture object [type(mixture t)].

name (Input) Element name [character*(*)].

Result
Returns a integer value.

If the element is not present in the mixture, the value -1 is returned.

Description
The index number corresponds to the order in which the element was added to the mixture. The first
element added has index number 1, the second has index number 2, and so on. All arrays of element
properties (e.g., names, atomic weights) are ordered by index number.

Example

! v1 contains element properties ordered as listed in mech1.inp.
! copy these values to the the positions in array v2 which is
! ordered as in ’mech2.inp’

type(mixture_t) mix, mix2
mix1 = CKGas(’mech1.inp’)
mix2 = CKGas(’mech2.inp’)
do i = 1,nElements(mix1)

ename = elementName(i)
loc2 = elementIndex(mix2, ename)
v2[loc2] = v1[i]

end do

28 Chapter 2. Mixtures



(draft November 29, 2001)

See Also
speciesIndex

21) atomicWeight

The atomic weight of the mth element [kg/kmol].

Syntax
result = atomicWeight(mix, m)

Arguments

mix (Input) Mixture object [type(mixture t)].

m (Input) Element index [integer].

Result
Returns a double precision value.

Example

character(20) names(10)
call getElementNames(mix, names)
do m = 1, nElements(mix)
write(*,*) names(m), atomicWeight(mix, m)

end do

2.8 Properties of the Species

The species are defined so that any achievable chemical composition for the mixture can be represented by
specifying the mole fraction of each species. In gases, the species generally correspond to distinct molecules,
atoms, or ions, and each is composed of integral numbers of atoms of the elements.

However, if the gas mixture contains molecules with populated metastable states, then to fully represent any
possible mixture composition, these states (or groups of them) must also be defined as species. Common
examples of such long-lived metastable states include singlet ∆ oxygen and singlet methylene.

In solid or liquid solutions, it may be necessary to define species composed of non-integral numbers of
elements. This is acceptable, as long as all realizable states of the mixture correspond to some set of mole
fractions for the species so defined.

22) nAtoms

Number of atoms of element m in species k

2.8. Properties of the Species 29



(draft November 29, 2001)

Syntax
result = nAtoms(mix, k, m)

Arguments

mix (Input) Mixture object [type(mixture t)].

k (Input) Species index [integer].

m (Input) Element index [integer].

Result
Returns a double precision value.

Non-integral and/or negative values are allowed. For example, if an electron is defined to be an
element, then a positive ion has a negative number of “atoms” of this element.

23) charge

Electrical charge of the kth species, in multiples of e, the magnitude of the electron charge.

Syntax
result = charge(mix, k)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

k (Input) Species index [integer].

Result
Returns a double precision value.

In most cases, the charge is integral, but non-integral values are allowed.

24) speciesIndex

Index number of a species.

Syntax
result = speciesIndex(mix, name)

Arguments

mix (Input) Mixture object [type(mixture t)].

name (Input) Species name [character*(*)].

30 Chapter 2. Mixtures



(draft November 29, 2001)

Result
Returns a integer value.

Description
The index number corresponds to the order in which the species was added to the mixture. All species
property arrays are ordered by index number.

25) getSpeciesNames

Get the array of species names.

Syntax
call getSpeciesNames(mix, snames)

Arguments

mix (Input) Mixture object [type(mixture t)].

snames (Output) Array of species names [character*(*) array]. Must be dimensioned at least as
large as the number of species in mix.

Description
The species names may be strings of any length. If the species names are longer than the number of
characters in each element of the snames array, the returned names will be truncated.

26) molecularWeight

The molecular weight of species k [amu].

Syntax
result = molecularWeight(mix, k)

Arguments

mix (Input) Mixture object [type(mixture t)].

k (Input) Species index [integer].

Result
Returns a double precision value.

2.8. Properties of the Species 31



(draft November 29, 2001)

27) getMolecularWeights

Get the array of species molecular weights.

Syntax
call getMolecularWeights(mix, molWts)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

molWts (Output) Species molecular weights [double precision array]. Must be dimensioned at
least as large as the number of species in mix.

2.9 Mixture Composition

The mixture composition may be specified by mole fractions, mass fractions, or concentrations. The proce-
dures described here set or get the mixture composition. Additional procedures that set the composition are
described in the next chapter.

28) setMoleFractions

Set the species mole fractions, holding the temperature and mass density fixed.

Syntax
call setMoleFractions(mix, moleFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

moleFracs (Input) Species mole fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

29) setMoleFractions NoNorm

Set the species mole fractions without normalizing them to sum to 1.

Syntax
call setMoleFractions NoNorm(mix, moleFracs)

Arguments

32 Chapter 2. Mixtures



(draft November 29, 2001)

mix (Input / Output) Mixture object [type(mixture t)].

moleFracs (Input) Species mole fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

Description
This procedure is designed for use when perturbing the composition, for example when computing
Jacobians.

30) setMassFractions

Set the species mass fractions, holding the temperature and mass density fixed.

Syntax
call setMassFractions(mix, massFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

massFracs (Input) Species mass fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

31) setMassFractions NoNorm

Set the species mass fractions without normalizing them to sum to 1.

Syntax
call setMassFractions NoNorm(mix, y)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

y (Input) Species mass fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

Description
This procedure is designed for use when perturbing the composition, for example when computing
Jacobians.

2.9. Mixture Composition 33



(draft November 29, 2001)

32) setConcentrations

Set the species concentrations, holding the temperature fixed.

Syntax
call setConcentrations(mix, conc)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

conc (Input) Species concentrations [kmol/m3] [double precision array]. Must be dimen-
sioned at least as large as the number of species in mix.

33) moleFraction

Mole fraction of one species.

Syntax
result = moleFraction(mix, name)

Arguments

mix (Input) Mixture object [type(mixture t)].

name (Input) Species name [character*(*)].

Result
Returns a double precision value.

Description
The mole fraction of the species with name name is returned. If no species in the mixture has this
name, the value zero is returned.

34) massFraction

Mass fraction of one species.

Syntax
result = massFraction(mix, name)

Arguments

mix (Input) Mixture object [type(mixture t)].

34 Chapter 2. Mixtures



(draft November 29, 2001)

name (Input) Species name [character*(*)].

Result
Returns a double precision value.

Description
The mass fraction of the species with name name is returned. If no species in the mixture has this
name, the value zero is returned.

35) getMoleFractions

Get the array of species mole fractions.

Syntax
call getMoleFractions(mix, moleFracs)

Arguments

mix (Input) Mixture object [type(mixture t)].

moleFracs (Input / Output) Species mole fractions [double precision array]. Must be dimensioned
at least as large as the number of species in mix.

36) getMassFractions

Get the array of species mass fractions.

Syntax
call getMassFractions(mix, massFracs)

Arguments

mix (Input) Mixture object [type(mixture t)].

massFracs (Input / Output) Species mass fractions [double precision array]. Must be dimensioned
at least as large as the number of species in mix.

37) getConcentrations

Get the array of species concentrations.

2.9. Mixture Composition 35



(draft November 29, 2001)

Syntax
call getConcentrations(mix, concentrations)

Arguments

mix (Input) Mixture object [type(mixture t)].

concentrations(Input / Output) Species concentrations. [kmol/m3] [double precision array]. Must be
dimensioned at least as large as the number of species in mix.

2.10 Mean Properties

These procedures return weighted averages of pure-species properties.

38) mean X

Return
∑

k QkXk, the mole-fraction-weighted mean value of pure species molar property Q.

Syntax
result = mean X(mix, Q)

Arguments

mix (Input) Mixture object [type(mixture t)].

Q (Input) Array of species molar property values [double precision array]. Must be di-
mensioned at least as large as the number of species in mix.

Result
Returns a double precision value.

39) mean Y

Return
∑

k QkYk, the mass-fraction-weighted mean value of pure species specific property Q.

Syntax
result = mean Y(mix, Q)

Arguments

mix (Input) Mixture object [type(mixture t)].

Q (Input) Array of species specific property values [double precision array]. Must be
dimensioned at least as large as the number of species in mix.

Result
Returns a double precision value.

36 Chapter 2. Mixtures



(draft November 29, 2001)

40) meanMolecularWeight

The mean molecular weight [amu].

Syntax
result = meanMolecularWeight(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

Description
The mean molecular weight is defined by

M =
∑
k

MkXk. (2.1)

An equivalent alternative expression is

1
M

=
∑
k

Yk

Mk
(2.2)

See Also
molecularWeight

41) sum xlogQ

Given a vector Q, returns
∑

k Xk log Qk.

Syntax
result = sum xlogQ(mix, Q)

Arguments

mix (Input) Mixture object [type(mixture t)].

Q (Output) Array of species property values [double precision array]. Must be dimen-
sioned at least as large as the number of species in mix.

Result
Returns a double precision value.

2.10. Mean Properties 37



(draft November 29, 2001)

This box will be replaced by an introduction discussing equations of state, models imple-
mented in Cantera, etc...

In the last chapter, we saw how to create a basic mixture object. In this chapter, we’ll look at how to set the
thermodynamic state in various ways, and compute various thermodynamic properties.

eos t

hndl integer . Handle encoding pointer to the C++ object

2.11 Procedures

2.12 The Thermodynamic State

Although a long list of properties of a mixture can be written down, most of them are not independent —
once a few values have been specified, all the rest are fixed.

The number of independent properties is equal to the number of different ways any one property can be
altered. If we consider the Gibbs equation written for dU

dU = TdS − PdV +
∑
k

µkNk, (2.3)

we see that U can be changed by heat addition (TdS) or by compression (−PdV ), or by changing any one
of K mole numbers. Therefore, the number of degrees of freedom is K + 2.

However, if we are interested only in the intensive state, there are only K + 1 independently variable
parameters, since one degree of freedom simply sets the total mass or number of moles.

The thermodynamic state is determined by specifying any K + 1 independent property values. Of these,
K − 1 specify the composition, and are usually taken to be either mole fractions or mass fractions, although
the chemical potentials can be used too. The two remaining can be any two independent mixture properties.

These procedures described here set the thermodynamic state of a mixture, or modify its current state.

Procedures that set the mole fractions or mass fractions take an array of K values, even though only K − 1
are independent. Unless otherwise noted, these input values will be internally normalized to satisfy∑

k

Xk = 1 (2.4)

or ∑
k

Yk = 1. (2.5)

For those procedures that take as an argument the internal energy, enthalpy, or entropy, the value per unit
mass must be used.

38 Chapter 2. Mixtures



(draft November 29, 2001)

2.12.1 Setting the State

The procedures described below set the full thermodynamic state of a mixture. They take as arguments two
thermodynamic properties and an array or string that specifies the composition. The state of the mixture
after calling any of these is independent of its state prior to the call.

42) setState TPX

Set the temperature, pressure, and mole fractions.

Syntax
call setState TPX(mix, t, p, moleFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

p (Input) Pressure [Pa] [double precision].

moleFracs (Input) Species mole fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

Description
There are two versions of setState TPX. This one uses an array to specify the mole fractions, and
the other (below) uses a string.

Example

double precision x(100)
...
t = 1700.d0
p = 0.1 * OneAtm
do k=1,nSpecies(mix)

x(k) = 0.d0
end do
i_nh3 = speciesIndex(mix, ’NH3’)
i_h2 = speciesIndex(mix, ’H2’)
x(i_nh3) = 2.d0
x(i_h2) = 1.d0
call setState_TPX(mix, t, p, x)

43) setState TPX

Set the temperature, pressure, and mole fractions.

2.12. The Thermodynamic State 39



(draft November 29, 2001)

Syntax
call setState TPX(mix, t, p, moleFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

p (Input) Pressure [Pa] [double precision].

moleFracs (Input) Species mole fraction string [character*(*)].

Description
There are two versions of setState TPX. This one uses a string to specify the mole fractions, and
the other (above) uses an array. The string should contain comma-separated name/value pairs, each
of which is separated by a colon, such as ’CH4:1, O2:2, N2:7.52’. The values do not need to sum to
1.0 - they will be internally normalized. The mole fractions of all other species in the mixture are set
to zero.

Example

real(8) t, p
character(50) x
t = 300.d0
p = OneAtm
x = ’H2:3, SIH4:0.1, AR:60’
call setState_TPX(t, p, x)

44) setState TPY

Set the temperature, pressure, and mass fractions.

Syntax
call setState TPY(mix, t, p, massFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

p (Input) Pressure [Pa] [double precision].

massFracs (Input) Species mass fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

Description
There are two versions of setState TPY. This one uses an array to specify the mass fractions, and
the other (below) uses a string.

40 Chapter 2. Mixtures



(draft November 29, 2001)

45) setState TPY

Set the temperature, pressure, and mass fractions.

Syntax
call setState TPY(mix, t, p, massFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

p (Input) Pressure [Pa] [double precision].

massFracs (Input) Species mass fraction string [character*(*)].

Description
There are two versions of setState TPY. This one uses a string to specify the mole fractions, and
the other (above) uses an array. The string should contain comma-separated name/value pairs, each
of which is separated by a colon, such as ’CH4:2, O2:1, N2:10’ (the values do not need to sum to 1.0
- they will be internally normalized). The mass fractions of all other species in the mixture will be set
to zero.

Example

real(8) t, p
character(50) x
t = 300.d0
p = OneAtm
x = ’H2O:5, NH3:0.1, N2:20’
call setState_TPY(t, p, x)

46) setState TRX

Set the temperature, density, and mole fractions.

Syntax
call setState TRX(mix, t, density, moleFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

density (Input) Density [kg/m3] [double precision].

moleFracs (Input) Species mole fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

2.12. The Thermodynamic State 41



(draft November 29, 2001)

47) setState TRY

Set the temperature, density, and mass fractions.

Syntax
call setState TRY(mix, t, density, massFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

density (Input) Density [kg/m3] [double precision].

massFracs (Input) Species mass fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

2.12.2 Modifying the Current State

The procedures in this section set only one or two properties, leaving the temperature, density, and/or com-
position unchanged.

48) setTemperature

Set the temperature, holding the mass density and composition fixed.

Syntax
call setTemperature(mix, temp)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

temp (Input) Temperature [K]. [double precision].

49) setDensity

Set the density, holding the temperature and composition fixed.

Syntax
call setDensity(mix, density)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

density (Input) Density [kg/m3] [double precision].

42 Chapter 2. Mixtures



(draft November 29, 2001)

50) setState TP

Set the temperature and pressure, holding the composition fixed.

Syntax
call setState TP(mix, t, p)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

p (Input) Pressure [Pa] [double precision].

51) setState PX

Set the pressure and mole fractions, holding the temperature fixed.

Syntax
call setState PX(mix, p, x)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

p (Input) Pressure [Pa] [double precision].

x (Input) Species mole fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

52) setState PY

Set the pressure and mass fractions, holding the temperature fixed.

Syntax
call setState PY(mix, p, massFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

p (Input) Pressure [Pa] [double precision].

massFracs (Input) Species mass fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

2.12. The Thermodynamic State 43



(draft November 29, 2001)

53) setPressure

Set the pressure, holding the temperature and composition fixed.

Syntax
call setPressure(mix, p)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

p (Input) Pressure [Pa] [double precision].

54) setState TR

Set the temperature and density, holding the composition fixed.

Syntax
call setState TR(mix, t, rho)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

rho (Input) Density [kg/m3] [double precision].

55) setState TX

Set the temperature and mole fractions, holding the density fixed.

Syntax
call setState TX(mix, t, moleFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

moleFracs (Input / Output) Species mole fractions [double precision array]. Must be dimensioned
at least as large as the number of species in mix.

44 Chapter 2. Mixtures



(draft November 29, 2001)

56) setState TY

Set the temperature and mass fractions, holding the density fixed.

Syntax
call setState TY(mix, t, massFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

massFracs (Input) Species mass fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

57) setState RX

Set the density and mole fractions, holding the temperature fixed.

Syntax
call setState RX(mix, density, moleFracs)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

density (Input) Density [kg/m3] [double precision].

moleFracs (Input) Species mole fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

58) setState RY

Set the density and mass fractions, holding the temperature fixed.

Syntax
call setState RY(mix, density, y)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

density (Input) Density [kg/m3] [double precision].

y (Input) Species mass fractions [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

2.12. The Thermodynamic State 45



(draft November 29, 2001)

59) setState HP

Set the specific enthalpy and pressure, holding the composition fixed.

Syntax
call setState HP(mix, t, p)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Specific enthaply [J/kg] [double precision].

p (Input) Pressure [Pa] [double precision].

Description

This procedure uses a Newton method to find the temperature at which the specific enthalpy has the
desired value. The iteration proceeds until the temperature changes by less than 0.001 K. At this
point, the state is set to the new temperature value, and the procedure returns. The iterations are done
at constant pressure and composition.

This algorithm always takes at least one Newton step. Therefore, small perturbations to the input
enthalpy should produce a first-order change in temperature, even if it is well below the temperature
error tolerance, allowing its use in routines that calculate derivatives or Jacobians. To test this, in the
example below, the specific heat is calculated numerically using this procedure, and compared to the
value obtained directly from its parameterization (here a polynomial). (Note that this is not the most
direct way to calculate cp numerically – normally, T would be perturbed, not h.)

Example

use cantera
real(8) h0, t1, t2, state(100)
type(mixture_t) mix
mix = GRIMech30()

call setState_TPX(mix,2000.d0,OneAtm,’CH4:1,O2:2’)
call saveState(mix, state)
h0 = enthalpy_mass(mix)
call setState_HP(mix, h0, OneAtm)
t1 = temperature(mix)
call setState_HP(mix, h0 + h0*1.d-8, OneAtm)
t2 = temperature(mix)
call restoreState(mix, state)
write(*,*) (h0*1.d-8)/(t2 - t1), cp_mass(mix)
return

Output:

2199.12043414729 2199.12045953925

46 Chapter 2. Mixtures



(draft November 29, 2001)

60) setState UV

Set the specific internal energy and specific volume, holding the composition constant.

Syntax
call setState UV(mix, t, p)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Specific internal energy [J/kg] [double precision].

p (Input) Specific volume [m3/kg] [double precision].

Description
See the discussion of procedure setState HP, procedure number 59.

61) setState SP

Set the specific entropy and pressure, holding the composition constant.

Syntax
call setState SP(mix, t, p)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

t (Input) Specific entropy [J/kg/K] [double precision].

p (Input) Pressure [Pa] [double precision].

Description
See the discussion of procedure setState HP, procedure number 59.

62) setState SV

Set the specific entropy and specific volume, holding the composition constant.

Syntax
call setState SV(mix, t, p)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

2.12. The Thermodynamic State 47



(draft November 29, 2001)

t (Input) Specific entropy [J/kg/K] [double precision].

p (Input) Specific volume [m3/kg] [double precision].

Description
See the discussion of procedure setState HP, procedure number 59.

2.13 Species Ideal Gas Properties

The procedures in this section return non-dimensional ideal gas thermodynamic properties of the pure
species at the standard-state pressure P0 and the mixture temperature T .As discussed in Section ??, the
properties of any non-ideal mixture can be determined given the mechanical equation of state P (T, ρ) and
the pure-species properties evaluated for the low-density, ideal-gas limit. The procedures below return ar-
rays of pure species ideal gas properties. For those that depend on ln ρ, the values are scaled to a density
ρ = P0/RT , where P0 is the standard-state pressure.

63) getEnthalpy RT

Get the array of pure-species non-dimensional enthalpies

ĥk(T, P0)/R̂T, k = 1 . . . K. (2.6)

Syntax
call getEnthalpy RT(mix, h RT)

Arguments

mix (Input) Mixture object [type(mixture t)].

h RT (Output) Array of non-dimensional pure species enthalpies [double precision array].
Must be dimensioned at least as large as the number of species in mix.

64) getGibbs RT

Get the array of pure-species non-dimensional Gibbs functions

ĝk(T, P0)/R̂T, k = 1 . . . K. (2.7)

Syntax
call getGibbs RT(mix, g RT)

48 Chapter 2. Mixtures



(draft November 29, 2001)

Arguments

mix (Input) Mixture object [type(mixture t)].

g RT (Output) Array of non-dimensional pure species Gibbs functions [double precision ar-
ray]. Must be dimensioned at least as large as the number of species in mix.

65) getCp R

Get the array of pure-species non-dimensional heat capacities at constant pressure

ĉp,k(T, P0)/R̂, k = 1 . . . K. (2.8)

Syntax
call getCp R(mix, cp R)

Arguments

mix (Input) Mixture object [type(mixture t)].

cp R (Output) Array of non-dimensional pure species heat capacities at constant pressure
[double precision array]. Must be dimensioned at least as large as the number of species in mix.

66) getEntropy R

Get the array of pure-species non-dimensional entropies

ŝk(T, P0)/R̂, k = 1 . . . K. (2.9)

Syntax
call getEntropy R(mix, s R)

Arguments

mix (Input) Mixture object [type(mixture t)].

s R (Output) Array of non-dimensional pure species entropies [double precision array].
Must be dimensioned at least as large as the number of species in mix.

2.14 Attributes of the Parameterization

These procedures return attributes of the thermodynamic property parameterization used.

2.14. Attributes of the Parameterization 49



(draft November 29, 2001)

67) minTemp

Lowest temperature for which the thermodynamic properties are valid [K].

Syntax
result = minTemp(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

68) maxTemp

Highest temperature for which the thermodynamic properties are valid [K].

Syntax
result = maxTemp(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

69) refPressure

The reference (standard-state) pressure P0. Species thermodynamic property data are specified as a function
of temperature at pressure P0. Usually, P0 is 1 atm, but some property data sources use 1 bar. Any choice is
acceptable, as long as the data for all species in the mixture use the same one.

Syntax
result = refPressure(mix)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

Result
Returns a double precision value.

50 Chapter 2. Mixtures



(draft November 29, 2001)

2.15 Mixture Thermodynamic Properties

2.15.1 Temperature, Pressure, and Density

70) temperature

The temperature [K].

Syntax
result = temperature(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

71) density

The density [kg/m3].

Syntax
result = density(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

72) molarDensity

The number of moles per unit volume [kmol/m3].

Syntax
result = molarDensity(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

2.15. Mixture Thermodynamic Properties 51



(draft November 29, 2001)

73) pressure

The pressure [Pa].

Syntax
result = pressure(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

2.15.2 Molar Mixture Properties

The procedures in this section all return molar thermodynamic properties. The names all end in mole,
which should be read as “per mole.”

74) enthalpy mole

Molar enthalpy [J/kmol]

Syntax
result = enthalpy mole(mix)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

Result
Returns a double precision value.

75) intEnergy mole

Molar internal energy [J/kmol]

Syntax
result = intEnergy mole(mix)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

52 Chapter 2. Mixtures



(draft November 29, 2001)

Result
Returns a double precision value.

76) entropy mole

Molar entropy [J/kmol/K]

Syntax
result = entropy mole(mix)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

Result
Returns a double precision value.

77) gibbs mole

Molar Gibbs function [J/kmol/K]

Syntax
result = gibbs mole(mix)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

Result
Returns a double precision value.

78) cp mole

Molar heat capacity at constant pressure [J/kmol/K]

Syntax
result = cp mole(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

2.15. Mixture Thermodynamic Properties 53



(draft November 29, 2001)

79) cv mole

Molar heat capacity at constant volume [J/kmol/K]

Syntax
result = cv mole(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

80) getChemPotentials RT

Get the species chemical potentials [J/kmol].

Syntax
call getChemPotentials RT(mix, mu)

Arguments

mix (Input) Mixture object [type(mixture t)].

mu (Output) Species chemical potentials [double precision array]. Must be dimensioned at
least as large as the number of species in mix.

2.15.3 Specific Mixture Properties

The procedures in this section all return thermodynamic properties per unit mass. The names all end in
mass, which should be read as “per (unit) mass.”

81) enthalpy mass

Specific enthalpy [J/kg]

Syntax
result = enthalpy mass(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

54 Chapter 2. Mixtures



(draft November 29, 2001)

82) intEnergy mass

Specific internal energy [J/kg]

Syntax
result = intEnergy mass(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

83) entropy mass

Specific entropy [J/kg/K]

Syntax
result = entropy mass(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

84) gibbs mass

Specific Gibbs function [J/kg]

Syntax
result = gibbs mass(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

2.15. Mixture Thermodynamic Properties 55



(draft November 29, 2001)

85) cp mass

Specific heat at constant pressure [J/kg/K]

Syntax
result = cp mass(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

86) cv mass

Specific heat at constant volume [J/kg/K]

Syntax
result = cv mass(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

2.16 Potential Energy

For problems in which external conservative fields play an important role, it may be desirable to assign
potential energies to the species. The potential energy adds to the internal energy, but does not affect the
entropy. Species-specific potential energies (for example, proportional to charge) can alter the reaction
equilibrium constants, and therefore both kinetics and the chemical equilibrium composition. These effects
are important in electrochemistry

87) setPotentialEnergy

Set the potential energy of species k [J/kmol] due to external conservative fields (electric, gravitational, or
other). Default: 0.0.

56 Chapter 2. Mixtures



(draft November 29, 2001)

Syntax
call setPotentialEnergy(mix, k, pe)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

k (Input) Species index [integer].

pe (Input) Potential energy [double precision].

88) potentialEnergy

The potential energy of species k.

Syntax
result = potentialEnergy(mix, k)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

k (Input) Species index [integer].

Result
Returns a double precision value.

2.17 Critical State Properties

These procedures return parameters of the critical state. Not all equation of state managers implement these,
in which case the value Undefined is returned.

89) critTemperature

The critical temperature [K].

Syntax
result = critTemperature(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

2.17. Critical State Properties 57



(draft November 29, 2001)

90) critPressure

The critical pressure [Pa].

Syntax
result = critPressure(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

Example

use cantera
type(mixture_t) h2o
h2o = Water()
write(*,*) ’Pcrit = ’,critPressure(h2o)

Output:

Pcrit = 22089000.0000000

2.18 Saturation Properties

These procedures are only implemented by models that treat saturated liquid/vapor states. Calling them with
any other equation of state manager installed will result in an error.

91) satTemperature

The saturation temperature at pressure p [K]. An error results if P > Pcrit.

Syntax
result = satTemperature(mix, p)

Arguments

mix (Input) Mixture object [type(mixture t)].

p (Input) Pressure [Pa] [double precision].

Result
Returns a double precision value.

Example

58 Chapter 2. Mixtures



(draft November 29, 2001)

use cantera
type(mixture_t) h2o
h2o = Water()
write(*,*) ’Tsat @ 1 atm = ’,satTemperature(h2o,OneAtm)

Output:

Tsat @ 1 atm = 373.177232956890

92) satPressure

The saturation pressure (vapor pressure) at temperature t [K]. An error results if T > Tcrit.

Syntax
result = satPressure(mix, t)

Arguments

mix (Input) Mixture object [type(mixture t)].

t (Input) Temperature [K] [double precision].

Result
Returns a double precision value.

Example

use cantera
type(mixture_t) h2o
h2o = Water()
write(*,*) ’Psat @ 300 K = ’,satPressure(h2o,300.d0)

Output:

Psat @ 300 K = 3528.21380534104

2.19 Equations of State

93) equationOfState

Return the equation of state object.

Syntax
result = equationOfState(mix)

2.19. Equations of State 59



(draft November 29, 2001)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

Result
Returns a type(eos t) value.

94) setEquationOfState

Set the equation of state.

Syntax
call setEquationOfState(mix, eos)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

eos (Input / Output) Equation of state object [type(eos t)].

60 Chapter 2. Mixtures



(draft November 29, 2001)

CHAPTER

THREE

Chemical Equilibrium

A discussion of chemical equilibrium, the solver algorithm, etc. will soon replace this box...

95) equilibrate

Chemically equilibrate a mixture.

Syntax
call equilibrate(mix, propPair)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

propPair (Input) Property pair to hold fixed [character*(*)].

Description
This subroutine sets the mixture to a state of chemical equilibrium, holding two thermodynamic prop-
erties fixed at their initial values. The pair of properties is specified by a two-character string, as
shown in the table below.

String Property 1 Property 2
TP temperature pressure
TV temperature specific volume
HP specific enthalpy pressure
SP specific entropy pressure
SV specific entropy specific volume
UV specific internal energy specific volume

Example

use cantera
type(mixture_t) mix
mix = GRIMech30()
call setState_TPX(mix, 300.d0, OneAtm,

61



(draft November 29, 2001)

$ ’CH4:0.9, O2:2, N2:7.52’)
call equilibrate(mix,’HP’)
call printSummary(mix, 6)

Output:

temperature 2134.24 K
pressure 101325 Pa
density 0.158033 kg/mˆ3

mean mol. weight 27.6748 amu

1 kg 1 kmol
----------- ------------

enthalpy -230208 -6.371e+006 J
internal energy -871370 -2.412e+007 J

entropy 9727.6 2.692e+005 J/K
Gibbs function -2.09912e+007 -5.809e+008 J

heat capacity c_p 1484.63 4.109e+004 J/K
heat capacity c_v 1184.22 3.277e+004 J/K

X Y
------------- ------------

H2 9.339031e-004 6.802905e-005
H 1.174265e-004 4.276898e-006
O 2.387901e-004 1.380495e-004

O2 1.847396e-002 2.136037e-002
OH 2.687186e-003 1.651391e-003

H2O 1.699745e-001 1.106474e-001
HO2 9.949030e-007 1.186585e-006
H2O2 6.557154e-008 8.059304e-008

C 4.158314e-019 1.804749e-019
CH 4.275343e-020 2.011257e-020

CH2 1.037590e-019 5.259063e-020
CH2(S) 0.000000e+000 0.000000e+000

CH3 5.912788e-019 3.212273e-019
CH4 2.440321e-019 1.414648e-019
CO 2.327608e-003 2.355844e-003

CO2 8.382804e-002 1.333077e-001
HCO 7.389023e-011 7.747780e-011
CH2O 8.885994e-013 9.641078e-013

CH2OH 1.132705e-018 1.270211e-018
CH3O 1.686218e-020 1.890919e-020

CH3OH 7.627499e-020 8.831259e-020
C2H 0.000000e+000 0.000000e+000
C2H2 0.000000e+000 0.000000e+000
C2H3 0.000000e+000 0.000000e+000
C2H4 0.000000e+000 0.000000e+000
C2H5 0.000000e+000 0.000000e+000

62 Chapter 3. Chemical Equilibrium



(draft November 29, 2001)

C2H6 0.000000e+000 0.000000e+000
HCCO 0.000000e+000 0.000000e+000

CH2CO 0.000000e+000 0.000000e+000
HCCOH 0.000000e+000 0.000000e+000

N 4.723857e-009 2.390824e-009
NH 5.297876e-010 2.874303e-010

NH2 1.590979e-010 9.211144e-011
NH3 4.043624e-010 2.488376e-010
NNH 2.194905e-010 2.301699e-010
NO 3.077021e-003 3.336222e-003

NO2 1.281909e-006 2.130992e-006
N2O 1.649231e-007 2.622863e-007
HNO 2.693730e-008 3.018755e-008
CN 2.467159e-015 2.319442e-015

HCN 7.246531e-013 7.076590e-013
H2CN 8.061030e-020 8.165586e-020
HCNN 0.000000e+000 0.000000e+000
HCNO 6.903304e-018 1.073236e-017
HOCN 1.190410e-013 1.850695e-013
HNCO 5.138356e-011 7.988446e-011
NCO 2.247139e-012 3.411713e-012
N2 7.183390e-001 7.271270e-001
AR 0.000000e+000 0.000000e+000

C3H7 0.000000e+000 0.000000e+000
C3H8 0.000000e+000 0.000000e+000

CH2CHO 0.000000e+000 0.000000e+000
CH3CHO 0.000000e+000 0.000000e+000

63



(draft November 29, 2001)

64



(draft November 29, 2001)

CHAPTER

FOUR

Homogeneous Kinetics

A discussion of homogeneous kinetics models, kinetics managers, etc. will soon replace
this box...

4.1 Procedures

96) getReactionString

Reaction equation string.

Syntax
call getReactionString(mix, i, rxnString)

Arguments

mix (Input) Mixture object [type(mixture t)].

i (Input) Reaction index [integer].

rxnString (Output) Reaction equation string [character*(*)].

Description

This procedure generates the reaction equation as a character string. The notation of Kee et al. [1989]
is used. In particular,

1. The reactants and products are separated by ’<=>’ for reversible reactions, and by ’=>’ for
irreversible ones;

2. For pressure-dependent falloff reactions in which any species can act as a third-body collision
partner, the participation of the third body is denoted by ’(+ M)’. If only one species acts as
the third body, the species name replaces M, for example, ’(+ H2O)’.

3. For reactions involving a third body but which are always in the low-pressure limit (rate propor-
tional to third body concentration), the participation of the third body is denote by ’+ M’.

65



(draft November 29, 2001)

Example

use cantera
character(30) str
type(mixture_t) mix
mix = GRIMech30()
do i = 1,20

call getReactionString(mix,i,str)
write(*,10) i,str

10 format(i2,’) ’,a)
end do
return

Output:

1) 2 O + M <=> O2 + M
2) O + H + M <=> OH + M
3) O + H2 <=> H + OH
4) O + HO2 <=> OH + O2
5) O + H2O2 <=> OH + HO2
6) O + CH <=> H + CO
7) O + CH2 <=> H + HCO
8) O + CH2(S) <=> H2 + CO
9) O + CH2(S) <=> H + HCO

10) O + CH3 <=> H + CH2O
11) O + CH4 <=> OH + CH3
12) O + CO (+ M) <=> CO2 (+ M)
13) O + HCO <=> OH + CO
14) O + HCO <=> H + CO2
15) O + CH2O <=> OH + HCO
16) O + CH2OH <=> OH + CH2O
17) O + CH3O <=> OH + CH2O
18) O + CH3OH <=> OH + CH2OH
19) O + CH3OH <=> OH + CH3O
20) O + C2H <=> CH + CO

97) reactantStoichCoeff

The stoichiometric coefficient for species k as a reactant in reaction i.

Syntax
result = reactantStoichCoeff(mix, k, i)

Arguments

mix (Input) Mixture object [type(mixture t)].

66 Chapter 4. Homogeneous Kinetics



(draft November 29, 2001)

k (Input) Species index [integer].

i (Input) Reaction index [integer].

Result
Returns a double precision value.

Description
A given species may participate in a reaction as a reactant, a product, or both. This function returns
the number of molecules of the kth species appearing on the reactant side of the reaction equation. It
does not include any species k molecules that act as third-body collision partners but are not written
in the reaction equation. Non-integral values are allowed.

Example

use cantera
real(8) rcoeff
type(mixture_t) mix
mix = GRIMech30()
inh = speciesIndex(mix,’NH’)
write(*,*) ’Reactions in GRI-Mech 3.0 with NH as a reactant:’
do i = 1,nReactions(mix)

rcoeff = reactantStoichCoeff(mix,inh,i)
if (rcoeff .gt. 0.d0) write(*,*) ’ reaction ’,i

end do

Output:

Reactions in GRI-Mech 3.0 with NH as a reactant:
reaction 190
reaction 191
reaction 192
reaction 193
reaction 194
reaction 195
reaction 196
reaction 197
reaction 198
reaction 199
reaction 280

See Also
productStoichCoeff

98) productStoichCoeff

The stoichiometric coefficient for species k as a product in reaction i.

4.1. Procedures 67



(draft November 29, 2001)

Syntax
result = productStoichCoeff(mix, k, i)

Arguments

mix (Input) Mixture object [type(mixture t)].

k (Input) Species index [integer].

i (Input) Reaction index [integer].

Result
Returns a double precision value.

Description
A given species may participate in a reaction as a reactant, a product, or both. This function returns
the number of molecules of the kth species appearing on the product side of the reaction equation. It
does not include any species k molecules that act as third-body collision partners but are not written
in the reaction equation. Non-integral values are allowed.

Example

use cantera
real(8) pcoeff
type(mixture_t) mix
mix = GRIMech30()
inh = speciesIndex(mix,’NH’)
write(*,*) ’Reactions in GRI-Mech 3.0 with NH as a product:’
do i = 1,nReactions(mix)

pcoeff = productStoichCoeff(mix,inh,i)
if (pcoeff .gt. 0.d0) write(*,*) ’ reaction ’,i

end do

Output:

Reactions in GRI-Mech 3.0 with NH as a product:
reaction 200
reaction 202
reaction 203
reaction 208
reaction 223
reaction 232
reaction 242
reaction 243
reaction 262
reaction 269

99) netStoichCoeff

The net stoichiometric coefficient for species k in reaction i.

68 Chapter 4. Homogeneous Kinetics



(draft November 29, 2001)

Syntax
result = netStoichCoeff(mix, k, i)

Arguments

mix (Input) Mixture object [type(mixture t)].

k (Input) Species index [integer].

i (Input) Reaction index [integer].

Result
Returns a double precision value.

Description
This function returns the difference between the product and reactant stoichiometric coefficients.

100) getFwdRatesOfProgress

Get the forward rates of progress Q
(f)
i for the reactions [kmol/m3/s].

Syntax
call getFwdRatesOfProgress(mix, fwdrop)

Arguments

mix (Input) Mixture object [type(mixture t)].

fwdrop (Output) Forward rates of progress [double precision array]. Must be dimensioned at
least as large as the number of reactions in mix.

Description
The expressions for the reaction rates of progress are determined by the kinetics model used. See
section ??.

Example see the example for procedure ??.

101) getRevRatesOfProgress

Get the reverse rates of progress Q
(r)
i for the reactions [kmol/m3/s].

Syntax
call getRevRatesOfProgress(mix, revrop)

Arguments

mix (Input) Mixture object [type(mixture t)].

4.1. Procedures 69



(draft November 29, 2001)

revrop (Output) Reverse rates of progress [double precision array]. Must be dimensioned at
least as large as the number of reactions in mix.

Description
The reverse rate of progress is non-zero only for reversible reactions. The expressions for the reaction
rates of progress are determined by the kinetics model used. See section ??.

Example see the example for procedure ??.

102) getNetRatesOfProgress

Get the net rates of progress for the reactions [kmol/m3/s].

Syntax
call getNetRatesOfProgress(mix, netrop)

Arguments

mix (Input) Mixture object [type(mixture t)].

netrop (Output) Net rates of progress [double precision array]. Must be dimensioned at least
as large as the number of reactions in mix.

Description
The net rates of progress are the difference between the forward and the reverse rates:

Qi = Q
(f)
i − Q

(r)
i (4.1)

The expressions for the rates of progress are determined by the kinetics model used. See section ??.

In the example below, a mixture is first created containing hydrogen, oxygen, and argon, and then
set to the chemical equilibrium state at 2500 K and 1 atm. The temperature is then lowered, and the
forward, reverse, and net rates of progress are computed for all reactions, and those above a threshold
are printed. (If the temperature had not been changed, then the forward and reverse rates of progress
would be equal for all reversible reactions).getFwdRatesOfProgress, getRevRatesOfProgress

Example

use cantera
real(8) frop(500), rrop(500), netrop(500)
type(mixture_t) mix
character*40 rxn
mix = GRIMech30()
call setState_TPX(mix,2500.d0,OneAtm,’H2:2,O2:1.5,AR:8’)
call equilibrate(mix,’TP’)
call setState_TP(mix, 2000.d0,OneAtm)
call getFwdRatesOfProgress(mix,frop)
call getRevRatesOfProgress(mix,rrop)
call getNetRatesOfProgress(mix,netrop)

70 Chapter 4. Homogeneous Kinetics



(draft November 29, 2001)

do i = 1,nReactions(mix)
if (abs(frop(i)) .gt. 1.d-10 .or.

$ abs(rrop(i)) .gt. 1.d-10) then
call getReactionString(mix,i,rxn)
write(*,20) rxn,frop(i),rrop(i),netrop(i)

20 format(a,3e14.5)
end if

end do

Output:

2 O + M <=> O2 + M 0.44094E-03 0.94026E-06 0.44000E-03
O + H + M <=> OH + M 0.51156E-03 0.23776E-05 0.50919E-03
O + H2 <=> H + OH 0.36968E+01 0.41079E+01 -0.41109E+00
O + HO2 <=> OH + O2 0.13797E-01 0.89268E-03 0.12904E-01
O + H2O2 <=> OH + HO2 0.42931E-03 0.18608E-03 0.24323E-03
H + O2 + M <=> HO2 + M 0.16806E-02 0.12072E-03 0.15599E-02
H + 2 O2 <=> HO2 + O2 0.13767E-02 0.98895E-04 0.12779E-02
H + O2 + H2O <=> HO2 + H2O 0.11154E+00 0.80119E-02 0.10352E+00
H + O2 + AR <=> HO2 + AR 0.21897E-01 0.15729E-02 0.20324E-01
H + O2 <=> O + OH 0.66073E+01 0.14401E+02 -0.77937E+01
2 H + M <=> H2 + M 0.19043E-03 0.79650E-06 0.18964E-03
2 H + H2 <=> 2 H2 0.32781E-05 0.13711E-07 0.32644E-05
2 H + H2O <=> H2 + H2O 0.55931E-03 0.23394E-05 0.55697E-03
H + OH + M <=> H2O + M 0.28712E-01 0.57896E-04 0.28654E-01
H + HO2 <=> O + H2O 0.13263E-02 0.81148E-04 0.12452E-02
H + HO2 <=> O2 + H2 0.13544E-01 0.78862E-03 0.12755E-01
H + HO2 <=> 2 OH 0.28319E-01 0.39935E-02 0.24325E-01
H + H2O2 <=> HO2 + H2 0.22868E-03 0.89198E-04 0.13948E-03
H + H2O2 <=> OH + H2O 0.70669E-04 0.18741E-05 0.68795E-04
OH + H2 <=> H + H2O 0.21063E+02 0.10155E+02 0.10908E+02
2 OH (+ M) <=> H2O2 (+ M) 0.15268E+00 0.11609E-01 0.14107E+00
2 OH <=> O + H2O 0.32276E+02 0.14003E+02 0.18273E+02
OH + HO2 <=> O2 + H2O 0.48157E-01 0.13518E-02 0.46806E-01
OH + H2O2 <=> HO2 + H2O 0.23253E-03 0.43728E-04 0.18881E-03
OH + H2O2 <=> HO2 + H2O 0.13444E+00 0.25281E-01 0.10916E+00
2 HO2 <=> O2 + H2O2 0.26438E-06 0.39466E-07 0.22492E-06
2 HO2 <=> O2 + H2O2 0.27669E-04 0.41303E-05 0.23539E-04
OH + HO2 <=> O2 + H2O 0.18695E+00 0.52480E-02 0.18170E+00

103) getEquilibriumConstants

Get the equilibrium constants of the reactions in concentration units [(kmol/m3)∆n, where ∆n is the net
change in mole numbers in going from reactamts to products].

4.1. Procedures 71



(draft November 29, 2001)

Syntax
call getEquilibriumConstants(mix, kc)

Arguments

mix (Input) Mixture object [type(mixture t)].

kc (Output) Equilibrium constants [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

104) getCreationRates

Get the species chemical creation rates [kmol/m3/s].

Syntax
call getCreationRates(mix, cdot)

Arguments

mix (Input) Mixture object [type(mixture t)].

cdot (Output) Creation rates [double precision array]. Must be dimensioned at least as large
as the number of species in mix.

Description
The creation rate of species k is

Ċk =
∑

i

(
ν

(p)
ki Qf,i + ν

(r)
ki Qr,i

)
(4.2)

Example see the example for procedure 106.

105) getDestructionRates

Get the species chemical destruction rates [kmol/m3/s].

Syntax
call getDestructionRates(mix, ddot)

Arguments

mix (Input) Mixture object [type(mixture t)].

ddot (Output) Destruction rates [double precision array]. Must be dimensioned at least as
large as the number of species in mix.

72 Chapter 4. Homogeneous Kinetics



(draft November 29, 2001)

Description
The destruction rate of species k is

Ḋk =
∑

i

(
ν

(r)
ki Qf,i + ν

(p)
ki Qr,i

)
(4.3)

Example see the example for procedure 106.

106) getNetProductionRates

Get the species net chemical production rates [kmol/m3/s].

Syntax
call getNetProductionRates(mix, wdot)

Arguments

mix (Input) Mixture object [type(mixture t)].

wdot (Output) Net production rates [double precision array]. Must be dimensioned at least
as large as the number of species in mix.

Description
This procedure returns the net production rates for all species, which is the difference between the
species creation and destruction rates:

ω̇k = Ċk − Ḋk, (4.4)

=
∑

i

νkiQi (4.5)

If only the net rates are required, it is usually more efficient to call this procedure than to first compute
the creation and destruction rates separately and take the difference.

In the example below, the creation, destruction, and net production rates are computed for the same
conditions as in the example for procedure ??. Also shown is the characteristic chemical time, defined
as the concentration divided by the destruction rate.

Example

use cantera
real(8) cdot(100), ddot(100), wdot(100), conc(100)
type(mixture_t) mix
character*10 names(100)
mix = GRIMech30()
call setState_TPX(mix,2500.d0,OneAtm,’H2:2,O2:1.5,AR:8’)
call equilibrate(mix,’TP’)
call setState_TP(mix, 2000.d0,OneAtm)
call getCreationRates(mix,cdot)
call getDestructionRates(mix,ddot)

4.1. Procedures 73



(draft November 29, 2001)

call getNetProductionRates(mix,wdot)
call getSpeciesNames(mix, names)
call getConcentrations(mix, conc)
do k = 1,nSpecies(mix)

if (wdot(k).gt.1.d-10) then
write(*,20) names(k), cdot(k), ddot(k), wdot(k),

$ conc(k)/ddot(k)
20 format(a,4e14.5)

end if
end do

Output:

H 0.39176E+02 0.21081E+02 0.18095E+02 0.51077E-06
O 0.42994E+02 0.32117E+02 0.10877E+02 0.58471E-06
O2 0.14675E+02 0.67536E+01 0.79217E+01 0.40874E-04
H2O 0.53859E+02 0.24310E+02 0.29549E+02 0.44237E-04
H2O2 0.17831E+00 0.14701E+00 0.31294E-01 0.11045E-07

Example 4.1

In the example below, getNetProductionRates is used to evaluate the right-hand side of the
species equation for a constant-volume kinetics simulation.

dYk/dt = ω̇kMk/ρ.

type (mixture_t) :: mix
parameter (KMAX = 100)
double precision wdot(KMAX)
double precision wt(KMAX)
...
call getNetProductionRates(mix, wdot)
call getMolecularWeights(mix, wt)
rho = density(mix)
do k = 1, nSpecies(mix)

ydot(k) = wdot(k)*wt(k)/rho
end do

74 Chapter 4. Homogeneous Kinetics



(draft November 29, 2001)

CHAPTER

FIVE

Transport Properties

A discussion of the theory of transport properties and the transport models implemented in
Cantera will soon replace this box...

5.1 Derived Types

transport t
Derived type for transport managers.

hndl integer . Handle encoding pointer to the C++ object

iok integer . Internal flag used to signify whether or not the object has been properly
constructed.

5.2 Procedures

107) MultiTransport

Construct a new multicomponent transport manager.

Syntax
object = MultiTransport(mix, database, logLevel)

Arguments

mix (Input / Output) Mixture object whose transport properties the transport manager will
compute. [type(mixture t)].

database (Input) Transport database file. [character*(*)].

logLevel (Input) A log file in XML format ‘transport log.xml’ is generated during construction
of the transport manager, containing polynomial fit coefficients, etc. The value of logLevel (0 -
4) determines how much detail to write to the log file. [integer].

75



(draft November 29, 2001)

Result
Returns an object of type transport t.

Description
This constructor creates a new transport manager that implements a multicomponent transport model
for ideal gas mixtures. The model is based on that of ? and Kee et al. [1986]. See Section ** for more
details.

Example

type(mixture_t) mix
type(transport_t) tr
mix = GRIMech30()
tr = MultiTransport(mix, ’gri30_tran.dat’, 0)

108) MixTransport

Construct a new transport manager that uses a mixture-averaged formulation.

Syntax
object = MixTransport(mix, database, logLevel)

Arguments

mix (Input / Output) Mixture object whose transport properties the transport manager will
compute. [type(mixture t)].

database (Input) Transport database file. [character*(*)].

logLevel (Input) A log file in XML format ‘transport log.xml’ is generated during construction
of the transport manager, containing polynomial fit coefficients, etc. The value of logLevel (0 -
4) determines how much detail to write to the log file. [integer].

Result
Returns an object of type transport t.

Description
This constructor creates a new transport manager that implements a ’mixture-averaged’ transport
model for ideal gas mixtures. The model is very similar to the mixture-averaged model desribed
by Kee et al. [1986]. In general, the results of this model are less accurate than those of Multi-
Transport, but are far less expensive to compute.

This manager does not implement expressions for thermal diffusion coefficients. If thermal diffusion
is important in a problem, use the MultiTransport transport manager.

Example

type(mixture_t) mix
type(transport_t) tr
mix = GRIMech30()
tr = MixTransport(mix, ’gri30_tran.dat’, 0)

76 Chapter 5. Transport Properties



(draft November 29, 2001)

109) setTransport

Set the transport manager to one that was previously created by a call to initTransport.

Syntax
call setTransport(mix, transportMgr)

Arguments

mix (Input / Output) Mixture object [type(mixture t)].

transportMgr (Input / Output) Transport manager [type(transport t)].

Description
Transport managers may be swapped in or out of a mixture object. This capability makes it possible,
for example, to use a multicomponent transport formulation in flow regions where gradients are large,
and switch to a much less expensive model for other regions.

This procedure re-installs a transport manager previously created with initTransport, and saved
with transport.

Note that transport managers cannot be shared between mixture objects.

Example

use cantera
type(mixture_t) mix
type(transport_t) tr1, tr2
mix = GRIMech30()
call initTransport(mix, Multicomponent, ’gri30_tran.dat’, 0)
tr1 = transport(mix)
write(*,*) thermalConductivity(mix)
call initTransport(mix, CK_Multicomponent, ’gri30_tran.dat’, 0)
tr2 = transport(mix)
write(*,*) thermalConductivity(mix)
call setTransport(mix,tr1)
write(*,*) thermalConductivity(mix)
return

Output:

0.186896997850329
0.186818124230130
0.186896997850329

See Also
transport, initTransport

5.2. Procedures 77



(draft November 29, 2001)

110) delete

Delete a transport manager

Syntax
call delete(transportMgr)

Arguments

transportMgr (Input / Output) Transport manager object [type(transport t)].

Description
Deleting a transport manager releases the memory associated with its kernel object.

111) transportMgr

Return the transport manager object.

Syntax
result = transportMgr(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a type(transport t) value.

Description
This function returns a reference to the currently-installed transport manager object. It may be used
to store a transport manager before installing a different one.

Example see the example for procedure ??.

112) viscosity

The dynamic viscosity [Pa-s].

Syntax
result = viscosity(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

78 Chapter 5. Transport Properties



(draft November 29, 2001)

Result
Returns a double precision value.

Description
The stress tensor in a Newtonian fluid is given by the expression

τij = −Pδij + µ

(
∂vi

∂xj
+

∂vi

∂xj

)
+ δijλbdivv. (5.1)

where µ is the viscosity and λb is the bulk viscosity. This function returns the value of µ computed by
the currently-installed transport manager.

113) getSpeciesViscosities

Get the pure species viscosities [Pa-s].

Syntax
call getSpeciesViscosities(mix, visc)

Arguments

mix (Input) Mixture object [type(mixture t)].

visc (Input / Output) Array of pure species viscosities [double precision array]. Must be
dimensioned at least as large as the number of species in mix.

Description
A common approach to computing the viscosity of a mixture is to use a mixture rule to generate a
weighted average of the viscosities of the pure species. This procedure returns the viscosities of the
pure species that are used in the mixture rule. Transport managers that do not compute viscosity using
a mixture rule may not implement this procedure.

114) getSpeciesFluxes

Compute the species net mass fluxes due to diffusion.

Syntax
call getSpeciesFluxes(mix, ndim, grad X, grad T , fluxes)

Arguments

mix (Input) Mixture object [type(mixture t)].

ndim (Input) Dimensionality (1, 2, or 3) [integer].

5.2. Procedures 79



(draft November 29, 2001)

grad X (Input / Output) Array of species mole fraction gradients. The (k,n) entry is the gradient
of species k in coordinate direction n. [double precision].

grad T (Input) Temperature gradient array. By default, thermal diffusion is included, using the
temperature gradient specified here. Set to zero to compute the result without thermal diffusion
[double precision].

fluxes (Output) Array of species diffusive mass fluxes [double precision].

Description

This procedure returns the diffusive mass fluxes for all species, given the local gradients in mole
fraction and temperature. The diffusive mass flux vector for species k is given by

jk = ρVkYk, (5.2)

where Vk is the diffusion velocity of species k. The diffusive mass flux satisfies∑
k

jk = 0. (5.3)

The inputs to this procedure are a mixture object, which defines the local thermodynamic state, the
array of mole fraction gradients with elements

grad X(k,n) =
(

∂Xk

∂xn

)
(5.4)

and the one-dimensional temperature gradient array

grad T(n) =
(

∂T

∂xn

)
. (5.5)

Thermal diffusion is included if any component of the temperature gradient is non-zero.

There are several advantages to calling this procedure rather than evaluating the transport properties
and then forming the flux expression in your application program. These are:

Performance. For multicomponent transport models, this procedure uses an algorithm that does not
require evaluating the multicomponent diffusion coefficient matrix first, and thereby eliminates
the need for matix inversion, resulting in somewhat better performance.

Generality. The expression for the flux in terms of mole fraction and temperature gradients is not the
same for all transport models. Using this procedure allows switching easily between multicom-
ponent and Fickian diffusion models.

Example

use cantera
implicit double precision (a-h,o-z)
type(mixture_t) mix
character*80 infile, thermofile, xstring, model, trdb
double precision gradx(10,3), gradt(3), fluxes(10,3)
double precision x1(8), x2(8), x3(8)
character*20 name(10)
data x1/8*0.1d0/

80 Chapter 5. Transport Properties



(draft November 29, 2001)

data x2/0.d0, 0.2d0, 0.d0, 0.2d0, 0.d0, 0.2d0, 0.d0,
$ 0.2d0/
data x3/0.1d0, 0.2d0, 0.3d0, 0.4d0, 0.d0, 0.d0, 0.d0,

$ 0.d0/

mix = CKGas(’air.inp’,’therm.dat’)
call getSpeciesNames(mix, name)
call initTransport(mix, Multicomponent,’gri30_tran.dat’, 0)
nsp = nSpecies(mix)

! generate dummy gradient data
do k = 1, nsp

gradx(k,1) = x1(k) - x2(k) ! dX(k)/dx1
gradx(k,2) = x2(k) - x3(k) ! dX(k)/dx2
gradx(k,3) = x3(k) - x1(k) ! dX(k)/dx3
x1(k) = 0.5*(x1(k) + x2(k))

end do
gradt(1) = 1000.d0 ! dT/dx1
gradt(2) = -500.d0 ! dT/dx2
gradt(3) = 800.d0 ! dT/dx3

call setState_TPX(mix, 1800.d0, OneAtm, x1)
call getSpeciesFluxes(mix, 3, gradx, gradt, fluxes)
do n = 1,3

write(*,10) n,n,gradt(n),n
10 format(//’coordinate direction ’,i1,’:’

$ /’dT/dx’,i1,’ = ’,g13.5,
$ /’species ’,15x,’ dX/dx’,i1,’ mass flux’)

do k = 1,nsp
write(*,20) name(k),gradx(k,n),fluxes(k,n)

20 format(a,2e14.5)
end do

end do

Output:

coordinate direction 1:
dT/dx1 = 1000.0
species dX/dx1 mass flux
O 0.10000E+00 -0.72034E-05
O2 -0.10000E+00 0.88312E-05
N 0.10000E+00 -0.56038E-05
NO -0.10000E+00 0.81268E-05
NO2 0.10000E+00 -0.14005E-04
N2O -0.10000E+00 0.86180E-05
N2 0.10000E+00 -0.90551E-05
AR -0.10000E+00 0.10291E-04

5.2. Procedures 81



(draft November 29, 2001)

coordinate direction 2:
dT/dx2 = -500.00
species dX/dx2 mass flux
O -0.10000E+00 -0.67305E-05
O2 0.00000E+00 0.21224E-05
N -0.30000E+00 0.18372E-04
NO -0.20000E+00 0.19739E-04
NO2 0.00000E+00 0.32196E-05
N2O 0.20000E+00 -0.17896E-04
N2 0.00000E+00 0.18281E-05
AR 0.20000E+00 -0.20653E-04

coordinate direction 3:
dT/dx3 = 800.00
species dX/dx3 mass flux
O 0.00000E+00 0.15068E-04
O2 0.10000E+00 -0.10916E-04
N 0.20000E+00 -0.11766E-04
NO 0.30000E+00 -0.27733E-04
NO2 -0.10000E+00 0.97117E-05
N2O -0.10000E+00 0.82877E-05
N2 -0.10000E+00 0.74848E-05
AR -0.10000E+00 0.98637E-05

115) getMultiDiffCoeffs

Get the multicomponent diffusion coefficients [m2/s]. This procedure may not be implemented by all trans-
port managers. If not, the multiDiff array will be left unchanged, and ierr will be set to a negative number.

Syntax
call getMultiDiffCoeffs(mix, ldim, multiDiff )

Arguments

mix (Input) Mixture object [type(mixture t)].

ldim (Input) Leading dimension of multiDiff . Must be at least as large as the number of
species in mix [integer].

multiDiff (Input) Two-dimensional array of multicomponent diffusion coefficients [double preci-
sion array]. Must be dimensioned at least as large as the number of species in mix.

82 Chapter 5. Transport Properties



(draft November 29, 2001)

116) thermalConductivity

Thermal conductivity [W/m/K].

Syntax
result = thermalConductivity(mix)

Arguments

mix (Input) Mixture object [type(mixture t)].

Result
Returns a double precision value.

117) getThermalDiffCoeffs

Get the array of thermal diffusion coefficients.

Syntax
call getThermalDiffCoeffs(mix, dt)

Arguments

mix (Input) Mixture object [type(mixture t)].

dt (Output) Thermal diffusion coefficients [double precision array]. Must be dimensioned
at least as large as the number of species in mix.

118) setOptions

Set transport options.

Syntax
call setOptions(linearSolver, GMRES m, GMRES eps)

Arguments

linearSolver (Input) Linear algebra solver to use. Valid values are ’LU’ (LU decomposition), and
’GMRES’ (GMRES iterative solver). This setting only affects those transport managers that
solve systems of linear equations in order to compute the transport properties. Specifying GM-
RES may significantly accelerate transport property evaluation in some cases. However, if trans-
port properties are evaluated within functions for which numerical derivatives are computed,
then using any iterative method may cause convergence difficulties. In many cases, transport
property evaluation can be done outside the function. If not, then LU decomposition should be
used. Default: LU decomposition. [character*(*)].

5.2. Procedures 83



(draft November 29, 2001)

GMRES m (Input) GMRES ’m’ parameter. Number of ’inner’ iterations between ’outer’ iterations.
Default: 100 [integer].

GMRES eps (Input) GMRES convergence parameter. Default: 10−4 [double precision].

Description
This procedure sets various transport options. All arguments but the first one are optional. The
recommended way to call this procedure is using keywords, as shown in the example.

Example

use cantera
transport_t tr
...
call setOptions(tr, linearSolver = ’GMRES’) ! set any one or more
call setOptions(tr, GMRES_eps = 1.e-3, GMRES_m = 50)

84 Chapter 5. Transport Properties



(draft November 29, 2001)

CHAPTER

SIX

Stirred Reactors

This box will soon be replaced by documentation...

6.1 Reactor Objects

6.1.1 Type cstr t

Objects representing zero-dimensional, stirred reactors are implemented in Fortran 90 by the derived type
cstr t, defined below.

cstr t
Stirred reactors.

hndl integer . Handle encoding pointer to the C++ object

mix type(mixture t) . Mixture object

6.2 Procedures

6.3 Constructors

119) StirredReactor

Construct a stirred reactor for zero-dimensional kinetics simulations.

Syntax
object = StirredReactor()

Result
Returns an object of type cstr t.

85



(draft November 29, 2001)

Description

Objects created using StirredReactor represent generic stirred reactors. Depending on the com-
ponents attached or the values set for options, it may represent a closed batch reactor, a reactor with a
steady flow through it, or one reactor in a network.

The reactor object internally integrates rate equations for volume, species, and energy in primitive
form, with no assumption regarding the equation of state. It uses the CVODE stiff ODE integrator,
and can handle typical large reaction mechanisms.

A reactor object can be viewed as a cylinder with a piston. Currently, you can set a time constant of
the piston motion. By choosing an appropriate value, you can carry out constant volume simulations,
constant pressure ones, or anything in between.

The reactor also has a heat transfer coefficient that can be set. A value of zero (default) results in an
adiabatic simulation, while a very large value produces an isothermal simulation.

In C++, more general control of the volume and heat transfer coefficient vs. time is possible, allowing
construction of engine simulators, for example. (Surface chemistry can be included also.) This will
soon be added to the Fortran interface.

The reactor may have an arbitrary number of inlets and outlets, each of which may be connected to
a ”flow device” such as a mass flow controller, a pressure regulator, etc. Additional reactors may be
connected to the other end of the flow device, allowing construction of arbitrary reactor networks.

If an object constructed by StirredReactor() is used with default options, it will simulate an
adiabatic, constant volume reactor with gas-phase chemistry but no surface chemistry.

More documentation coming soon.

Example

use cantera
type(cstr_t) reactr
reactr = StirredReactor()

120) Reservoir

A reservoir is like a reactor, except that the state never changes after being initialized. No chemistry occurs,
and the temperature, pressure, composition, and all other properties of the contents remain at their initial
values unless explicitly changed. These are designed to be connected to reactors to provide specified inlet
conditions.

Syntax
object = Reservoir()

Result
Returns an object of type cstr t.

86 Chapter 6. Stirred Reactors



(draft November 29, 2001)

Example

use cantera
type(cstr_t) reactr
type(cstr_t) upstr
type(flowdev_t) mfc

! install a reservoir upstream from the reactor,
! and connect them through a mass flow controller

reactr = StirredReactor()
upstr = Reservoir()
mfc = MassFlowController()
call install(mfc, upstr, reactr)

6.4 Assignment

121) copy

Copy one reactor object to another. The contents of dest are overwritten.

Syntax
call copy(src, dest)

Arguments

src (Input) Reactor object [type(mixture t)].

dest (Output) Reactor object [type(mixture t)].

Description
This procedure performs a shallow copy – the handle is copied, but not the object it points to.

6.5 Setting Options

These procedures set various optional reactor characteristics.

122) setInitialVolume

Set the initial reactor volume [m3]. By default, the initial volume is 1.0 m3.

Syntax
call setInitialVolume(reac, vol)

Arguments

6.4. Assignment 87



(draft November 29, 2001)

reac (Input / Output) Reactor object. [type(cstr t)].

vol (Input) Initial volume [double precision].

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setInitialVolume(r, 3.0)

123) setInitialTime

Set the initial time [s]. Default = 0.0 s.

Syntax
call setInitialTime(reac, time)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

time (Input) Initial time [double precision].

Description
Restarts integration from this time using the current substance state as the initial condition. Note that
this routine does no interpolation. It simply sets the clock to the specified time, takes the current state
to be the value for that time, and restarts.

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setInitialTime(r, 0.02)

124) setMaxStep

Set the maximum step size for integration.

Syntax
call setMaxStep(reac, maxstep)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

88 Chapter 6. Stirred Reactors



(draft November 29, 2001)

maxstep (Input) Maximum step size [double precision].

Description
Note that on the first call to ’advance,’ if the maximum step size has not been set, the maximum step
size is set to not exceed the specified end time. This effectively keeps the integrator from integrating
out to a large time and then interpolating back to the desired final time. This is done to avoid difficul-
ties when simulating problems with sudden changes, like ignition problems. If used, it must be called
before calling advance for the first time.

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setMaxStep(r,1.d-3)

125) setArea

Set the reactor surface area [m2]. Can be changed at any time.

Syntax
call setArea(reac, area)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

area (Input) Area [double precision].

Description
Note that this does not update automatically if the volume changes, but may be changed manually at
any time. The area affects the total heat loss rate.

Example

use cantera
type(cstr_t) r
r = StirredReactor()

! a spherical reactor
radius = 2.0
vol = (4.d0/3.d0)*Pi*radius**3
ar = 4.d0*Pi*radius**2
call setInitialVolume(r, vol)
call setArea(r, ar)

6.5. Setting Options 89



(draft November 29, 2001)

126) setExtTemp

Set the external temperature T0 used for heat loss calculations. The heat loss rate is calculated from

Q̇out = hA(T − T0) + εA(T 4 − T 4
0,R). (6.1)

See also setArea, setEmissivity, setExtRadTemp. Can be changed at any time.

Syntax
call setExtTemp(reac, ts)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

ts (Input) External temperature [double precision].

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setExtTemp(r,500.d0)

127) setExtRadTemp

Set the external temperature for radiation. By default, this is the same as the temperature set by setExtTemp.
But if setExtRadTemp is called, then subsequent calls to setExtTemp do not modify the value set here. Can
be changed at any time. See Eq. (6.1)

Syntax
call setExtRadTemp(reac, trad)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

trad (Input) External temperature for radiation [double precision].

Example

use cantera
type(cstr_t) jet
jet = StirredReactor()
call setExtTemp(jet,1000.d0)
call setExtRadTemp(jet, 300.d0)

90 Chapter 6. Stirred Reactors



(draft November 29, 2001)

128) setHeatTransferCoeff

Set the heat transfer coefficient [W/m2/K]. Default: 0.d0 See Eq. (6.1). May be changed at any time.

Syntax
call setHeatTransferCoeff(reac, h)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

h (Input) Heat transfer coefficient [double precision].

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setHeatTransferCoeff(r,10.d0)

129) setVDotCoeff

The equation used to compute the rate at which the reactor volume changes in response to a pressure differ-
ence is

V̇ = K

(
P − Pext

pext

)
Vi (6.2)

where Vi is the initial volume. The inclusion of Vi in this expression is done only so that K will have units
of s−1. May be changed at any time.

Syntax
call setVDotCoeff(reac, k)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

k (Input) Coefficient determining rate at which volume changes in response to a pressure
difference [double precision].

Description
The default value is zero, which results in the volume being held constant. To conduct a constant
pressure simuulation, set Pext to the initial pressure, and set K faster than characteristic rates for your
problem. It is always a good idea to examine the constancy of the pressure in the output.

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setVdotCoeff(r,1.d8)

6.5. Setting Options 91



(draft November 29, 2001)

130) setEmissivity

Set the emissivity. May be changed at any time. See Eq. (6.1). May be changed at any time.

Syntax
call setEmissivity(reac, emis)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

emis (Input) Emissivity [double precision].

Description
The treatment of radiation here is approximate at best. The emissivity is defined here such that the net
radiative power loss from the gas to the walls is εAσ(T4 − T 4

ext). Note that this is the emissivity of
the gas, not the walls, and will depend on a characteristic reactor dimension (the mean beam length)
in the optically thin limit. In the very optically thick limit, it is unlikely that the radiative loss can be
computed with a stirred reactor model, since the wall boundary layers may be optically thick.

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setEmissivity(r,0.001)

131) setExtPressure

Set the external pressure [Pa].

Syntax
call setExtPressure(reac, p0)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

p0 (Input) External pressure [double precision].

Description
This pressure is used to form the pressure difference used to evaluate the rate at which the volume
changes.

Example

use cantera
type(cstr_t) r
r = StirredReactor()
call setExtPressure(r,OneAtm)

92 Chapter 6. Stirred Reactors



(draft November 29, 2001)

6.6 Specifying the Mixture

132) setMixture

Specify the mixture contained in the reactor.

Syntax
call setMixture(reac, mix)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

mix (Input / Output) Mixture object [type(mixture t)].

Description
Note that a pointer to this substance is stored, and as the integration proceeds, the state of the mixture
is modified. Nevertheless, one mixture object can be used for multiple reactors. When advance is
called for each reactor, the mixture state is set to the appropriate state for that reactor.

Example

use cantera
type(mixture_t) gas
type(cstr_t) reactr1, reactr2

! create the gas mixture and set its state
gas = CKGas(’mymech.inp’)
if (.not.ready(mix)) stop
call setState_TPX(mix, 1200.d0, OneAtm,

& ’C2H2:1.0, NH3:2.0, O2:0.5’)

! create a reactor object, and insert the gas
reactr1 = StirredReactor()
call setMixture(reactr1, gas)

! use the same gas object for another reactor
call setState_TPX(mix, 100.d0, OneAtm,

& ’C2H2:1.0, NH3:2.0, O2:0.5’)
reactr2 = StirredReactor()
call setMixture(reactr2, gas)

133) contents

Get the mixture contained in the reactor.

6.6. Specifying the Mixture 93



(draft November 29, 2001)

Syntax
result = contents(reac)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

Result
Returns a type(mixture t) value.

6.7 Operation

134) advance

Advance the state of the reactor forward in time to time.

Syntax
call advance(reac, time)

Arguments

reac (Input / Output) Reactor object [type(cstr t)].

time (Input) Final time [s] [double precision].

Description
Note that this method changes the state of the mixture object. On the first call, initialization is carried
out and the maximum integrator step size is set. By default, this is set to time. To specify a different
maximum step size, precede the call to advancewith a call to setMaxStep. Note that this cannot
be reset after advance has been called.

6.8 Reactor Attributes

135) residenceTime

The residence time [s].

Syntax
result = residenceTime(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

94 Chapter 6. Stirred Reactors



(draft November 29, 2001)

136) time

The current time [s].

Syntax
result = time(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

137) volume

The reactor volume [m3].

Syntax
result = volume(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

6.9 Mixture Attributes

These procedures return properties of the reactor contents at the time reached by the last call to advance.
These values are stored in the reactor object, and are not affected by changes to the mixture object after
advance was last called.

138) density

The density [kg/m3].

Syntax
result = density(reac)

Arguments

6.9. Mixture Attributes 95



(draft November 29, 2001)

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

139) temperature

The temperature [K].

Syntax
result = temperature(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

140) enthalpy mass

The specific enthalpy [J/kg].

Syntax
result = enthalpy mass(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

141) intEnergy mass

The specific internal energy [J/kg].

Syntax
result = intEnergy mass(reac)

Arguments

96 Chapter 6. Stirred Reactors



(draft November 29, 2001)

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

142) pressure

The pressure [Pa].

Syntax
result = pressure(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

143) mass

The total mass ρV .

Syntax
result = mass(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

Result
Returns a double precision value.

144) enableChemistry

Enable chemistry.

Syntax
call enableChemistry(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

6.9. Mixture Attributes 97



(draft November 29, 2001)

145) disableChemistry

Disable chemistry.

Syntax
call disableChemistry(reac)

Arguments

reac (Input / Output) Reactor object. [type(cstr t)].

ct api ¿

98 Chapter 6. Stirred Reactors



(draft November 29, 2001)

CHAPTER

SEVEN

Flow Devices

“Flow devices” are objects that regulate fluid flow. These objects are designed to be used in conjunction
with the stirred

Perhaps these is a better name for these than “flow devices.” Any suggestions?

flowdev t
Object type used to represent flow control devices.

hndl integer . Handle encoding pointer to the C++ object

upstream type(cstr t) . Upstream reactor

downstream type(cstr t) . Downstream reactor

type integer . Flow controller type

7.1 Procedures

7.2 Constructors

These functions construct new flow devices.

146) MassFlowController

Create a new mass flow controller. A mass flow controller maintains a specified mass flow rate, independent
of all other conditions.

Syntax
object = MassFlowController()

Result
Returns an object of type flowdev t.

99



(draft November 29, 2001)

147) PressureController

Create a new pressure controller.

Syntax
object = PressureController()

Result
Returns an object of type flowdev t.

Description
This device attempts to maintain a specified upstream pressure by adjusting its mass flow rate. It
is designed to regulate the exhaust flow rate from a reactor, not the inlet flow rate to a reactor (i.e.,
to decrease the pressure, the valve opens wider) It should be installed on an outlet of the reactor to
be controlled. This device will only function correctly if the reactor also has one or more inlets with
positive flow rates. It also acts as a check valve, and does not permit reverse flow under any conditions.

7.3 Assignment

148) copy

Perform a shallow copy of one flo device to another. The contents of dest are overwritten.

Syntax
call copy(src, dest)

Arguments

src (Input) Flow controller object [type(flowdev t)].

dest (Output) Flow controller object [type(flowdev t)].

7.4 Setting Options

149) setSetpoint

Set the setpoint. The units depend on the type of flow control device. May be called at any time.

Syntax
call setSetpoint(flowDev, setpnt)

Arguments

100 Chapter 7. Flow Devices



(draft November 29, 2001)

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

setpnt (Input) Setpoint. [double precision].

Description
For mass flow controllers, this sets the mass flow rate [kg/s]. For pressure controllers, it sets the
pressure setpoint [Pa].

– ¿

150) install

! Install a flow control device between two reactors.

Syntax
call install(flowDev, upstream, downstream)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

upstream (Input / Output) Upstream reactor object. [type(cstr t)].

downstream (Input / Output) Downstream reactor object. [type(cstr t)].

151) upstream

Return a reference to the upstream reactor.

Syntax
result = upstream(flowDev)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

Result
Returns a type(cstr t) value.

7.4. Setting Options 101



(draft November 29, 2001)

152) downstream

Return a reference to the downstream reactor.

Syntax
result = downstream(flowDev)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

Result
Returns a type(cstr t) value.

153) massFlowRate

Mass flow rate [kg/s].

Syntax
result = massFlowRate(flowDev)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

Result
Returns a double precision value.

154) update

Update the state of the flow device. This only needs to be called for those flow controllers that have an
internal state, such as pressure controllers that use a PID controller.

Syntax
call update(flowDev)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

102 Chapter 7. Flow Devices



(draft November 29, 2001)

155) reset

Reset the controller. Call this procedure before operating any flow controller that uses a PID controller.

Syntax
call reset(flowDev)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

156) ready

Returns true if flow controller is ready for use.

Syntax
result = ready(flowDev)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

Result
Returns a integer value.

157) setGains

Some flow control devices use a PID (proportional / integral / derivative) controller. This procedure can be
used to set the gains for the PID controller.

Syntax
call setGains(flowDev, gains)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

gains (Input) gains [double precision array]. Must be dimensioned at least 4.

7.4. Setting Options 103



(draft November 29, 2001)

158) getGains

Some flow control devices use a PID (proportional / integral / derivative) controller. This procedure can be
used to retrieve the current gain settings for the PID controller.

Syntax
call getGains(flowDev, gains)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

gains (Output) gains [double precision array]. Must be dimensioned at least 4.

159) maxError

Maximum absolute value of the controller error signal (input - setpoint) since the last call to ’reset’.

Syntax
result = maxError(flowDev)

Arguments

flowDev (Input / Output) Flow controller object. [type(flowdev t)].

Result
Returns a double precision value.

ct api ¿

104 Chapter 7. Flow Devices



(draft November 29, 2001)

CHAPTER

EIGHT

Utility Functions

105



(draft November 29, 2001)

106



(draft November 29, 2001)

CHAPTER

NINE

Utilities

9.1 Introduction

These procedures carry out various utility functions.

9.2 Procedures

9.3 Procedures

160) printSummary

Write to logical unit lu a summary of the mixture state.

Syntax
call printSummary(mix, lu)

Arguments

mix (Input) Mixture object [type(mixture t)].

lu (Input) Fortran logical unit for output [integer].

107



(draft November 29, 2001)

108



(draft November 29, 2001)

APPENDIX

A

Glossary

substance
A macroscopic sample of matter with a precise, characteristic composition. Pure water is a substance,
since it is always made up of H2O molecules; any pure element is also a substance.

compound
A substance containing more than one element. Sodium chloride, water, and silicon carbide are all
compounds.

mixture
A macroscopic sample of matter made by combining two or more substances, usually (but not neces-
sarily) finely-divided and intermixed. Liquid water with dissolved oxygen and nitrogen is a mixture,
as are sand, air, wood, beer, and most other everyday materials. In fact, since even highly-purified
“substances” contain measurable trace impurities, it is exceptionally rare to encounter anything that
is not a mixture, i.e., anything that is truly a substance.

solution
A mixture in which the constituents are fully mixed on a molecular scale. In a solution, all molecules
of a given constituent (or all sites of a given type) are statistically equivalent, and the configurational
entropy of the mixture is maximal. Mixtures of gases are solutions, as are mixtures of mutually-
soluble liquids or solids. For example, silicon and germanium form a crystalline solid solution
SixGe1−x, where x is continuously variable over a range of values.

phase
A macroscopic sample of matter with a homogeneous composition and structure that is stable to small
perturbations. Example: water at a temperature below its critical temperature and above its triple point
can exist in two stable states: a low-density state (vapor) or a high-density one(liquid). There is no
stable homogeneous state at intermediate densities, and any attempt to prepare such a state will result
in its spontaneous segregation into liquid and vapor regions. Liquid water and water vapor are two
phases of water below its critical temperature. (Above it, these two phases merge, and there is only a
single phase.)

Note that a phase does not need to be thermodynamically (globally) stable. Diamond is a valid phase
of carbon at atmospheric pressure, even though graphite is the thermodynamically stable phase.

109



(draft November 29, 2001)

110



(draft November 29, 2001)

BIBLIOGRAPHY

R. T. Jacobsen, R. B. Stewart, and A. F. Myers. An equation of state for oxygen and nitrogen. Adv. Cryo.
Engrg., 18:248, 1972.

R. J. Kee, G. Dixon-Lewis, J. Warnatz, , M. E. Coltrin, and J. A. Miller. A Fortran computer code pack-
age for the evaluation of gas-phase multicomponent transport properties. Technical Report SAND86-
8246, Sandia National Laboratories, 1986. An electronic version of this report may be downloaded from
http://stokes.lance.colostate.edu/chemkinmanualslist.html.

R. J. Kee, F. M. Rupley, and J. A. Miller. Chemkin-II: A Fortran chemical kinetics package for the analysis
of gas-phase chemical kinetics. Technical Report SAND89-8009, Sandia National Laboratories, 1989.

W. C. Reynolds. Thermodynamic properties in si. Technical report, Department of Mechanical Engineering,
Stanford University, 1979.

Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Gold-
enberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lis-
sianski, , and Zhiwei Qin. GRI-Mech version 3.0, 1997. see http://www.me.berkeley.edu/gri mech.

111



(draft November 29, 2001)

112



(draft November 29, 2001)

INDEX

addDirectory
subroutine, 21

addElement
subroutine, 27

advance
subroutine, 94

atomicWeight
function, 29

charge
function, 30

contents
function, 93

copy
subroutine, 23, 87, 100

cp mass
function, 56

cp mole
function, 53

critPressure
function, 58

critTemperature
function, 57

cstr t
constructors, 85, 86

cv mass
function, 56

cv mole
function, 54

delete
subroutine, 22, 78

density
function, 51, 95

disableChemistry
subroutine, 98

downstream
function, 102

elementIndex

function, 28
enableChemistry

subroutine, 97
enthalpy mass

function, 54, 96
enthalpy mole

function, 52
entropy mass

function, 55
entropy mole

function, 53
equationOfState

function, 59
equilibrate

subroutine, 61
flowdev t

constructors, 99, 100
getChemPotentials RT

subroutine, 54
getConcentrations

subroutine, 35
getCp R

subroutine, 49
getCreationRates

subroutine, 72
getDestructionRates

subroutine, 72
getElementNames

subroutine, 27
getEnthalpy RT

subroutine, 48
getEntropy R

subroutine, 49
getEquilibriumConstants

subroutine, 71
getFwdRatesOfProgress

subroutine, 69

113



(draft November 29, 2001)

getGains
subroutine, 104

getGibbs RT
subroutine, 48

getMassFractions
subroutine, 35

getMoleFractions
subroutine, 35

getMolecularWeights
subroutine, 32

getMultiDiffCoeffs
subroutine, 82

getNetProductionRates
subroutine, 73

getNetRatesOfProgress
subroutine, 70

getReactionString
subroutine, 65

getRevRatesOfProgress
subroutine, 69

getSpeciesFluxes
subroutine, 79

getSpeciesNames
subroutine, 31

getSpeciesViscosities
subroutine, 79

getThermalDiffCoeffs
subroutine, 83

gibbs mass
function, 55

gibbs mole
function, 53

install
subroutine, 101

intEnergy mass
function, 55, 96

intEnergy mole
function, 52

massFlowRate
function, 102

massFraction
function, 34

mass
function, 97

maxError
function, 104

maxTemp
function, 50

meanMolecularWeight
function, 37

mean X
function, 36

mean Y
function, 36

minTemp
function, 50

mixture t
constructors, 16–20, 26

molarDensity
function, 51

moleFraction
function, 34

molecularWeight
function, 31

nAtoms
function, 29

nElements
function, 25

nReactions
function, 26

nSpecies
function, 25

netStoichCoeff
function, 68

potentialEnergy
function, 57

pressure
function, 52, 97

printSummary
subroutine, 107

productStoichCoeff
function, 67

reactantStoichCoeff
function, 66

ready
function, 22, 103

refPressure
function, 50

reset
subroutine, 103

residenceTime
function, 94

restoreState
subroutine, 24

satPressure
function, 59

114 Index



(draft November 29, 2001)

satTemperature
function, 58

saveState
subroutine, 23

setArea
subroutine, 89

setConcentrations
subroutine, 34

setDensity
subroutine, 42

setEmissivity
subroutine, 92

setEquationOfState
subroutine, 60

setExtPressure
subroutine, 92

setExtRadTemp
subroutine, 90

setExtTemp
subroutine, 90

setGains
subroutine, 103

setHeatTransferCoeff
subroutine, 91

setInitialTime
subroutine, 88

setInitialVolume
subroutine, 87

setMassFractions NoNorm
subroutine, 33

setMassFractions
subroutine, 33

setMaxStep
subroutine, 88

setMixture
subroutine, 93

setMoleFractions NoNorm
subroutine, 32

setMoleFractions
subroutine, 32

setOptions
subroutine, 83

setPotentialEnergy
subroutine, 56

setPressure
subroutine, 44

setSetpoint
subroutine, 100

setState HP
subroutine, 46

setState PX
subroutine, 43

setState PY
subroutine, 43

setState RX
subroutine, 45

setState RY
subroutine, 45

setState SP
subroutine, 47

setState SV
subroutine, 47

setState TPX
subroutine, 39

setState TPY
subroutine, 40, 41

setState TP
subroutine, 43

setState TRX
subroutine, 41

setState TRY
subroutine, 42

setState TR
subroutine, 44

setState TX
subroutine, 44

setState TY
subroutine, 45

setState UV
subroutine, 47

setTemperature
subroutine, 42

setTransport
subroutine, 77

setVDotCoeff
subroutine, 91

speciesIndex
function, 30

sum xlogQ
function, 37

temperature
function, 51, 96

thermalConductivity
function, 83

time
function, 95

Index 115



(draft November 29, 2001)

transportMgr
function, 78

transport t
constructors, 75, 76

update
subroutine, 102

upstream
function, 101

viscosity
function, 78

volume
function, 95

bulk viscosity, 79

$CANTERA DATA DIR, 22
chemical equilibrium, 61
chemical potential, 54
CK format, 16
concentration, 51
constructors, 7

CKGas, 16
GRIMech30, 17
Hydrogen, 19
MassFlowController, 99
Methane, 19
MixTransport, 76
Mixture, 26
MultiTransport, 75
Nitrogen, 18
Oxygen, 20
PressureController, 100
Reservoir, 86
StirredReactor, 85
Water, 18

density, 51
density

molar, 51
setting, 42

energy
internal, 47
potential, 56

enthalpy
molar, 52
non-dimensional, 48
pure species, 48
setting, 46

specific, 54
entropy

molar, 53
non-dimensional, 49
settting, 47
specific, 55

environment variables
$CANTERA DATA DIR, 22

equation of state, 59
equation of state

specifying, 60
equilibrium

chemical, 61

format
CK, 16

free energy
Gibbs, 48
Giibs, 55
molar Gibbs, 53

generic names, 10
Gibbs function

molar, 53
non-dimensional, 48
pure species, 48
specific, 55

handle, 7
heat capacity

constant pressure, 53
constant volume, 54
molar, 53, 54

internal energy
molar, 52
setting, 47
specific, 55

Jacobian, 46

kernel, 6
kinetics manager, 14

member functions, 9
methods, 9
mixture rule, 79
mixtures, 13

Newton, 46

116 Index



(draft November 29, 2001)

potential
chemical, 54

potential energy, 56
pressure, 52
pressure

reference, 50
setting, 47
standard, 50

properties
molar, 52
species thermodynamic, 48
specific, 54
thermodynamic, 38

specific heat
constant pressure, 49, 56
constant volume, 56
non-dimensional, 49

state
thermodynamic, 38

temperature, 51
temperature

maximum, 50
minimum, 50
setting, 42

thermodynamic property manager, 14
thermodynamic state, 38
thermodynamic state

setting, 39
transport property manager, 14

viscosity, 79
viscosity

bulk, 79
volume

setting, 47

Index 117


