
C A N T E R A
Object-Oriented Software for Reacting Flows



Cantera is a suite of software tools for reacting flow problems

n Thermodynamic and transport
properties

n Non-ideal equations of state

n Chemical equilibrium

n Reactor networks

n Steady 1D flames

n Reaction path diagrams

n Heterogeneous chemistry

n Open source

n Object-oriented

n Multi-Platform

n Available at
http://www.cantera.org



Cantera is multilingual

n Cantera can be used from several
popular programming / problem-
solving environments

n Interactive / scripting environments
(MATLAB, Python) for rapid problem
solution and software prototyping

n Fortran 90 and C++ for large-scale
computation

n Additional interfaces can be
developed for any application that
can call C functions (Excel,
Mathematica, …)

C++ Class Library

Fortran 90 module

Python Package

MATLAB Toolbox



Users new to Cantera should begin with Python or MATLAB

n MATLAB
– Commercial product of The MathWorks, Inc.

– Object-oriented scripting language

– Many ‘toolboxes’ available for control, digital signal
processing, numerical mathematics, graphics, etc.

n Python
– An easy-to-use, elegant object-oriented scripting

language

– Free, open-source, multiplatform

– Very good for rapid prototyping

– Many modules available for graphics, numerical
mathematics, image processing, encryption, etc.

– http://www.python.org



Cantera has a similar ‘look and feel’ in all environments

gas = IdealGasMix(‘mech.xml');

setState_TPX(gas,300.0,OneAtm,'CH4:1,O2:2,N2:7.52');

equilibrate(gas,'HP');

disp(gas)

      program equil

      use cantera

      type(gas_t) gas

      gas = IdealGasMix(‘mech.xml')

      call setState_TPX(gas, 300.0,OneAtm,'CH4:1,O2:2,N2:7.52')

      call equilibrate(gas,'HP')

      call printSummary(gas)

      end

from Cantera import *

gas = IdealGasMix(‘mech.xml')

gas.setState_TPX(300.0,OneAtm,'CH4:1,O2:2,N2:7.52')

gas.equilibrate('HP')

print gas

MATLAB

Python

Fortran 90



All interfaces use a common C++ kernel

Interface
Library

C-callable
functions

Cantera C++
Kernel

C++ Class Library

Fortran 90 module

Python Package

MATLAB Toolbox



The Kernel

n A C++ class library

n Designed for performance
– Property caching

– Virtual methods used sparingly

– Templates used to allow inlining at compile time

– Standard Template Library container classes used

– CPU-intensive code hand-optimized

n Uses standard open-source numerical libraries
– BLAS, LAPACK, CVODE



Performance and Validation



Benchmark kinetics performance vs. Chemkin-II
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Validation: Cantera and Chemkin-II produce essentially
identical results
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Kinetics performance due to efficient rate of progress
computation

n Property caching
– Expensive reaction rates only recomputed when temperature

actually changes

– Saves time in Jacobian evaluation

n Concentration products
– Reactions with one, two, or three reactants handled explicitly

– Example: a three-reactant reaction of species k1, k2, and k3:



Chemical Equilibrium



Chemical Equilibrium
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g = IdealGasMix(‘mech.xml’)
g.setState_TPX(300.0, OneAtm,‘CH4:1,O2:2,N2:7.52’)
g.equilibrate(‘HP’)

The ‘equilibrate’ method
sets the gas to a state of

chemical equilibrium



Chemical Equilibrium Details

n Element potential method used
– One of several equivalent ‘non-stoichiometric’ algorithms (Smith and

Missen)
– Idea dates back to ~1959, and used in NASA equilibrium program in early

60’s
– Popularized in combustion community by STANJAN code of Reynolds in

70’s

n Element potentials are the chemical potentials of the atomic vapor
species
– Given these, all other chemical potentials can be computed from equation

of reaction equilibrium for the atomization reactions
– Choose element potentials; compute partial pressures, total pressure
– Adjust until P and elemental composition have desired values

n Requires solving nonlinear system of M algebraic equations
– M is usually < 5
– Variations on Newton’s method work well, if initial estimate is close

enough
– Get initial estimate by solving linear programming problem



Zero-Dimensional Kinetics



Stirred Reactor Models

n Generic transient stirred
reactor model can be used to
build many different batch
and continuous reactors

n Mass flow rates, heat loss,
volume may all be varied

n Reactors can be linked to
create complex process
models



Reactors may be connected in arbitrary networks

Reservoirs provide
specified inputs

Each reactor may use a
different mixture model
or reaction mechanism

Can assemble many
different processes from
a small set of
components

All inputs may be time-
dependent

Reservoirs provide
specified inputs

Each reactor may use a
different mixture model
or reaction mechanism

Can assemble many
different processes from
a small set of
components

All inputs may be time-
dependent



Reactor Details

n Primitive conservation equations are integrated, with no assumption
of equation of state or boundary conditions

n Same reactor objects may be used to build constant-volume
reactors, constant-pressure ones, CSTRs, etc.



Building a constant-pressure reactor

n Define two objects – a reactor, and a reservoir
n Connect them with a wall, and set the wall expansion parameter to a

large value
n Reactor pressure will be held to reservoir value for sufficiently large

K

Reservoir Reactor

wall moves in response to
pressure difference



code to create a constant-pressure reactor

gas = GRI30()

gas.setState_TPX(1001.0, OneAtm, 

                             'H2:2,O2:1,N2:4')

r   = Reactor(gri3)

env = Reservoir( Air() )

w = Wall(r,env)

w.set(K = 1.0e6) 

w.set(A = 1.0)  

gas = GRI30;

set(gas,'T',1001.0,'P',oneatm,'X','H2:2,O2:1,N2:4');

r = Reactor

insert(r, gas);

env = Reservoir;

a = IdealGasMix('air.xml');

insert(env, a);

w = Wall;

install(w, r, env)

setExpansionRateCoeff(w, 1.0e6);

setArea(w, 1.0);

Python MATLAB



Running the reactor

dt = 1.0e-5;

for n = 1:100

    t = t + dt;

    advance(r, t);

    disp([time(r) temperature(r)]);  

end

time = 0.0

dt = 1.0e-5

for n in range(100):

    time += dt

    r.advance(time) 

    print r.time(), r.temperature()

Python MATLAB



Results
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Transport Properties



Transport Models

n Interchangeable transport property ‘managers’ handle all
transport-related tasks

n All have a common interface

n May be swapped dynamically during a simulation

n Allows adaptive transport property evaluation
– In regions of small gradients, use simple, fast models

– In regions of high gradients (boundary layers, flamefronts), use
accurate models



MultiTransport: A multicomponent transport model for ideal gas
mixtures

n Implements a multicomponent model based on that of Kee, Dixon-
Lewis, Warnatz, Coltrin and Miller (1986).

n Computes:
– Viscosity
– Binary diffusion coefficients
– Multicomponent diffusion coefficients
– Thermal conductivity
– Thermal diffusion coefficients

n Enhancements over Kee et al. implementation:
– Optional use of GMRES cuts time to solve L-matrix by 50%
– Slightly more accurate and faster collision integral fits
– Direct computation of fluxes given gradients avoids L-matrix inversion



One-Dimensional Flames



One-Dimensional Flames

n Burner-stabilized and axisymmetric stagnation-point
flames implemented

n At present, flame simulations run only from Python
interface

n Solution technique is hybrid Newton / time-stepping
algorithm similar to that of TWOPNT (Grcar)

n Adaptive grid refinement

n Fast evaluation of Jacobian
– Only steady-state Jacobian computed

– Transient Jacobian formed by modifying diagonal elements



Example: A low-pressure, burner-stabilized hydrogen / oxygen
/ argon flame
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A complete Python flame simulation script

from Cantera import units

from Cantera.flame import *

gas = IdealGasMix(src = 'h2o2.xml', transport='Mix')

flame = BurnerFlame(domain = (0, 0.4), fuel = 'H2:1',

                    oxidizer = 'O2:1, AR:7', gas = gas,

                    grid = [0, 0.02, 0.04, 0.06, 0.08, 

                            0.1, 0.15, 0.2, 0.49, 0.5])

flame.set(mdot = 0.04, equiv_ratio = 0.9, T_burner = 373.0,

          pressure = 0.05 * units.atm, tol = (1.e-5, 1.e-12),

          timesteps = ([1,2,5,10,20], 1.e-5),

          refine = (2.0, 0.8, 0.9), jac_age = (20, 10))

flame.set(energy = 'off')

flame.solve(1)

flame.set(energy = 'on', refine = (2.0, 0.05, 0.1))

flame.solve(1)

flame.save('energy','solution with the energy equation enabled',

           'h2o2_flame1.xml')

(for a version with comments, see ‘Cantera/python/examples/flame1.py’)



Installing Cantera



Installation CD

n An installation CD is available that contains
everything needed to install Cantera on a PC
running Windows.

n The CD contents can also be downloaded from
http://www.cantera.org



Installing Cantera on a Windows PC

n If you are installing Cantera for the first
time…
– Run ‘setup.bat’ on the CD.

– This will install Cantera and a few third-party
packages needed by Cantera

n If you are updating a previous installation
– uninstall Cantera first from the Control Panel

– run update.bat on the CD



Third-Party Software Packages

n Python 2.2. An easy-to-use object-oriented scripting
language

n Numeric extensions for Python. Adds efficient
array operations to Python.

n GraphViz Used by Cantera to draw reaction path
diagrams

n These packages are also available on the web



Testing the Installation

n On the Start menu, select
Programs/Cantera/MixMaster

n If a graphical window like that at the
right appears, you’re all set!



Installing the Cantera MATLAB Toolbox

n In the installation directory, go into folder MATLAB and unzip
file Cantera-matlab.zip.

n This file expands to a folder named ‘cantera’, which is the
Cantera MATLAB toolbox. You can move it to any convenient
place on your disk.

n Now start MATLAB, and
on the File menu select
‘Set Path’, and add this
folder to the MATLAB
path.



A set of tutorials covers the basics of using Cantera in
MATLAB

n Each tutorial is an m-file

n For each one, read it first, then run it



A set of examples provide starting points for writing your own
m-files

n Running file ‘run_examples.m’ in the Examples folder
will run all examples.

zero-dimensional
kinetics

equilibrium

transport 
properties



Getting started with Cantera in Python

n The installation procedure installs Python for you

n Try running the example Python scripts
– zero-D kinetics

– flames

n To get help, select ‘Module Docs’ on the Start menu
under ‘Python 2.2’
– press ‘Open Browser’

– browse to Cantera, and select any module to view its
documentation



Reaction Mechanism File Formats

n Cantera supports two formats to specify reaction mechanisms

– CTML format
• an XML-based markup language
• Python syntax to create an object from a specification in CTML format:

gas = IdealGasMix(‘mech.xml’)

• CTML file contains all required thermo and transport parameters

– Chemkin format
• Widely used
• Python syntax:

gas = IdealGasMix(‘mech.inp’, thermo = ‘therm.dat’,
trandb = ‘tran.dat’,
transport = ‘Mix’)

• Transport and thermo parameters optional
• call to IdealGasMix also creates a CTML representation of the mechanism



Carrying on

n See the Cantera web site http://www.cantera.org

n Join the Cantera User’s Group to receive information
about new releases, bugs/bug fixes, etc.

n Frequent updates will be available that expand the
capabilities of Cantera – stay tuned!


