
C A N T E R A
Object-Oriented Software for Reacting Flows

Cantera is a suite of software tools for reacting flow problems

n Thermodynamic and transport
properties

n Non-ideal equations of state

n Chemical equilibrium

n Reactor networks

n Steady 1D flames

n Reaction path diagrams

n Heterogeneous chemistry

n Open source

n Object-oriented

n Multi-Platform

n Available at
http://www.cantera.org

Cantera is multilingual

n Cantera can be used from several
popular programming / problem-
solving environments

n Interactive / scripting environments
(MATLAB, Python) for rapid problem
solution and software prototyping

n Fortran 90 and C++ for large-scale
computation

n Additional interfaces can be
developed for any application that
can call C functions (Excel,
Mathematica, …)

C++ Class Library

Fortran 90 module

Python Package

MATLAB Toolbox

Users new to Cantera should begin with Python or MATLAB

n MATLAB
– Commercial product of The MathWorks, Inc.

– Object-oriented scripting language

– Many ‘toolboxes’ available for control, digital signal
processing, numerical mathematics, graphics, etc.

n Python
– An easy-to-use, elegant object-oriented scripting

language

– Free, open-source, multiplatform

– Very good for rapid prototyping

– Many modules available for graphics, numerical
mathematics, image processing, encryption, etc.

– http://www.python.org

Cantera has a similar ‘look and feel’ in all environments

gas = IdealGasMix(‘mech.xml');

setState_TPX(gas,300.0,OneAtm,'CH4:1,O2:2,N2:7.52');

equilibrate(gas,'HP');

disp(gas)

 program equil

 use cantera

 type(gas_t) gas

 gas = IdealGasMix(‘mech.xml')

 call setState_TPX(gas, 300.0,OneAtm,'CH4:1,O2:2,N2:7.52')

 call equilibrate(gas,'HP')

 call printSummary(gas)

 end

from Cantera import *

gas = IdealGasMix(‘mech.xml')

gas.setState_TPX(300.0,OneAtm,'CH4:1,O2:2,N2:7.52')

gas.equilibrate('HP')

print gas

MATLAB

Python

Fortran 90

All interfaces use a common C++ kernel

Interface
Library

C-callable
functions

Cantera C++
Kernel

C++ Class Library

Fortran 90 module

Python Package

MATLAB Toolbox

The Kernel

n A C++ class library

n Designed for performance
– Property caching

– Virtual methods used sparingly

– Templates used to allow inlining at compile time

– Standard Template Library container classes used

– CPU-intensive code hand-optimized

n Uses standard open-source numerical libraries
– BLAS, LAPACK, CVODE

Performance and Validation

Benchmark kinetics performance vs. Chemkin-II

0 5 0 1 0 0 1 5 0 2 0 0

Time (s)

CK-2
Cantera

Constant P, H Problem with Sensitivity Analysis
Similar performance gain on all platforms
(Linux, Windows, OSF/1, IRIX)

Shown:
Compaq Visual Fortran
MS Visual C++
750 MHz Pii

Validation: Cantera and Chemkin-II produce essentially
identical results

-500

0

500

1000

1500

2000

2500

3000

0 0.2 0.4 0.6 0.8 1

Time (ms)

T
em

p
er

at
u

re
 (

K
)

max temperature
error = 0.014 K

T(t)

104 (Tcantera - Tchemkin)

Cantera and Chemkin-2
are in excellent
agreement for all
solution variables and
sensitivity coefficients.

Typical relative
difference in any
component at any time
is one part in 106 or 107

Kinetics performance due to efficient rate of progress
computation

n Property caching
– Expensive reaction rates only recomputed when temperature

actually changes

– Saves time in Jacobian evaluation

n Concentration products
– Reactions with one, two, or three reactants handled explicitly

– Example: a three-reactant reaction of species k1, k2, and k3:

Chemical Equilibrium

Chemical Equilibrium

Temperature

500

1000

1500

2000

2500

0 1 2 3

equivalence ratio

T
 (

K
)

Example: equilibrium
methane/air adiabatic
combustion at 1 atm

Selected Species

0.00E+00

5.00E-02

1.00E-01

1.50E-01

2.00E-01

2.50E-01

3.00E-01

3.50E-01

0 0.5 1 1.5 2 2.5 3

equivalence ratio

m
o

le
 f

ra
c

ti
o

n

H2

 O2

 OH

 H2O

 CH3

 CH4

 CO

 CO2

 HCO

g = IdealGasMix(‘mech.xml’)
g.setState_TPX(300.0, OneAtm,‘CH4:1,O2:2,N2:7.52’)
g.equilibrate(‘HP’)

The ‘equilibrate’ method
sets the gas to a state of

chemical equilibrium

Chemical Equilibrium Details

n Element potential method used
– One of several equivalent ‘non-stoichiometric’ algorithms (Smith and

Missen)
– Idea dates back to ~1959, and used in NASA equilibrium program in early

60’s
– Popularized in combustion community by STANJAN code of Reynolds in

70’s

n Element potentials are the chemical potentials of the atomic vapor
species
– Given these, all other chemical potentials can be computed from equation

of reaction equilibrium for the atomization reactions
– Choose element potentials; compute partial pressures, total pressure
– Adjust until P and elemental composition have desired values

n Requires solving nonlinear system of M algebraic equations
– M is usually < 5
– Variations on Newton’s method work well, if initial estimate is close

enough
– Get initial estimate by solving linear programming problem

Zero-Dimensional Kinetics

Stirred Reactor Models

n Generic transient stirred
reactor model can be used to
build many different batch
and continuous reactors

n Mass flow rates, heat loss,
volume may all be varied

n Reactors can be linked to
create complex process
models

Reactors may be connected in arbitrary networks

Reservoirs provide
specified inputs

Each reactor may use a
different mixture model
or reaction mechanism

Can assemble many
different processes from
a small set of
components

All inputs may be time-
dependent

Reservoirs provide
specified inputs

Each reactor may use a
different mixture model
or reaction mechanism

Can assemble many
different processes from
a small set of
components

All inputs may be time-
dependent

Reactor Details

n Primitive conservation equations are integrated, with no assumption
of equation of state or boundary conditions

n Same reactor objects may be used to build constant-volume
reactors, constant-pressure ones, CSTRs, etc.

Building a constant-pressure reactor

n Define two objects – a reactor, and a reservoir
n Connect them with a wall, and set the wall expansion parameter to a

large value
n Reactor pressure will be held to reservoir value for sufficiently large

K

Reservoir Reactor

wall moves in response to
pressure difference

code to create a constant-pressure reactor

gas = GRI30()

gas.setState_TPX(1001.0, OneAtm,

 'H2:2,O2:1,N2:4')

r = Reactor(gri3)

env = Reservoir(Air())

w = Wall(r,env)

w.set(K = 1.0e6)

w.set(A = 1.0)

gas = GRI30;

set(gas,'T',1001.0,'P',oneatm,'X','H2:2,O2:1,N2:4');

r = Reactor

insert(r, gas);

env = Reservoir;

a = IdealGasMix('air.xml');

insert(env, a);

w = Wall;

install(w, r, env)

setExpansionRateCoeff(w, 1.0e6);

setArea(w, 1.0);

Python MATLAB

Running the reactor

dt = 1.0e-5;

for n = 1:100

 t = t + dt;

 advance(r, t);

 disp([time(r) temperature(r)]);

end

time = 0.0

dt = 1.0e-5

for n in range(100):

 time += dt

 r.advance(time)

 print r.time(), r.temperature()

Python MATLAB

Results

time (s)

T
(K

)

0.00025 0.0005 0.00075 0.001

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

time (s)

P
(P

a
)

0.00025 0.0005 0.00075 0.001
101320

101321

101322

101323

101324

101325

101326

101327

101328

101329

101330

Temperature Pressure

Transport Properties

Transport Models

n Interchangeable transport property ‘managers’ handle all
transport-related tasks

n All have a common interface

n May be swapped dynamically during a simulation

n Allows adaptive transport property evaluation
– In regions of small gradients, use simple, fast models

– In regions of high gradients (boundary layers, flamefronts), use
accurate models

MultiTransport: A multicomponent transport model for ideal gas
mixtures

n Implements a multicomponent model based on that of Kee, Dixon-
Lewis, Warnatz, Coltrin and Miller (1986).

n Computes:
– Viscosity
– Binary diffusion coefficients
– Multicomponent diffusion coefficients
– Thermal conductivity
– Thermal diffusion coefficients

n Enhancements over Kee et al. implementation:
– Optional use of GMRES cuts time to solve L-matrix by 50%
– Slightly more accurate and faster collision integral fits
– Direct computation of fluxes given gradients avoids L-matrix inversion

One-Dimensional Flames

One-Dimensional Flames

n Burner-stabilized and axisymmetric stagnation-point
flames implemented

n At present, flame simulations run only from Python
interface

n Solution technique is hybrid Newton / time-stepping
algorithm similar to that of TWOPNT (Grcar)

n Adaptive grid refinement

n Fast evaluation of Jacobian
– Only steady-state Jacobian computed

– Transient Jacobian formed by modifying diagonal elements

Example: A low-pressure, burner-stabilized hydrogen / oxygen
/ argon flame

z [m]

T
[K

]

0 0.1 0.2 0.3 0.4 0.5
400

600

800

1000

1200

1400

1600

1800

z [m]

H
2

,
H

,
O

,
O

2
,
O

H
,
H

2
O

,
H

O
2

,
H

2
O

2

0 0.1 0.2 0.3 0.4 0.5

10-7

10-6

10-5

10-4

10-3

10-2

10-1

A complete Python flame simulation script

from Cantera import units

from Cantera.flame import *

gas = IdealGasMix(src = 'h2o2.xml', transport='Mix')

flame = BurnerFlame(domain = (0, 0.4), fuel = 'H2:1',

 oxidizer = 'O2:1, AR:7', gas = gas,

 grid = [0, 0.02, 0.04, 0.06, 0.08,

 0.1, 0.15, 0.2, 0.49, 0.5])

flame.set(mdot = 0.04, equiv_ratio = 0.9, T_burner = 373.0,

 pressure = 0.05 * units.atm, tol = (1.e-5, 1.e-12),

 timesteps = ([1,2,5,10,20], 1.e-5),

 refine = (2.0, 0.8, 0.9), jac_age = (20, 10))

flame.set(energy = 'off')

flame.solve(1)

flame.set(energy = 'on', refine = (2.0, 0.05, 0.1))

flame.solve(1)

flame.save('energy','solution with the energy equation enabled',

 'h2o2_flame1.xml')

(for a version with comments, see ‘Cantera/python/examples/flame1.py’)

Installing Cantera

Installation CD

n An installation CD is available that contains
everything needed to install Cantera on a PC
running Windows.

n The CD contents can also be downloaded from
http://www.cantera.org

Installing Cantera on a Windows PC

n If you are installing Cantera for the first
time…
– Run ‘setup.bat’ on the CD.

– This will install Cantera and a few third-party
packages needed by Cantera

n If you are updating a previous installation
– uninstall Cantera first from the Control Panel

– run update.bat on the CD

Third-Party Software Packages

n Python 2.2. An easy-to-use object-oriented scripting
language

n Numeric extensions for Python. Adds efficient
array operations to Python.

n GraphViz Used by Cantera to draw reaction path
diagrams

n These packages are also available on the web

Testing the Installation

n On the Start menu, select
Programs/Cantera/MixMaster

n If a graphical window like that at the
right appears, you’re all set!

Installing the Cantera MATLAB Toolbox

n In the installation directory, go into folder MATLAB and unzip
file Cantera-matlab.zip.

n This file expands to a folder named ‘cantera’, which is the
Cantera MATLAB toolbox. You can move it to any convenient
place on your disk.

n Now start MATLAB, and
on the File menu select
‘Set Path’, and add this
folder to the MATLAB
path.

A set of tutorials covers the basics of using Cantera in
MATLAB

n Each tutorial is an m-file

n For each one, read it first, then run it

A set of examples provide starting points for writing your own
m-files

n Running file ‘run_examples.m’ in the Examples folder
will run all examples.

zero-dimensional
kinetics

equilibrium

transport
properties

Getting started with Cantera in Python

n The installation procedure installs Python for you

n Try running the example Python scripts
– zero-D kinetics

– flames

n To get help, select ‘Module Docs’ on the Start menu
under ‘Python 2.2’
– press ‘Open Browser’

– browse to Cantera, and select any module to view its
documentation

Reaction Mechanism File Formats

n Cantera supports two formats to specify reaction mechanisms

– CTML format
• an XML-based markup language
• Python syntax to create an object from a specification in CTML format:

gas = IdealGasMix(‘mech.xml’)

• CTML file contains all required thermo and transport parameters

– Chemkin format
• Widely used
• Python syntax:

gas = IdealGasMix(‘mech.inp’, thermo = ‘therm.dat’,
trandb = ‘tran.dat’,
transport = ‘Mix’)

• Transport and thermo parameters optional
• call to IdealGasMix also creates a CTML representation of the mechanism

Carrying on

n See the Cantera web site http://www.cantera.org

n Join the Cantera User’s Group to receive information
about new releases, bugs/bug fixes, etc.

n Frequent updates will be available that expand the
capabilities of Cantera – stay tuned!

