
CANTERA Tutorials

A series of tutorials to get started with the python interface

of Cantera version 2.1.1

Anne Felden

November 2015

16th November 2015 ii

Introduction

Cantera is a suite of object-oriented software tools for problems involving chemical kinetics, thermody-

namics, and/or transport processes. Cantera provides types (or classes) of objects representing phases

of matter, interfaces between these phases, reaction managers, time-dependent reactor networks, and

steady one-dimensional reacting flows.Cantera is currently used for applications including combustion,

detonations, electrochemical energy conversion and storage, fuel cells, batteries, aqueous electrolyte

solutions, plasmas, and thin film deposition.

The version of Cantera that we will present and use in this tutorial is the version 2.1.1. As we

will work with a precompiled version, the installation requirements and guidelines will not be recalled

hereafter, but can be found on the official website :

http://cantera.github.io/docs/sphinx/html/index.html

Cantera can be used from both Python and Matlab interfaces, or in applications written in C++

and Fortran 90. There are several advantages in choosing the Python interface. First of all, it offers

most of the features of the C++ core in a much more flexible environment. Its most obvious advantage

over the Matlab toolbox is that it can be downloaded free of charge. Furthermore, Python assistance

can be easily found online thanks to a broad community of users. As such, the Python module is

nowadays the most commonly used, so that online help and scripts can be easily found, adapted to

your needs and discussed with experimented users. To be consistent with this trend, the tutorials will

focus on this user-friendly interface as well.

To get started, you only need to open a terminal and type :

module load cantera

16th November 2015 iii

Contents

List of Figures viii

1 Tutorial 1 : An example to start with ... 1

1.1 Introduction . 1

1.2 Exercises . 1

1.2.1 Define a single gas object through a script . 1

1.2.2 Define a single gas object through the Python terminal 2

1.2.3 Continue your simple script: modify the state of your ”gas” object 3

1.2.4 Conclusion and discussion about gaseous phases 4

1.3 To go further ... 5

1.3.1 Cantera’s ’CTI’ format for mechanism files . 5

1.3.2 Exercise : Generating a ’CTI’ input file from CHEMKIN input files 6

2 Tutorial 2 : All there is to know about input files 8

2.1 Introduction . 8

2.2 Data files syntax . 9

2.2.1 Entries and directives . 9

2.2.2 Cantera specific syntaxing rules . 10

2.2.3 Supported units . 11

2.3 Processing the data file . 12

2.3.1 From the’.cti’ file to the ’.xml’ file . 12

2.3.2 Cantera pre-processor error printing . 13

2.4 Summary: General structure of a data file . 15

2.5 Exercises . 16

2.5.1 Generate a CTML data file and run your first script ! 16

2.5.2 A second example . 19

2.5.3 Generate submechanisms with a special processing option (OPTIONAL) 19

16th November 2015 iv

3 Tutorial 3 : Equilibrium calculations 21

3.1 Equilibrium calculations . 21

3.1.1 Introduction . 21

3.1.2 The equilibrate function . 22

3.2 Exercises . 23

3.2.1 Generate your first equilibrium script ! . 23

3.2.2 The ’element potential’ solver . 26

3.2.3 Compare different solvers (OPTIONAL) . 27

3.2.4 Perform adiabatic flame calculations . 28

3.3 About convergence, failures of equilibrium calculations 35

4 Tutorial 4 : Reactor simulations 37

4.1 The Reactor object with Cantera . 37

4.1.1 Introduction . 37

4.1.2 The ReactorBase class . 37

4.1.3 The FlowDevice class . 38

4.1.4 Walls . 39

4.1.5 Time evolution inside a Reactor . 39

4.2 Exercises . 39

4.2.1 A simple clossed vessel . 39

4.2.2 A simple constant pressure reactor . 43

4.2.3 An example of application : mixing two streams (OPTIONAL) 47

4.2.4 Autoignition timing . 55

5 Tutorial 5 : 1D simulations 64

5.1 Introduction . 64

5.2 General structure of a 1D simulation with Cantera . 66

5.2.1 1D domains and discretization . 66

5.2.2 Flame objects . 67

5.2.3 Boundary conditions . 67

5.2.4 Save and restart your computation : the ’xml’ format 68

5.3 About transport properties in 1D simulations . 69

5.4 Solver properties . 69

5.4.1 Set of equations to solve . 70

5.4.2 Newton integration . 70

16th November 2015 v

5.5 Exercises . 71

5.5.1 A premixed flat flame simulation . 71

5.5.2 A burner stabilized flat flame simulation . 80

5.5.3 A counterflow diffusion flame simulation . 83

A Appendix: Standard entries and fields found in Cantera’s data files 86

A.1 Introduction . 86

A.2 Phases and interfaces . 86

A.3 Elements . 92

A.4 Species . 92

A.5 Reactions . 94

B Appendix: Standard Python commands for Cantera 97

B.1 Generalities . 97

B.1.1 Indented commands . 97

B.1.2 Comment your results . 97

B.1.3 Import packages . 98

B.1.4 String tricks . 100

B.1.5 Variables . 100

B.1.6 Loops . 101

B.2 Storage . 102

B.2.1 Storage variables . 102

B.2.2 Save and display relevant information : loops 103

B.2.3 Save and display relevant information : the %arg operator 103

B.2.4 Save relevant information : the ’csv’ package 104

B.3 Display tricks . 105

B.4 Plots with Matplotlib . 106

C Appendix: Solution to the exercises 108

C.1 Tutorial 2 . 108

C.1.1 List of h2 sandiego.cti errors . 108

C.1.2 submechanisms.cti . 108

C.2 Tutorial 3 . 111

C.2.1 equil simple.py . 111

C.2.2 AdiabaticFlameT.py . 111

C.3 Tutorial 4 . 114

16th November 2015 vi

C.3.1 reactorUV.py . 114

C.3.2 Modified reactorHP.py . 116

C.3.3 mixing.py . 118

C.3.4 Autoignition scripts . 120

C.4 Tutorial 5 . 126

C.4.1 premixed flame.py . 126

C.4.2 premixed flame continuation.py . 130

C.4.3 burner flame.py . 133

C.4.4 diffusion flame.py . 135

16th November 2015 vii

List of Figures

2.1 Adiabatic flame temperature for different equivalence ratios of H2/Air mixture, com-

puted with the mechanism of San Diego, version of 2011 and shortened as in Petrova

and Williams, C&F 2005. 18

3.1 C2H4/Air adiabatic flame temperature for different equivalence ratios, computed with

the mechanism of aromatics formation and growth in laminar premixed acetylene and

ethylene flames, by Wang and Frenklach. 36

3.2 Equilibrium composition of major species for different equivalence ratios of C2H4/Air

mixture, computed with the mechanism of aromatics formation and growth in laminar

premixed acetylene and ethylene flames, by Wang and Frenklach. 36

4.1 Autoignition of a methane/air mixture at stoichiometry and 1000K, with the GRIMech3.0

mechanism. 42

4.2 Constant pressure autoignition of a methane/air mixture at stoichiometry and 1000K,

with the GRIMech3.0 mechanism. 46

4.3 Constant volume mixing of two streams of air and methane, with the GRIMech3.0

mechanism. 48

4.4 Autoignition time of a methane-air mixture at stoichiometry and under atmospheric

pressure, for different initial temperatures. 63

5.1 Flame speed versus equivalence ratio at 300 K, for three pressures (1, 3 and 12 atm).

Comparison between a reduced scheme (from Luche’s thesis, 991 reactions and 91 spe-

cies) and a global scheme (2S KERO BFER developped by Benedetta Franzelli at CER-

FACS, 2 global steps and 6 species) . 65

5.2 Temperature and important species’ mole fractions evolution through a free premixed

flat flame, computed for a methane-air mixture at stoichimometry and under atmo-

spheric conditions with the GRIMech3.0 mechanism. 78

5.3 From R.J. Kee, M.E. Coltrin and P. Glarborg ”Chemically Reacting Flow” 80

16th November 2015 viii

5.4 Evolution of the main species through a burner stabilized premixed flat flame, computed

for a methane-air mixture at φ = 1.3, Tini = 373 K and under atmospheric pressure

with the GRIMech3.0 mechanism and the multicomponent diffusion enabled. 82

5.5 Evolution of the temperature through a burner stabilized premixed flat flame, computed

for a methane-air mixture at φ = 1.3, Tini = 373 K and under atmospheric pressure

with the GRIMech3.0 mechanism and the multicomponent diffusion enabled. 82

5.6 Spatial evolution of the temperature and some radicals mole fraction through a diffusion

counterflow flame, computed for an ethane-air mixture at T fuel and T air = 300 K,

under atmospheric pressure and for a = 40 s−1; with the GRIMech3.0 mechanism. . . 85

16th November 2015 1

1. Tutorial 1 : An example to start with ...

1.1 Introduction

This first tutorial’s main objective is to help you get started with the Python interface of Cantera.

The goal here is to get acquainted with the notion of objects and functions that we will encounter

in all Python scripts. We will start by defining a simple gaseous object directly in a ’script’, before

introducing the Python terminal and its possibilities. Next, we will see how to access and modify the

state of this newly instantiated ”gas” object through adequate functions; before concluding with a

general discussion on the specificities of gaseous objects.

The second objective of this first tutorial is to introduce the ’data file’ format of Cantera, which

will be the subject of the second tutorial.

1.2 Exercises

1.2.1 Define a single gas object through a script

Go into the folder ’Tuto1’ and start by creating a new Python script -filename ending with .py, say

’gas simple.py’:

$ touch gas simple.py

Open it in the text editor of your choice :

$ gedit gas simple.py

Put the following statement at the top of your script to import the Cantera Python module :

import cantera as ct

Now, when using Cantera, the first thing you usually require is an object representing some phase of

matter. Let us begin by defining a gaseous mixture, with the attributes of the GRIMech3.0 mechanism,

that we will label ”gas”. This is done by adding the following command line on your script:

gas = ct.Solution(’gri30.xml’)

16th November 2015 2

Here, we imported information from an external file, ’gri30.xml’. This file should already be present

in your working directory. It contains all information necessary to instantiate your ”gas” object. We

will see what this file contains in more details in the next tutorial. For now, notice that the ”Solution”

object is imported from the Cantera package, and as such, a ”ct.” has to be added at the beginning

of its name. See B.1.3 for more information on how to load packages in a Python environment. All

functionalities from the Cantera package have to be called this way.

As we are in an ”object-oriented” environment, this ”Solution” object is a class instance; and as

such, has many attributes and methods associated to it. Let us begin by printing a few through this

script. To see, for example, the current state of your ”gas” object, you could print it on your terminal

by adding the next line on your script:

print gas()

Next, we could print a list of the species present in this gaseous mixture. Add the following line to

your script :

print gas.species_names

Don’t forget to save your work. You are now ready to launch this first script ! Do do so, simply

type the following command from your working directory, on your terminal:

$ python gas simple.py

Results

The summary of the state of that ”gas” object that you will see on your screen, shows that new objects

created from the ’gri30.xml’ input file start out with a temperature of 300 K, a pressure of 1 atm, and

have a composition that consists of only one species, in this case hydrogen. There is nothing special

about H2 - it just happens to be the first species listed in the input ’.xml’ file. In general, whichever

species is listed first will initially have a mole fraction of 1.0, and all of the others will be zero.

Notice that the name of the species involved are printed in an array.

1.2.2 Define a single gas object through the Python terminal

You could also work directly from the terminal, by launching a python compiler in your terminal with

the command :

$ python

If you are already familiar with Python, you can see that this way of proceeding offers many

advantages for very simple scripts, or to test certain functionalities. Your terminal will open a Python

environment, recognizable at the symbols that appear on the left of your terminal:

16th November 2015 3

>>>

Simply type individually each line of the script you designed in the previous section, and spot er-

rors/results directly. You could define another gas object, and continue to test objects and functions

for as long as you wish.

A very interesting feature that can be accessed through this more flexible environment is the ’help’

function. This will make it possible for you to access all methods and attributes associated to a

particular object. If you remember from the next section, we printed, for example, the state of the

gas with the command:

print gas()

But many more functionalities are available, and you will probably forget them as you go ... To

remember what they are, from the Python environment, we would type the following commands:

>>> import cantera as ct

>>> gas = ct.Solution(’gri30.xml’)

>>> help(gas)

As you will see, a list of functions will appear on your terminal screen. Now, as a gas representative,

this particular ”gas” object has properties that you would expect for a gas mixture : a temperature,

a pressure, species mole and mass fractions, etc. Continue by calling a few functions of your choice

from this list on your ”gas” object :

>>> gas.species_names

>>> gas.T

>>> gas.Y

...

Once you are done with the Python environment, close it with the command:

>>> exit()

1.2.3 Continue your simple script: modify the state of your ”gas” object

Open again the script generated in section 1.2.1:

$ gedit gas simple.py

We will now modify the state of the newly created object. For example, adding the line:

gas.TP = 800, 202650

16th November 2015 4

will set its temperature to 800 K and pressure to 202650 Pa (Cantera always uses SI units). Print the

state of the gas again, right after this command, by adding the line :

print gas()

to see the difference. Save your modifications, and launch your script again, from your terminal:

$ python gas simple.py

NOTE : you could also work directly from the Python terminal if you find it more handy ! If you

decide to do so, remember that every command that start with a ’print’, such as:

print gas()

could simply be replaced by the same command, without stating the ’print’ explicitly:

>>> gas()

to print the ”gas” object state.

Results

Notice the differences from the two ’gas()’ printout: the temperature and pressure have changed, along

with the density.

1.2.4 Conclusion and discussion about gaseous phases

Thermodynamics generally requires that two properties in addition to composition information be

specified to fix the intensive state of a substance (or mixture). The state of the mixture can be set

using several combinations of two properties. The following are all equivalent:

gas.TP = 800, 202650 # temperature, pressure

gas.TD = 800, 0.0614168 # temperature, density

gas.HP = 7.29094e6, 202650 # specific enthalpy, pressure

gas.UV = 3.99135e6, 1/0.0614168 # specific internal energy, specific volume

gas.SP = 76290.8, 202650 # specific entropy, pressure

gas.SV = 76290.8, 1/0.0614168 # specific entropy, specific volume

Try adding these line to your ’gas simple.py’, and calling the gas() function in between each of them

to convince yourself. Note that the values of the extensive properties must be entered per unit mass.

To modify the state of the gas too, add ’X’ or ’Y’ to the previous commands in order to specify

the mole or mass fractions, respectively. For example :

16th November 2015 5

gas.TPX = 800, 202650, ’CH4:1, O2:2, N2:7.52’ # temperature, pressure, composition

Will instantiate the ”gas” object by specifying a temperature, a pressure and mole fractions. The

composition, in this example, was specified using a string. The format is composed of a separated

list of <species name>:<relative mole numbers> pairs. Note that the mole or mass numbers will

automatically be normalized to produce the mole or mass fractions, respectively. The composition

can also be set using an array, which must then have the same size as the number of species. For

example with the GRIMech3.0 mechanism, as there are 53 species, the mass fraction composition

could be set using:

gas.Y = np.ones(53) # NumPy array of 53 ones

Where the ’np’ here refers to the numpy python package, see B.1.3. When the composition alone is

changed, Cantera helds the temperature and density constant. To change that, use the keyword ’None’

to specify which properties are to stay constant. For example, if you want to change the mixture’s

mole fractions while keeping the temperature and pressure constant:

gas.TPX = None, None, ’CH4:1.0, O2:0.5’

Fortunately, properties may be read independently or together. For example, from the Python

terminal, the following commands on your previous gaseous object would produce:

>>> gas.T

800.0

>>> gas.TP

(800.0, 202650.0)

Notice the format of each printout.

1.3 To go further ...

1.3.1 Cantera’s ’CTI’ format for mechanism files

The information required to compute the previous quantities were specified in the ’.xml’ file, also

labeled ”mechanism file” or ”data file”. Cantera also supports a data file format that is easier to

write than the ’.xml’ format, with the extension ’.cti’. The next tutorial will cover in more details

what needs to be specified in this file; but for now, several reaction mechanism files in this format are

included your working directory, ’Tuto1’. You can peruse them to get familiar with the syntax. Open,

for example, the ’gri.cti’ and the ’gri.xml’ files to see what is in them and notice the differences.

16th November 2015 6

1.3.2 Exercise : Generating a ’CTI’ input file from CHEMKIN input files

Many existing reaction mechanism files are already available in a ”CHEMKIN format”, by which we

mean the input file format developed for use with the Chemkin-II software package. Cantera comes

with a useful converter utility program ck2cti (or ck2cti.py), that converts CHEMKIN format into

Cantera format. This program is run from the terminal directly, to convert any CK files you plan to

use with Cantera into the right ’.cti’ format:

$ ck2cti

ck2cti.py: Convert Chemkin-format mechanisms to Cantera input files (.cti)

Usage:

ck2cti --input=<filename>

[--thermo=<filename>]

[--transport=<filename>]

[--id=<phase-id>]

[--output=<filename>]

[--permissive]

[-d | --debug]

Example:

ck2cti --input=chem.inp --thermo=therm.dat --transport=tran.dat

If the output file name is not given, an output file with the same name as the

input file, with the extension changed to ’.cti’.

The ’--permissive’ option allows certain recoverable parsing errors (e.g.

duplicate transport data) to be ignored.

As explained, it will produce the file chem.cti in the current directory. We will try using the ck2cti pro-

gram to transform the mechanism for aromatics formation and growth in laminar premixed acetylene

and ethylene flames, by Frenklach and Wang [Combustion and Flame vol. 110, pp. 173-221 (1997)];

that can be found on the folder CK2CTI in your working directory; or alternatively on the web site

http://ignis.usc.edu/Mechanisms/PAH/pah.html. Simply type from this directory on your terminal :

$ ck2cti --input=mech.inp --transport=tran.dat -- thermo=therm.dat

16th November 2015 7

Results

A new file of the right format, ’mech.cti’ should have been created in your working directory. If errors

occur, look at the log printed on your screen and try to modify the files accordingly. Notice that those

error messages are usually very self-explanatory. You should get a printout :

Wrote CTI mechanism file to ’mech.cti’.

Mechanism contains 99 species and 533 reactions.

Remarks

The errors that you will encounter at this step will usually be syntaxing errors. The parser might have

trouble with particular symbols, names or unexpected blank spaces. Be careful especially whenever

you are using an ”old” mechanism of yours, that might contain comments in French !

It might also happen that the names in your CHEMKIN mechanism file do not directly match

those of your CHEMKIN transport or thermo data files...

16th November 2015 8

2. Tutorial 2 : All there is to know about input files

2.1 Introduction

Cantera simulations will always involve one or more phases of matter. Depending on the calcula-

tion being performed, it may be necessary to evaluate thermodynamic properties, but also transport

properties, and/or homogeneous reaction rates for the phase(s) present. In problems with multiple

phases, the properties of the interfaces between phases, and the heterogeneous reaction rates at these

interfaces, may also be required.

Before the properties can be evaluated, each phase must be defined, meaning that the models

used to compute its properties and reaction rates must be specified, along with any parameters the

models require. For example, a solid phase might be defined as being incompressible, with a specified

density and composition. A gaseous phase for a combustion simulation might be defined as an ideal

gas consisting of a mixture of many species that react with one another via a specified set of reactions.

If phases contain multiple species and reactions, as it is often the case in combustion application,

a large amount of data is required to define it, since the contribution of each species to the ther-

modynamic and transport properties must be specified, and rate information must be given for each

reaction. Rather than defining this information via an application program, the Cantera approach

is to put the phase and interface definitions in a text file that can be called from and read by an

application program - or a script.

In this tutorial, we will review what must be included in such ’data files’, or ’mechanism files’, and

provide guidelines on how to write them to define phases and interfaces for use in Cantera simulations.

We will start by a review of some basic writing rules, followed by a discussion on how they are processed,

and of how errors are handled. We will work with examples in the last sections.

16th November 2015 9

2.2 Data files syntax

2.2.1 Entries and directives

A data file consists of entries and directives, both of which have a syntax much like functions. An

entry defines an object, for example, a reaction or a species. Entries have fields, that can be assigned

values. Take the definition of the argon species :

species(name = "AR",

atoms = " Ar:1 ",

thermo = (

NASA([300.00, 1000.00], [2.500000000E+00, 0.000000000E+00,

0.000000000E+00, 0.000000000E+00, 0.000000000E+00,

-7.453750000E+02, 4.366000000E+00]),

NASA([1000.00, 5000.00], [2.500000000E+00, 0.000000000E+00,

0.000000000E+00, 0.000000000E+00, 0.000000000E+00,

-7.453750000E+02, 4.366000000E+00])

),

transport = gas_transport(

geom = "atom",

diam = 3.33,

well_depth = 136.50),

)

Its fields are its name, atoms and thermodynamic and transport properties. The syntax is

< field name >=< value >, and the fields can be specified on one line or extended across several to

be read more easily, as it was the case in the previous example. Some fields are required, otherwise

processing the file will abort and an error message will be printed.

As can be seen on this example, the transport field for instance is defined via another entry,

”gas transport”, which in turn has several fields (’geom’, ’diam’, ’well depth’). These types of entries

are embedded entries, whereas the leftmost column entries are labeled top-level entries. Embedded

entries often specify a model or a large group of parameters.

A directive will tell the code how the entry parameters are to be interpreted, such as what is the

default unit system, or how certain errors should be handled. For example :

units(length = "cm", time = "s", quantity = "mol", act_energy = "cal/mol")

Specifies the unit system.

16th November 2015 10

2.2.2 Cantera specific syntaxing rules

Units syntaxing rules

Many fields have numerical values that represent dimensional quantities. If somehow the units are

different for some, they can always be specified :

pressure = 1.0e5 # default is Pascals

pressure = (1.0, ’bar’) # but this is equivalent

as long as a few syntaxing rules are followed for the unit string compound:

1. Units in the denominator follow ’/’

2. Units in the numerator follow ’-’ except the first one

3. Numerical exponents follow the unit string and must be in the range 2-6

Example :

A = (1.0e20, ’cm6/mol2/s’) # OK

A = (1.0e20, ’cm^6/mol2/s’) # error (^)

A = (1.0e20, ’cm6/mol2-s’) # error (put nominator units first)

Fields syntaxing rules

Field names may be omitted if the values are entered in the order specified in the entry declaration.

It is also possible to omit only some of the field names, as long as these fields are listed first and in

order, before any named fields. However, this is not advised because it can lead to errors that will

be difficult to spot. For example, the first four entries below are equivalent, while the last two are

incorrect :

element(symbol="Ar", atomic_mass=39.948) # OK

element(atomic_mass=39.948, symbol="Ar") # OK

element("Ar", atomic_mass=39.948) # OK

element("Ar", 39.948) # OK

element(39.948, "Ar") # error

element(symbol="Ar", 39.948) # error

Whenever multiple items need to be specified, for instance in a field, they must be separated with

a comma and enclosed in parenthesis or square brackets.

16th November 2015 11

s0 = (3.5, ’J/mol/K’) # these are

s0 = [3.5, ’J/mol/K’] # equivalent

2.2.3 Supported units

The unit directive must be present to define the default unit system. Note that unit conversions are

not done until the entire file has been read and that only one units directive should be present in a

file. The defaults it specifies apply to the entire file. If the file does not contain a units directive, the

default units are meters, kilograms, kmoles, seconds, Joules, Kelvins and Pascals. See for

example the two following ways of defining the same interface :

units(length = ’cm’, quantity = ’molec’)

interface(name = ’Si-100’,

site_density = 1.0e15, # molecules/cm2 (default units)

...)

units(length = ’cm’, quantity = ’mol’)

interface(name = ’Si-100’,

site_density = (1.0e15, ’molec/cm2’) # override default units

...)

The second version uses a different default unit system, but overrides the default units by specifying

an explicit units string for the site density field. Note that since activation energies are often specified

in units other than those used for thermodynamic properties, a separate field is devoted to the default

units for activation energies, ’act energy’.

units(length = "cm", time = "s", quantity = "mol", act_energy = "cal/mol")

...

Reaction

reaction("CH4+1.5 O2 => CO+2 H2O", [4.9E+09, 0.0, 35500], order="CH4:0.5 O2:0.65")

Notice in that last example, that the only explicitly stated field name of the reaction entry is the last

one, consistently with what was discussed in the section 2.2.2.

16th November 2015 12

field Supported Units

length ’cm’, ’m’, ’mm’

mass ’kg’

quantity ’mol’, ’kmol’, ’molec’

time ’s’, ’min’, ’hr’, ’ms’

energy ’J’, ’kJ’, ’cal’, ’kcal’

act energy ’kJ/mol’, ’J/mol’, ’J/kmol’,

’kcal/mol’, ’cal/mol’, ’eV’, ’K’

pressure ’Pa’, ’atm’, ’bar’

Table 2.1: Allowed units in Cantera

2.3 Processing the data file

2.3.1 From the’.cti’ file to the ’.xml’ file

Processing the ’.cti’ data file is done in two steps. First, a Python pre-processor runs automatically

to read the data file and creates a data file that contains the same information, but in a ’.xml’ format

called CTML. Cantera then imports all definitions from this CTML file. This CTML file will have

the same name as your ’.cti’, and will be created in your working directory. Subsequent simulations

could use this file instead of the ’.cti’ one, for little time saving. The pre-processor could also be called

directly by the user, in the same fashion as the ck2cti program in section 1.3.2.

$ cti2ctml yourmechfile.cti

The ’.xml’ file will be way heavier than the ’.cti’ one, mostly because everything has to be specified

explicitly so as to be potentially used by other programs besides Cantera. See for example the definition

of the same reaction in the ’.cti’ and ’.xml’ files, respectively :

Reaction 1

reaction("H + O2 <=> O + OH", [8.30000E+13, 0, 14413])

vs

<!-- reaction 0001 -->

<reaction reversible="yes" id="0001">

<equation>H + O2 [=] O + OH</equation>

<rateCoeff>

16th November 2015 13

<Arrhenius>

<A>8.300000E+10

0

<E units="cal/mol">14413.000000</E>

</Arrhenius>

</rateCoeff>

<reactants>H:1.0 O2:1</reactants>

<products>O:1.0 OH:1</products>

</reaction>

So, the CTML version would be way more tedious to write... Fortunately, you won’t have to !

Most of the time this step will happen behind the scenes, and you will not need to be concerned with

CTML files at all. This is interesting in case the Cantera pre-processor returns a direct error. Working

with the same file as in section 1.3.2, you can try to convert the ’.cti’ into a ’.xml’ using the previous

command. Open the two files and compare them.

2.3.2 Cantera pre-processor error printing

Processing a simulation file will most certainly raise errors at first. These could be python syntax

errors, Cantera syntax errors, or these could be ones that are flagged as errors by Cantera due to

some apparent inconsistency in the data; for example, an unphysical value, a species that contains an

undeclared element, a reaction that contains an undeclared species, multiple definitions of elements,

species, or reactions, and so on.

Syntax errors are caught by the Python pre-processor, not by Cantera, and must be corrected

before proceeding further. This is when knowledge of how a CTML data file is created can prove to

be useful. Let us assume a data file, 2S KERO BFER.cti, where the O2 species would have a syntax

error in its definition (but where ? ...check Appendix A), as follows :

species(nam = "O2",

atoms = " O:2 ",

thermo = (

NASA([200.00, 1000.00], [3.782456360E+00, -2.996734160E-03,

9.847302010E-06, -9.681295090E-09, 3.243728370E-12,

-1.063943560E+03, 3.657675730E+00]),

NASA([1000.00, 3500.00], [3.282537840E+00, 1.483087540E-03,

-7.579666690E-07, 2.094705550E-10, -2.167177940E-14,

-1.088457720E+03, 5.453231290E+00])

16th November 2015 14

),

transport = gas_transport(

geom = "linear",

diam = 3.46,

well_depth = 107.40,

polar = 1.60,

rot_relax = 3.80)

)

Running an application where it is needed, or simply the cti2ctml program will result in :

$ cti2ctml 2S_KERO_BFER.cti

get_CTML_Tree: caught an exception:

CanteraError thrown by ct2ctml:

Error converting input file "./2S_KERO_BFER.cti" to CTML.

Python command was: ’/usr/bin/python’

The exit code was: 4

-------------- start of converter log --------------

TypeError on line 39 of ./2S_KERO_BFER.cti:

__init__() got an unexpected keyword argument ’nam’

| Line |

| 34 | transport = gas_transport(

| 35 | geom = "linear",

| 36 | diam = 3.46,

| 37 | well_depth = 107.40,

| 38 | polar = 1.60,

> 39 > rot_relax = 3.80)

| 40 |)

| 41 |

| 42 | species(name = "KERO",

--------------- end of converter log ---------------

16th November 2015 15

CanteraError thrown by get_CTML_Tree:

XML file ./2S_KERO_BFER.xml not found

Clearly, the error is thrown by ct2ctml, so that you know that there is a problem in your data file.

Furthermore, it tells you that the error is due to an unexpected keyword argument and it tries to

point you to the line where the error is detected. It is very convenient, most of the time.

Very basic inconsistencies in data can also be caught by the pre-processor. For instance, if

you don’t remember that the species’ ’name’ field is supposed to be a string, but you put a number

instead, an error will occur... However, if you forget to fill important fields, such as atom composition

or transport properties of a species, the pre-processor will leave it alone, and you will face errors when

running specific simulation scripts. Usefull if you’re tired, let’s say.

2.4 Summary: General structure of a data file

Now that we have covered how to write syntactically-correct entries, directives, units and other fields

composing a data file, we can focus on the content of a physically-correct data file. Hereafter is

provided the general skeleton of a data file :

#

This is a mechanism.cti file to be used in Cantera applications

UNITS DIRECTIVE

#---

Phase & Interface data

#---

PHASE ENTRIES(name, elements, species, reactions,

kinetics, transport, initial_state*, options)

INTERFACE ENTRIES(name, elements, species, reactions,

phases, site_density, initial_state*)

#---

16th November 2015 16

Species & Elements data

#---

ELEMENT ENTRIES(symbol, atomic_mass)

SPECIES ENTRIES(name, atoms, thermo ,transport,

note, size, charge)

#---

Reaction data

#---

REACTION ENTRIES(equation, rate_coeff, id, options)

THREE BODY REACTIONS ENTRIES(equation, rate_coeff,

efficiencies, id, options)

FALLOFF REACTIONS ENTRIES(equation, rate_coeff_inf, rate_coeff_0,

efficiencies, falloff, id, options)

OTHER TYPES OF ENTRIES ...

Of course, each entry has several different possible types and fields associated, a summary of which is

provided in Appendix A.

2.5 Exercises

The goal of the first two exercises of this section is to get acquainted with the syntax of the data files,

and to be able to read and understand error logs so as to modify the ’.cti’ in consequence. The last

exercise is optional, and will guide you through the generation of a special kind of data file; specifically,

’sub’ data files of existing data files.

2.5.1 Generate a CTML data file and run your first script !

Go into the subdirectory ’SANDIEGO’ of the directory ’Tuto2’, where you will find a python script,

’h2 flame.py’. This script will compute several standard H2/Air flames in a row, so as to obtain

the evolution of the laminar flame speed with the equivalence ratio. Now, you do not need to be

concerned with what is in the script at this point, just know that it calls for the file ’h2 sandiego.cti’,

also provided in this directory. Try to run the python script from there on your terminal, with the

command previously introduced :

16th November 2015 17

$ python h2_flame.py

A bunch of errors should appear on your screen. Try to understand them, and modify your ’.cti’

file accordingly, by looking at the information about entries and fields provided in Appendix A if

necessary.

Results

You will find the list of errors to modify in this ’.cti’ file in Appendix C.1.1. Note that if you don’t find

all the errors in the mechanism file, you can also generate it with the procedure ’CK2CTI’ explained in

the first tutorial, section 1.3.2, and the files that can be found in the current subdirectory ’H2 sanDiego’.

In this exercice, the ’.cti’ was not viable because of syntax errors, that Cantera helped you spot

in the file through a specific error printout :

get_CTML_Tree: caught an exception:

CanteraError thrown by ct2ctml:

...

Once you have a viable ’.cti’, the python script should generate several ’.csv’ files and a ’.png’ in

your working directory. The image displays the evolution of the H2/Air laminar flame speed with the

equivalence ratio.

16th November 2015 18

Figure 2.1: Adiabatic flame temperature for different equivalence ratios of H2/Air mixture, computed

with the mechanism of San Diego, version of 2011 and shortened as in Petrova and Williams, C&F

2005.

16th November 2015 19

2.5.2 A second example

Now, go into the subdirectory ’SANDIEGO2’ of ’Tuto2’, and try to run the python script that you

will find there. The simulation is exactly the same as in the previous exercise. Can you explain what

went wrong ?

Results

Here, the data file was in fact viable, and the parser did not have any trouble generating the ’.xml’ file

Cantera requires. However, the data file was generated from CHEMKIN’s mechanisms and thermo

data files only... no transport data was provided ! It is perfectly fine to generate that kind of data files,

if you only need to perform 0D or pseudo 0D simulations; however, the script ’h2 flame.py’ simulated

a series of 1D freely propagating premixed laminar flames.

2.5.3 Generate submechanisms with a special processing option (OPTIONAL)

Go into the subdirectory ’submechanisms’ of ’Tuto2’. An interesting feature of the options field -see

the paragraph pertaining to phases and interfaces in Appendix A, is that it is possible to readily extract

a sub-mechanism from a larger reaction mechanism. Using the special ’option’ field of a phase entry

(see A.2), and the mechanism file ’gri30.cti’ that you will find there, try to :

1. import an H2/Air oxidation submechanism

2. generate a NOx-less submechanism for CH4/Air oxidation

Do do so, the best way to proceed is to create a new ’submechanisms.cti’ file :

$ touch submechanisms.cti

in the same folder than the ’gri30.cti’ file. Next, open it in your favorite text editor and create two

new phase entries, of type ’ideal gas’. You will need to fill out the various fields, using Appendix A,

again. Remember to use species and reactions information from the ’gri30.cti’ file !

Next, you will need to import your new mechanisms via a script, like in section 1.2.1 of the first

tutorial or directly in your terminal via the Python interface, like in section 1.2.2 of the first tutorial...

it’s up to you ! Try printing the state of the gas, the number of species, specific reactions equations

... This can be done via a script, with the lines:

gas()

gas.n_species

gas.reaction_equation(indexOfReaction)

...

16th November 2015 20

You can go online at http://www.cantera.org/docs/sphinx/html/index.html to search for more attrib-

utes to look at.

Results

The ’submechanisms.cti’ data file is provided in section C.1.2, along with the gas printout that each

phase will produce, when imported in the same fashion as in section 1.2.1 of the first tutorial.

16th November 2015 21

3. Tutorial 3 : Equilibrium calculations

3.1 Equilibrium calculations

3.1.1 Introduction

In this tutorial, we will tackle equilibrium calculations. Equilibrium calculations are usually performed

to obtain the adiabatic flame temperature, equilibrium composition, and thermodynamic state of a

specific mixture under given conditions; but are performed in virtually every simulation. For example,

Cantera will call its equilibrium solver to initialize the gas state before trying to obtain a solution to

the equations for a free flame. As such, it is interesting to understand how Cantera proceeds.

There a 2 different types of solver currently implemented for equilibrium calculation in Cantera that

deserves our attention.

The element potential ’ChemEquil’ solver

The class ChemEquil implements a chemical equilibrium solver for single-phase solutions. It is a

”non-stoichiometric” solver in the terminology of Smith and Missen, meaning that every intermediate

state is a valid chemical equilibrium state, but does not necessarily satisfy the element constraints.

Non-stoichiometric methods are faster when they converge, but stoichiometric ones tend to be more

robust.

The ’VCS’ chemical equilibrium solver

The other type of solver is designed to be used to set a mixture containing one or more phases to

a state of chemical equilibrium. It uses a ”stoichiometric” algorithm, in which each intermediate

state satisfies the element constraints but is not a state of chemical equilibrium. More specifically, it

implements the VCS algorithm, described in Smith and Missen, ”Chemical Reaction Equilibrium”. It

finds a set of component species and a complete set of formation reactions for the non-components in

terms of the components.

16th November 2015 22

As expected, the ChemEquil solver is the fastest of the Cantera equilibrium solvers for many single-

phase equilibrium problems (particularly if there are only a few elements but very many species), but

can be less stable. Problem situations include low temperatures where only a few species have non-zero

mole fractions, precisely stoichiometric compositions (we will see an example shortly). In general, if

speed is important, this solver should always be tried first before falling back to another one in case of

failure. The default setting in Cantera, when launching an equilibrium calculation without specifying

the solver, is to try the ’element potential’ before falling back to another vcs solver labelled ’gibbs’ :

gas.equilibrate(’TP’)

Now, to compute an equilibrium state, two independant intensive properties of the system have to be

specified. These solver can only handle chemical equilibrium at a specified temperature and pressure.

To compute equilibrium holding other properties fixed, it is necessary to iterate on T and P in an

”outer” loop, until the specified properties have the desired values. Don’t worry, it is done internally;

although there might come a time, if you use the ’gibbs’ solver, where you would need to increase the

number of T loops for convergence. This is done through a specific field, ’maxiter’ :

gas.equilibrate(’HP’, maxiter = 1500)

3.1.2 The equilibrate function

The equilibrate function can be applied on a single phase or on a mixture. Here, we recall its definition:

equilibrate(self, XY, solver, double rtol, int maxsteps, int maxiter, int loglevel)

Parameters:

XY - A two-letter string, which must be one of the set: [’TP’,’TV’,’HP’,’SP’,’SV’,’UV’]

solver - Specifies the equilibrium solver to use. May be one of the following:

element_potential - A fast solver using the element potential method

gibbs - A slower but more robust Gibbs minimization solver

vcs - The VCS non-ideal equilibrium solver

auto - The element potential solver will be tried first, then if it fails

the gibbs solver will be tried

rtol - The relative error tolerance.

maxsteps - Maximum number of steps in composition to take to find a converged solution.

16th November 2015 23

maxiter - This specifies the number of outer iterations on T or P when some

property pair other than TP is specified (only for ’gibbs’)

loglevel - Is currently deprecated

3.2 Exercises

3.2.1 Generate your first equilibrium script !

Go into the directory ’Tuto3’ and recall the procedure from the first tutorial: start by creating a new

Python script ’equil simple.py’ in the text editor of your choice:

$ touch equil simple.py

$ gedit equil simple.py

Import the cantera python module at the top of your script :

import cantera as ct

Recall that with this method, a ’ct.’ will have to be added at the beginning of each cantera function

and objects. Try to design a script that will calculate the equilibrium composition of a methane/air

mixture, with the GRIMech3.0 mechanism we used previously, under atmospheric condition (1 bar,

300 K) and at stoechiometry (CH4 + 2O2 <=> 2H2O + CO2). Everything you need was discussed

in the previous tutorials. You will need to do the following :

• Import your gas and set its initial state. Note that to set the gaseous composition, you could pass

a string of mole fractions, for the fuel and the oxidizer. This should be of the form ’species1:mole

fraction1, species2:mole fraction2, ...’.

gas = ...

gas.TPX = 300.0, ..., ’CH4:0.5,...’

• Call the equilibrate function on your gas object, specifying that the temperature and pressure

stay constant for now. See section 3.1.2 to get acquainted with the equilibrate function.

gas.equilibrate(...)

• Check your gas state, as we did several times in the first tutorial.

16th November 2015 24

print gas()

Once your script is ready, launch it with the python command :

$ python equil simple.py

Results

The script ’equil simple.py’ is provided in section C.2.1. You should get a gas printout that looks like

this:

gri30:

temperature 300 K

pressure 100000 Pa

density 1.10784 kg/m^3

mean mol. weight 27.6332 amu

1 kg 1 kmol

----------- ------------

enthalpy -3.01529e+06 -8.332e+07 J

internal energy -3.10555e+06 -8.582e+07 J

entropy 7233.97 1.999e+05 J/K

Gibbs function -5.18548e+06 -1.433e+08 J

heat capacity c_p 1111.3 3.071e+04 J/K

heat capacity c_v 810.419 2.239e+04 J/K

X Y Chem. Pot. / RT

------------- ------------ ------------

H2 6.28376e-32 4.58408e-33 -87.5752

H 1.05969e-51 3.86527e-53 -43.7876

O 2.36189e-50 1.36751e-50 -33.7583

O2 2.50759e-19 2.90375e-19 -67.5167

OH 1.18723e-31 7.30699e-32 -77.5459

H2O 0.190114 0.123943 -121.334

HO2 2.80815e-39 3.35421e-39 -111.304

16th November 2015 25

H2O2 3.61855e-32 4.45419e-32 -155.092

C 1.24469e-168 5.41014e-169 -118.323

CH 1.44411e-165 6.8037e-166 -162.11

CH2 2.69558e-148 1.3683e-148 -205.898

CH2(S) 4.16871e-155 2.11607e-155 -205.898

CH3 1.33507e-124 7.26389e-125 -249.686

CH4 1.8856e-105 1.0947e-105 -293.473

CO 3.36172e-37 3.40761e-37 -152.081

CO2 0.095057 0.151392 -185.839

HCO 2.21913e-81 2.33037e-81 -195.869

CH2O 1.80343e-74 1.9596e-74 -239.656

CH2OH 1.5675e-108 1.76042e-108 -283.444

CH3O 1.00808e-114 1.13215e-114 -283.444

CH3OH 2.52861e-95 2.93205e-95 -327.232

C2H 5.96825e-210 5.40598e-210 -280.433

C2H2 9.13867e-171 8.61107e-171 -324.221

C2H3 1.62444e-200 1.58991e-200 -368.008

C2H4 3.02119e-177 3.06717e-177 -411.796

C2H5 2.49148e-206 2.62027e-206 -455.584

C2H6 5.05956e-191 5.50565e-191 -499.371

HCCO 3.55626e-155 5.28027e-155 -314.191

CH2CO 3.00039e-135 4.56437e-135 -357.979

HCCOH 1.60847e-157 2.44689e-157 -357.979

N 4.33568e-80 2.19767e-80 -11.691

NH 1.71484e-77 9.3177e-78 -55.4786

NH2 4.38732e-67 2.54391e-67 -99.2662

NH3 8.68854e-45 5.35481e-45 -143.054

NNH 1.31024e-61 1.37606e-61 -67.1696

NO 2.4268e-25 2.63519e-25 -45.4493

NO2 1.57692e-28 2.62536e-28 -79.2077

N2O 2.9812e-28 4.74831e-28 -57.1403

HNO 1.94556e-46 2.18359e-46 -89.2369

CN 5.57971e-123 5.25351e-123 -130.014

HCN 1.95092e-88 1.90802e-88 -173.801

16th November 2015 26

H2CN 1.4383e-126 1.45914e-126 -217.589

HCNN 1.12485e-148 1.67029e-148 -185.492

HCNO 5.77247e-108 8.98775e-108 -207.56

HOCN 3.67232e-76 5.71781e-76 -207.56

HNCO 9.92424e-58 1.54521e-57 -207.56

NCO 1.17871e-82 1.79226e-82 -163.772

N2 0.714829 0.724665 -23.382

AR 0 0

C3H7 0 0

C3H8 0 0

CH2CHO 1.37634e-165 2.14397e-165 -401.767

CH3CHO 1.68509e-151 2.68638e-151 -445.554

3.2.2 The ’element potential’ solver

Go into the ’Tuto3’ subdirectory ’ChemEquil’, and try to launch the python script it contains :

$ python ChemEquil.py

You will notice a warning on your screen :

ChemEquil solver failed! Try the vcs solver...

Here, the ChemEquil solver previously introduced, that uses the chemical potentials, fails. This often

arises when only a few species have non-zero mole fractions, as it is the case in this example. Open

the file with your favorite text editor :

$ gedit ChemEquil.py

uncomment the line :

#gas.equilibrate(’TP’, solver = ’vcs’, maxsteps = 1500)

by removing the # at the beginning, and comment the line :

exit()

by adding a # at the beginning (see Appendix B). Save your file, and try re-running the script with

the previous python command... Now it works !

16th November 2015 27

Results

In this script, we forced Cantera to only try the ’element potential’ solver, which failed. Usually, as

said previously, if you do not specify which solver you want to use, Cantera will try two different

methods. The cases when both those method fail are relatively rare; this is discussed in more depth

in section 3.3.

The ”Comparison between Chem potentials and element potentials” that appears on screen is a

good method to check whether the equilibrium state is reached. Indeed, recall from this morning that

when in equilibrium, the chemical potentials for each species should be equal to the sum of the element

potentials of the elements it contains; so for example, the chemical potential of H2 should equal twice

the chemical potential of H. Notice that the two ways of calculating the chemical potentials for the

major species involved coincides, when we re-launch the script using the ’vcs’ solver :

Comparison between Chem potentials and element potentials:

mu_H2 : -2.2012e+08 , -2.2012e+08

mu_O2 : -2.0667e+08 , -2.0667e+08

mu_OH : -2.1339e+08 , -2.1339e+08

mu_H2O : -3.2345e+08 , -3.2345e+08

You will also notice that a ’.csv’ has been created in your working directory. This file contains all

equilibrium mole fractions. The mole fractions where saved in the script by invoking the gas attribute

’X’ on line 113 of your script (see Appendix B for more information) :

xeq = np.zeros(gas.n species)

xeq[:] = gas.X

3.2.3 Compare different solvers (OPTIONAL)

Now you can go into the folder ’SolverComparison’, where you will find another python script, ’Solv-

erComparison.py’. Open it, and notice that you are given the choice of which solver to use :

#Equilibrium:

#gas.equilibrate(’TP’, solver = ’element_potential’, maxsteps = 1500, loglevel = 50)

gas.equilibrate(’TP’, solver = ’vcs’, maxsteps = 1500)

#gas.equilibrate(’TP’, solver = ’gibbs’, maxsteps = 1500)

...

16th November 2015 28

Save the state after the simulation

#csv_file = ’all_mole_fractions_ChemEquil.csv’

csv_file = ’all_mole_fractions_VCS.csv’

#csv_file = ’all_mole_fractions_Gibbs.csv’

Uncomment whichever you want to use, and run the script addind the keyword ’time’ in front of your

command :

$ time python equil phi cte.py

Try it for all the solvers.

You should notice that the ’element potential’ method is the fastest one. Notice also that the chemical

potential balance is verified each time, but that their values can slightly differ from one method to

the other. You could compare the ’.csv’ files, and see that the mole fractions are almost similar in all

cases.

3.2.4 Perform adiabatic flame calculations

Introduction

We will now perform several constant pressure equilibrium calculations of an ethylene/air mixture, at

an initial temperature of 300K and under atmospheric pressure, in order to obtain the adiabatic flame

temperature and burnt gas state for several equivalence ratios. The goal of this exercise is to find a

way to loop through several gaseous composition, in order to perform several computations in a single

script; and to learn how to properly store the results in a ’csv’ file.

Generate the adiabatic flame temperature of an ethylene/air mixture

We will use the scheme from the first tutorial, that can be found in the subdirectory ’CK2CTI’ of

’Tuto1’; so you should already have a viable ’mech.cti’. Go into the folder ’AdiabaticFlameT’ and

copy your mechanism file here. In this folder, you will find a python script, ’AdiabaticFlameT.py’.

Open it, it should look like this :

"""

Equilibrium calculation : application to the computation of adiabatic flame temperature

and equilibrium composition for a fuel/air mixture as a function of equivalence ratio.

16th November 2015 29

"""

import cantera as ct

import numpy as np

import sys

import csv

##

Edit these parameters to change the initial temperature, the pressure, and

the phases in the mixture.

Import the gas :

gas = ct.Solution(’mech.cti’)

Choose the equivalence ratio range range :

phi_min = ...

phi_max = ...

npoints = ...

Set the gas composition :

T = 300.0

P = 101325.0

find fuel, nitrogen, and oxygen indices

to set the composition of the gas

fuel_species = ’C2H4’

ifuel = gas.species_index(fuel_species)

io2 = gas.species_index(’O2’)

in2 = gas.species_index(’N2’)

##

Create some arrays to hold the data with numpy

#1D arrays : phi, t_adiabatic

16th November 2015 30

phi = np.zeros(npoints)

tad = ...

#2D arrays :

xeq = np.zeros((gas.n_species,npoints))

Start the loop on Phi :

for i in range(npoints):

Start by computing the composition of the gas

#whenever you are working with mole fractions, recall that

#phi=(X_fuel/X_oxi)*(\nu_oxi/\nu_fuel)

#and that the air_N2_O2_molar_ratio = 3.76,

air_N2_O2_molar_ratio = 3.76

#this helps you set the gas state

phi[i] = phi_min + (phi_max - phi_min)*i/(npoints - 1)

#dont forget to create an array to hold the composition

X = np.zeros(gas.n_species)

#then to inizialise it

X[ifuel] = ...

X[io2] = ...

X[in2] = X[io2]*air_N2_O2_ratio

gas.TPX = T, P, X

Equilibrate the mixture adiabatically at constant P

#with the solver vcs

gas.equilibrate(...)

Save the adiabatic temperature each time

tad[i] = gas.T

#you can even print it on screen

#print "At phi = ","%10.4f"% (phi[i])+ " Tad = ","%10.4f"% (tad[i])

You could also save the equilibrium mass fractions at each

#phi, as long as you initialized an array properly:

16th November 2015 31

xeq[:,i] = gas.X

Save your results in a CSV file

csv_file = ’yourfile.csv’

with open(csv_file, ’w’) as outfile:

writer = csv.writer(outfile)

writer.writerow([’Phi’,’T (K)’] + gas.species_names)

for i in range(npoints):

writer.writerow([phi[i], tad[i]] + list(xeq[:,i]))

print "Output written to", "%s"%(csv_file)

Modify it so that it runs a series of constant pressure equilibrium calculation for 50 equivalence

ratios, in between 0.3 and 3.5, for example. This is done by changing the settings in the ’Choose the

equivalence ratio range’ part of this script, by setting the gaseous composition of each loop, and by

calling the ’equilibrate’ function with the right settings.

Next, don’t forget to initialize arrays to store your data and results ! This is done in the ’Create

some arrays to hold the data with numpy’ part of this script.

Uncomment the line :

#print "At phi = ","%10.4f"% (phi[i])+ " Tad = ","%10.4f"% (tad[i])

by removing the #, so that the adiabatic temperature for each gaseous composition gets printed on

your screen.

Notice that the part of the script that will write your results in a ’csv’ file is already provided,

at the end of the script, and that it makes use of a ’csv.writer’ function. This function is included

in the ’csv’ package you imported at the beginning of your file (see B.1.3 for more information about

packages).

Results

The complete script is provided in section C.2.2. You should see something like this appear on your

terminal screen :

**** WARNING ****

For species C2H3O, discontinuity in cp/R detected at Tmid = 1000

Value computed using low-temperature polynomial: 26.0651.

16th November 2015 32

Value computed using high-temperature polynomial: 11.7479.

**** WARNING ****

For species C2H3O, discontinuity in s/R detected at Tmid = 1000

Value computed using low-temperature polynomial: 47.9078.

Value computed using high-temperature polynomial: 43.1354.

**** WARNING ****

For species C4H612, discontinuity in cp/R detected at Tmid = 1000

Value computed using low-temperature polynomial: 20.128.

Value computed using high-temperature polynomial: 20.1809.

At phi = 0.3000 Tad = 1142.8444

At phi = 0.3653 Tad = 1300.2147

At phi = 0.4306 Tad = 1450.9491

At phi = 0.4959 Tad = 1595.5514

At phi = 0.5612 Tad = 1734.1500

At phi = 0.6265 Tad = 1866.3163

At phi = 0.6918 Tad = 1990.7248

At phi = 0.7571 Tad = 2104.7918

At phi = 0.8224 Tad = 2204.7840

At phi = 0.8878 Tad = 2286.8441

At phi = 0.9531 Tad = 2348.1574

At phi = 1.0184 Tad = 2386.8245

At phi = 1.0837 Tad = 2401.1648

At phi = 1.1490 Tad = 2391.6955

At phi = 1.2143 Tad = 2364.6792

At phi = 1.2796 Tad = 2328.6934

At phi = 1.3449 Tad = 2289.2477

At phi = 1.4102 Tad = 2248.8200

At phi = 1.4755 Tad = 2208.4206

At phi = 1.5408 Tad = 2168.4585

At phi = 1.6061 Tad = 2129.0954

16th November 2015 33

At phi = 1.6714 Tad = 2090.3865

At phi = 1.7367 Tad = 2052.3407

At phi = 1.8020 Tad = 2014.9470

At phi = 1.8673 Tad = 1978.1863

At phi = 1.9327 Tad = 1942.0373

At phi = 1.9980 Tad = 1906.4786

At phi = 2.0633 Tad = 1871.4897

At phi = 2.1286 Tad = 1837.0511

At phi = 2.1939 Tad = 1803.1442

At phi = 2.2592 Tad = 1769.7512

At phi = 2.3245 Tad = 1736.8547

At phi = 2.3898 Tad = 1704.4377

At phi = 2.4551 Tad = 1672.4831

At phi = 2.5204 Tad = 1640.9741

At phi = 2.5857 Tad = 1609.8934

At phi = 2.6510 Tad = 1579.2237

At phi = 2.7163 Tad = 1548.9477

At phi = 2.7816 Tad = 1519.0479

At phi = 2.8469 Tad = 1489.5080

At phi = 2.9122 Tad = 1460.3204

At phi = 2.9776 Tad = 1431.6155

At phi = 3.0429 Tad = 1426.1341

At phi = 3.1082 Tad = 1427.0860

At phi = 3.1735 Tad = 1424.6954

At phi = 3.2388 Tad = 1420.8400

At phi = 3.3041 Tad = 1416.7760

At phi = 3.3694 Tad = 1412.7750

At phi = 3.4347 Tad = 1408.8670

At phi = 3.5000 Tad = 1405.0536

Output written to adiabatic.csv

That last line was generated by the last python command :

print "Output written to", "%s"%(csv_file)

and it is nice to add it so that it reminds you of the name of the ’.csv’ file that should have been

generated in your working directory. Check to see if it was the case ! This ’.csv’ file should contain

16th November 2015 34

the list of phi’s, temperatures, and species moles fractions after each equilibrium calculation :

phi,T (K),H,OH,HO2,...,P2-,P2-H

0.3,1142,1.28270997e-12,7.7304907e-07,3.33743472e-09,...,0.0,0.0

...

3.5,1405,2.62368651e-06,8.24390443e-13,3.97557527e-26,...,3.41478641e-13,1.37145940e-16

To go further ...

You could generate plots to see the evolution of the temperature, with the package ’matplotlib’. Simply

add a dedicated subsection at the end of your script :

import matplotlib.pyplot as plt

plt.plot(phi, tad)

plt.xlabel(’Equivalence ratio’)

plt.ylabel(’Adiabatic flame temperature [K]’)

plt.show()

From the way that matplotlib was imported, the ’plt’ in front of each function tells Python that the

functions come from the matplotlib package. See B.1.3 for further information on the meaning of each

line. You should obtain fig. 3.1.

Now, if you saved the mole or mass fractions as well, you could also plot the mole or mass fractions

evolutions of the most important species :

Add a plot option

if ’--plot’ in sys.argv:

import matplotlib.pyplot as plt

for i, cas in enumerate(gas.species_names):

if cas in [’O2’,’CO2’,’CO’]:

plt.plot(phi,xeq[i,:], label = cas)

plt.xlabel(’Equivalence ratio’)

plt.ylabel(’Mole fractions’)

plt.legend(loc=’best’)

plt.show()

Now, this more elaborated plot will be drawn only if the python script is launched with the ’–plot’ option,

as such:

$ python AdiabaticFlameT.py --plot

16th November 2015 35

Here, the mass fraction evolution of species ’O2’, ’CO2’ and ’CO’ will be plotted against the equivalence

ratio. The ’label’ option in line :

plt.plot(phi,xeq[i,:], label = cas)

Will generate a legend for the different curves, here taken to be the name (iteration with ’cas’ on

species names) of each species plotted. The legend localization will be chosen by Python, as specified

by the line:

plt.legend(loc=’best’)

You should obtain the plot of fig. 3.2.

Conclusion

We have just generated the skeleton of a script to perform a series of common equilibrium calculations;

to obtain the constant pressure equilibrium composition of a fuel/air mixture. Starting from there,

you could modify your initial conditions, plot the mole/mass fractions of other species, change the

solver or even try another fuel (methane, acetylene) without changing your mechanism.

Technically, adiabatic flame calculations could also be performed at constant volume: simply invoke

the good equilibrate option of your equilibrate function, ’UV’ (see 3.1.2), in your script.

3.3 About convergence, failures of equilibrium calculations

Convergence-wise, you will not encounter many issues, as the equilibrium solvers are quite robust. It

is worth noting however, that a number of bugs have been reported on the Cantera community about

the ’element potential’ method. Sometimes, it can fail when there is no reason, and changing the

order of definition of the species will solve the problem. Also, the fallback in ’auto’ mode can crash

and Cantera can tell you that no solution was found when in fact it did not even try another solver

besides the ’element potential’. In those cases, simply switch to the ’vcs’ solver and usually, it will

work just fine. For an exemple of such a fallback issue, you could modify the first script we will use

in this tutorial, ’ChemEquil.py’ in folder ’ChemEquil’. Simply replace line :

gas.equilibrate(’TP’, solver = ’vcs’)

by :

gas.equilibrate(’TP’)

And see what happens when you run it. Problems have a tendency to arise at stoichimetry and low

temperature. Cantera is not perfect, yet !

16th November 2015 36

Figure 3.1: C2H4/Air adiabatic flame temperature for different equivalence ratios, computed with the

mechanism of aromatics formation and growth in laminar premixed acetylene and ethylene flames, by

Wang and Frenklach.

Figure 3.2: Equilibrium composition of major species for different equivalence ratios of C2H4/Air

mixture, computed with the mechanism of aromatics formation and growth in laminar premixed

acetylene and ethylene flames, by Wang and Frenklach.

16th November 2015 37

4. Tutorial 4 : Reactor simulations

4.1 The Reactor object with Cantera

4.1.1 Introduction

This tutorial is dedicated to the simulation of various homogeneous zero-dimensional reactors. A

Cantera reactor can be viewed as box reduced to a single point, such that there is no spatial evolution

but only a temporal evolution of the quantities it contains. Such reactors can be useful, for example, to

determine the auto-ignition timing of a mixture, or can be viewed as building blocks of more complex

simulations as we will see shortly in the exercises section.

Basically, in Cantera, a reactor is composed of an object from the ”ReactorBase” class, that

describes the vessel, and an object from the ”FlowDevice” class to describe the flow across or in

between several reactors. By default, reactors are closed (no inlets or outlets), have fixed volume, and

have adiabatic, chemically-inert walls. These properties may all be changed by adding appropriate

components, as we will see shortly. FlowDevice objects are assumed to be adiabatic, non-reactive,

and have negligible internal volume, so that they are internally always in steady-state even if the

upstream and downstream reactors are not. The fluid enthalpy, chemical composition, and mass flow

rate are constant everywhere, and the pressure difference equals the difference in pressure between the

upstream and downstream reactors.

4.1.2 The ReactorBase class

Here are the properties of the common base class for reactors and reservoirs ”ReactorBase” :

ReactorBase(ThermoPhase contents, name=None, arguments)

The ThermoPhase contents should be the gaseous object that fills the ReactorBase object. The name

is optional, it could be useful in case several reactors are needed in a same simulation. The arguments

depend upon the type of reactor considered. The different types are :

1. Reservoir : reactors with a constant state. The temperature, pressure, and chemical composition

in a reservoir never change from their initial values.

16th November 2015 38

2. Reactor

3. IdealGasReactor : constant volume, zero-dimensional reactor for ideal gas mixtures.

4. ConstPressureReactor : homogeneous, constant pressure, zero-dimensional reactor. The volume

of the reactor changes as a function of time in order to keep the pressure constant.

5. IdealGasConstPressureReactor : homogeneous, constant pressure, zero-dimensional reactor for

ideal gas mixtures. The volume of the reactor changes as a function of time in order to keep the

pressure constant.

6. FlowReactor : a steady-state plug flow reactor with constant cross sectional area. Time integ-

ration follows a fluid element along the length of the reactor. The reactor is assumed to be

frictionless and adiabatic.

4.1.3 The FlowDevice class

As previously stated, reactors can be added inlets and outlets, to be able to loop or chain several

reactors, control mass flow rates, volume or pressure. Here are the properties of the common base

class ”FlowDevice” for flow controllers between reactors and reservoirs :

FlowDevice(upstream, downstream, name=None, arguments)

The FlowDevice controls the fluids passage between an upstream and a downstream object, which

should be specified. The arguments depend upon the different types of flow controllers available in

Cantera :

1. MassFlowController : mass flow controllers maintain a specified mass flow rate independent of

upstream and downstream conditions. Unlike a real mass flow controller, a MassFlowController

object will maintain the flow even if the downstream pressure is greater than the upstream

pressure.

2. Valve : valves are flow devices with mass flow rate that is a function of the pressure drop across

them. Valve objects are often used between an upstream reactor and a downstream reactor or

reservoir to maintain them both at nearly the same pressure. By setting the constant Kv to a

sufficiently large value, very small pressure differences will result in flow between the reactors

that counteracts the pressure difference.

3. PressureController : a PressureController is designed to be used in conjunction, typically, with

a MassFlowController. The master flow controller is installed on the inlet of the reactor, and the

corresponding PressureController is installed on the outlet of the reactor. The PressureController

16th November 2015 39

mass flow rate is equal to the master mass flow rate, plus a small correction dependent on the

pressure difference.

4.1.4 Walls

Reactors can also be added heat transfer and heterogeneous reactions at the walls, through a special

object ”wall”. Walls separate two reactors, or a reactor and a reservoir. A wall has a finite area, may

conduct or radiate heat between the two reactors on either side, and may move like a piston. They are

stateless objects in Cantera, meaning that no differential equation is integrated to determine any wall

property. A heterogeneous reaction mechanism may be specified for one or both of the wall surfaces.

4.1.5 Time evolution inside a Reactor

Now, the evolution of a reactor, or a network of reactors -which are 0-D objects- with time, is performed

through an integrator object ”ReactorNet” :

... (define gases) ...

r1 = Reactor(gas1)

r2 = Reactor(gas2)

... (install walls, inlets, outlets, etc)...

reactor_network = ReactorNet([r1, r2])

time = 1 #s

reactor_network.advance(time)

There are two possibilities to advance a reactor simulation in time : the ’advance(self, double t)’

option (shown in the example above) or the ’step(self, double t)’ option. The first one will advance

the state of the reactor network in time from the current time to the specified ’t’ time, taking as many

integrator timesteps as necessary; whereas the second one will take a single internal time step toward

the specified time ’t’ [s]... The use of ’advance’ is recommended, unless you need to elucidate a bug.

4.2 Exercises

4.2.1 A simple clossed vessel

In this section, we will start by designing a very simple constant volume reactor, to try to catch

the autoignition time of a methane/air mixture, with the GRIMech3.0 mechanism. Go into the

subdirectory ’ClossedVessed’ in the directory ’Tuto4’, with your terminal. You will find a script

’reactorUV.py’, partially filled :

16th November 2015 40

"""

Constant-volume, adiabatic kinetics simulation.

"""

import sys

import numpy as np

import cantera as ct

###

#Mechanism used for the process

gas = ct.Solution(’gri30.xml’)

#Gas state

gas.TPX = 1000.0, ct.one_atm, ’CH4:0.5,O2:1,N2:3.76’

#Create an ideal gas Reactor and fill with gas

#r = ...

#Prepare the simulation with a ReactorNet object

sim = ct.ReactorNet([r])

time = 4.e-1

#Arrays to hold the datas

times = np.zeros(200)

data = np.zeros((200,4))

#Advance the simulation in time

#and print the internal evolution of temperature, volume and internal energy

print(’%10s %10s %10s %14s’ % (’t [s]’,’T [K]’,’vol [m3]’,’u [J/kg]’))

for n in range(200):

time += 5.e-3

sim.advance(time)

times[n] = time # time in s

data[n,0] = r.T

16th November 2015 41

data[n,1:] = r.thermo[’O2’,’H’,’CH4’].X

print(’%10.3e %10.3f %10.3f %14.6e’ % (sim.time, r.T,

r.thermo.v, r.thermo.u))

Plot the results if matplotlib is installed.

... plot options ...

Complete it to get a constant volume ideal gas reactor (see section 4.1.2) and run it with the plot

option :

$ python reactorUV.py --plot

Results

You should get a gas printout that looks like this :

WARNING: ’class GRI_30_Kinetics’ is deprecated. To be removed in Cantera 2.2.

WARNING: ’Use of Sundials 2.2 and 2.3’ is deprecated. Support for these versions will

be removed in Cantera 2.2.

t [s] T [K] vol [m3] u [J/kg]

4.050e-01 1001.112 2.970 2.870655e+05

4.100e-01 1001.140 2.970 2.870655e+05

4.150e-01 1001.168 2.970 2.870655e+05

....

1.395e+00 2768.160 2.970 2.870655e+05

1.400e+00 2768.160 2.970 2.870655e+05

Notice that the internal volume and energy stay constant, as required by the method used. The

evolution of the temperature and of the most important species’ mole fractions are displayed in fig.

4.1. As the reaction proceeds, we see the temperature’s sharp increase and the fuel mass fraction

decay. Usually, you will need to refine the time steps, to try and catch the autoignition timing more

precisely.

To go further

Next, you could try to modify the gas initial composition and temperature in the ’Gas state’ section of

your script. Note that you will also need to adjust the initial ’time’ parameter under the ’Prepare the

simulation with a ReactorNet object’ section of your script, as well as the subsequent ’time’ parameters

under the ’Advance the simulation in time’ section, to account for the different autoignition timing.

You should see the same type of evolution than that of fig. 4.1.

16th November 2015 42

Figure 4.1: Autoignition of a methane/air mixture at stoichiometry and 1000K, with the GRIMech3.0

mechanism.

16th November 2015 43

4.2.2 A simple constant pressure reactor

We turn our attention on another type of reactor, the constant pressure reactor. Here, the vessel

can change volume, through moveable walls for example, so as to maintain the pressure constant

throughout the simulation. A first script for this type of simulation is provided in the ’ConstantPres-

sureReactor’ folder, ’reactorHP.py’, with the exact same initial gas state as in the previous exercise:

"""

Constant-pressure, adiabatic kinetics simulation.

"""

import sys

import numpy as np

import cantera as ct

###

#Mechanisms used for the process

gri3 = ct.Solution(’gri30.xml’)

air = ct.Solution(’air.xml’)

#Gas state

gri3.TPX = 1000.0, ct.one_atm, ’CH4:0.5,O2:1,N2:3.76’

#Create Reactors used for the process and initialize them

r = ct.IdealGasReactor(gri3)

env = ct.Reservoir(air)

Define a wall between the reactor and the environment, and

make it flexible, so that the pressure in the reactor is held

at the environment pressure.

w = ct.Wall(r, env)

w.expansion_rate_coeff = 1.0e6 # set expansion parameter. dV/dt = KA(P_1 - P_2)

w.area = 1.0

#Prepare the simulation with a ReactorNet object

16th November 2015 44

sim = ct.ReactorNet([r])

time = 4.e-1

#Arrays to hold the datas

times = np.zeros(200)

data = np.zeros((200,4))

#Advance the simulation in time

print(’%10s %10s %10s %14s’ % (’t [s]’,’T [K]’,’P [Pa]’,’h [J/kg]’))

for n in range(200):

time += 5.e-3

sim.advance(time)

times[n] = time # time in s

data[n,0] = r.T

data[n,1:] = r.thermo[’O2’,’H’,’CH4’].X

print(’%10.3e %10.3f %10.3f %14.6e’ % (sim.time, r.T,

r.thermo.P, r.thermo.h))

Plot the results if matplotlib is installed.

... plot options ...

Note that whenever a Reactor type is used, Cantera will assume its volume constant. To modify this,

a reservoir with a constant state -thus pressure- is defined, and a moveable wall is set to separate it

from the reactor where the reaction occurs. This wall moves with the pressure difference between the

reservoir and the reactor. If the movement is fast enough, the pressure remains constant in the reactor

throughout the reaction. Run the script with the plot option :

$ python reactorHP.py --plot

Results

You should get a gas printout that looks like this :

WARNING: ’class GRI_30_Kinetics’ is deprecated. To be removed in Cantera 2.2.

WARNING: ’Use of Sundials 2.2 and 2.3’ is deprecated. Support for these versions will

be removed in Cantera 2.2.

t [s] T [K] P [Pa] h [J/kg]

16th November 2015 45

4.050e-01 1000.859 101325.000 5.879517e+05

4.100e-01 1000.880 101325.000 5.879517e+05

4.150e-01 1000.902 101325.000 5.879517e+05

...

1.395e+00 2541.146 101325.000 5.879515e+05

1.400e+00 2541.146 101325.000 5.879515e+05

Notice this time that it is the pressure and enthalpy stay constant, consistent with what we wanted

to obtain. The evolution of the temperature and of the most important species’ mole fractions are

displayed in fig. 4.2. As the reaction proceeds, we see the temperature’s sharp increase and the fuel

mass fraction decay. Usually, you will need to refine the time steps, to try and catch the autoignition

timing more precisely. Compare with the constant volume autoignition results of the previous exercise,

fig. 4.1.

To go further

Try simplifying this script with the use of the ”IdealGasConstPressureReactor” object. This object

allows you to instantiate a reactor with moveable walls included, so that you don’t need the ”walls

trick” we used in our previous script. Run both scripts and compare results. Note : you can redirect

the screen printing with > :

$ python reactorHP.py > outfile.dat

You can find this simplified script in Appendix C.3.2.

16th November 2015 46

Figure 4.2: Constant pressure autoignition of a methane/air mixture at stoichiometry and 1000K,

with the GRIMech3.0 mechanism.

16th November 2015 47

4.2.3 An example of application : mixing two streams (OPTIONAL)

Introduction

Up until now, we have seen how to generate simple closed vessels. However, it is sometimes interesting

to mix different streams, or to feed the exhaust of a reservoir with constant parameters to a reacting

reactor. In this exercise, we will design a script that simulates the stoichiometric constant volume

mixing of a stream of air with a stream of pure gaseous methane, as depicted in fig. 4.3.

Script generation

Go into the folder ’Mixing’ and create a file with a ’.py’ extension, say, ’mixing.py’, that you can edit

in your favorite text editor :

$ touch mixing.py

$ gedit mixing.py &

Import cantera at the top of your script, as usual. Then, import the gas for your first stream, from the

Cantera file ’air.xml’; and set its state to ambient air composition (although it should be the default

setting) :

gas_a = ct.Solution(’air.xml’)

gas_a.TPX = 300.0, ct.one_atm, ’O2:0.21, N2:0.78, AR:0.01’

Use the GRIMech3.0 mechanism present in your folder, gri30.cti, to generate a pure stream of gaseous

methane (CH4):

gas_b = ...

gas_b.TPX = ...

Create two reservoirs to hold both the air and the methane, as well as an exhaust reservoir that will

receive the mixing reactor’s outlet (see fig. 4.3). Note that you will need to initialize the downstream

reservoir with the ’gas b’, since the ’gas a’ does not contain any mechanism for methane mixtures :

res_a = ct.Reservoir(gas_a)

res_b = ...

downstream = ct.Reservoir(gas_b)

Generate a constant volume reactor to receive the two mixing streams, and fill it with a mixture of

air. Here again, be careful and use ’gas b’:

gas_b.TPX = 300.0,ct.one_atm, ’O2:0.21, N2:0.78, AR:0.01’

mixer = ct.IdealGasReactor(gas_b, energy=’on’)

16th November 2015 48

Figure 4.3: Constant volume mixing of two streams of air and methane, with the GRIMech3.0 mech-

anism.

16th November 2015 49

Next, you need to link all items. To do so, define two flow controllers, from the inlet reservoirs ’res a’

and ’res b’ to the mixing reactor ’mixer’, in order to control the mass flow rate into the mixing reactor.

This will allow to maintain the inflow mixture at stoichiometry. To do so, note that you will need

to extract the mean molecular weight of each stream. Modify your code by adding a line under the

’gas a’ and ’gas b’ state definition :

gas_a = ct.Solution(’air.xml’)

gas_a.TPX = 300.0, ct.one_atm, ’O2:0.21, N2:0.78, AR:0.01’

mw_a = gas_a.mean_molecular_weight/1000 #kg/mol

And define your mass flow controllers with them :

mfca = ct.MassFlowController(res_a, mixer, mdot=mw_a*2./0.21)

mfcb = ct.MassFlowController(res_b, mixer, mdot=mw_b*1.0)

You also need to connect the mixer to the downstream reservoir, here we will use a valve:

outlet = ct.Valve(mixer, downstream, K=10.0)

This is done in order to maintain the reactor’s pressure at the pressure of the downstream reservoir,

which is atmospheric pressure (set K to a high enough value).

Next, you can define your equation manager :

sim = ct.ReactorNet([mixer])

and integrate the equations in time with the ’advance’ function. We choose to integrate for a hundred

residence times, which should be enough to reach the steady state. It is useful to print results on

screen or in a file, so as to have an idea of whether convergence is reached. If it is not the case, just

increase the number of residence time integrations:

Since the mixer is a reactor, we need to integrate in time to reach steady

state. A few residence times should be enough.

print(’{0:>14s} {1:>14s} {2:>14s} {3:>14s} {4:>14s}’.format(

’t [s]’, ’T [K]’, ’h [J/kg]’, ’P [Pa]’, ’X_CH4’))

t = 0.0

for n in range(100):

tres = mixer.mass/(mfca.mdot(t) + mfcb.mdot(t))

t += 2*tres

sim.advance(t)

16th November 2015 50

print(’{0:14.5g} {1:14.5g} {2:14.5g} {3:14.5g} {4:14.5g}’.format(

t, mixer.T, mixer.thermo.h, mixer.thermo.P, mixer.thermo[’CH4’].X[0]))

You can add a line to view the state of the gas in the mixer after the simulation :

view the state of the gas in the mixer

print(mixer.thermo.report())

Run your script by launching it from your terminal.

$ python mixer.py

Results

You should get a gas report that looks like this :

gri30:

temperature 300 K

pressure 101325 Pa

density 1.12691 kg/m^3

mean mol. weight 27.7414 amu

1 kg 1 kmol

----------- ------------

enthalpy -253510 -7.033e+06 J

internal energy -343424 -9.527e+06 J

entropy 7221.97 2.003e+05 J/K

Gibbs function -2.4201e+06 -6.714e+07 J

heat capacity c_p 1070.43 2.97e+04 J/K

heat capacity c_v 770.713 2.138e+04 J/K

X Y Chem. Pot. / RT

------------- ------------ ------------

H2 -2.21485e-43 -1.60946e-44

H 6.87598e-63 2.49828e-64 -69.5354

O 3.38993e-48 1.95509e-48 -28.7787

O2 0.190045 0.219211 -26.3342

OH 3.35887e-45 2.05921e-45 -108.729

16th November 2015 51

H2O 2.48967e-40 1.6168e-40 -210.852

HO2 2.24517e-33 2.67131e-33 -97.6994

H2O2 4.24702e-43 5.20741e-43 -180.247

C -1.35768e-65 -5.87823e-66

CH 1.08655e-77 5.09912e-78 40.2458

CH2 -3.95278e-65 -1.99864e-65

CH2(S) 1.14664e-68 5.79777e-69 -6.85067

CH3 2.24517e-33 1.2168e-33 -39.6174

CH4 0.0950226 0.0549513 -54.6765

CO -1.35881e-42 -1.37199e-42

CO2 -2.56432e-43 -4.06812e-43

HCO 2.58581e-68 2.70483e-68 -165.769

CH2O 2.45085e-40 2.65271e-40 -161.049

CH2OH 2.37794e-70 2.6602e-70 -195.516

CH3O 4.67032e-51 5.22468e-51 -136.835

CH3OH -5.31e-42 -6.13322e-42

C2H -2.97595e-97 -2.68508e-97

C2H2 2.64632e-59 2.48382e-59 -67.5574

C2H3 1.84347e-80 1.79725e-80 -91.5585

C2H4 1.45274e-49 1.46909e-49 -117.784

C2H5 4.94261e-67 5.17785e-67 -134.826

C2H6 2.24066e-42 2.42871e-42 -157.087

HCCO -4.91081e-90 -7.26306e-90

CH2CO -6.01037e-61 -9.10767e-61

HCCOH -1.08354e-74 -1.64192e-74

N 6.02713e-85 3.04312e-85 -22.8614

NH -9.10993e-90 -4.93064e-90

NH2 1.76673e-83 1.02041e-83 -137.004

NH3 -8.24856e-91 -5.06383e-91

NNH 8.6665e-73 9.06639e-73 -92.8982

NO -1.26857e-67 -1.37213e-67

NO2 3.82354e-77 6.34085e-77 -191.135

N2O -2.8895e-54 -4.58432e-54

HNO 3.64938e-72 4.07991e-72 -148.462

16th November 2015 52

CN -5.26194e-98 -4.935e-98

HCN 2.80081e-71 2.72855e-71 -134.283

H2CN 1.90114e-76 1.92117e-76 -102.168

HCNN -4.26751e-77 -6.31209e-77

HCNO -4.28002e-83 -6.63804e-83

HOCN 3.94921e-88 6.12496e-88 -235.105

HNCO -5.48434e-82 -8.50585e-82

NCO 4.20133e-85 6.36335e-85 -169.396

N2 0.705882 0.712806 -23.3814

AR 0.00904977 0.0130318 -23.3151

C3H7 -1.58768e-60 -2.46603e-60

C3H8 7.58249e-56 1.20528e-55 -201.05

CH2CHO -6.55256e-79 -1.01673e-78

CH3CHO -6.89902e-62 -1.09556e-61

Notice that the gas did not ignite, and that the composition is indeed stoichiometric. We could trigger

the ignition, by assuming that the reactor is ’already lit’. To do so, you need to initialize the content

of the reactor with hot gases. The simplest way to do so is by filling it with stoichiometric mixture of

air and methane at equilibrium. This is easily done by replacing the lines :

gas_b.TPX = 300.0, ct.one_atm, ’O2:0.21, N2:0.78, AR:0.01’

mixer = ct.IdealGasReactor(gas_b)

with :

gas_b.TPX = 300.0,ct.one_atm,’O2:1., N2:3.78, CH4:0.5’

gas_b.equilibrate("HP")

mixer = ct.IdealGasReactor(gas_b)

Now when you run your script, you should notice that the reactor burns ! The temperature and

composition of the reactor should be that of the equilibrium state. Find the script in Appendix C.3.3.

gri30:

temperature 2225.34 K

pressure 101325 Pa

density 0.150726 kg/m^3

mean mol. weight 27.5235 amu

16th November 2015 53

1 kg 1 kmol

----------- ------------

enthalpy -253510 -6.977e+06 J

internal energy -925754 -2.548e+07 J

entropy 9836.18 2.707e+05 J/K

Gibbs function -2.21424e+07 -6.094e+08 J

heat capacity c_p 1503.21 4.137e+04 J/K

heat capacity c_v 1201.12 3.306e+04 J/K

X Y Chem. Pot. / RT

------------- ------------ ------------

H2 0.00379758 0.000278142 -25.3976

H 0.000443298 1.6234e-05 -12.5967

O 0.000250096 0.000145381 -17.1146

O2 0.00512518 0.00595853 -34.4245

OH 0.00309076 0.00190985 -29.9164

H2O 0.182985 0.119771 -42.7174

HO2 5.65628e-07 6.78312e-07 -47.1272

H2O2 4.98717e-08 6.16335e-08 -59.8915

C 3.34832e-10 1.46117e-10 -4.96175

CH 2.26905e-09 1.07329e-09 -13.887

CH2 3.86952e-08 1.97204e-08 -24.8492

CH2(S) 2.81163e-09 1.4329e-09 -24.6677

CH3 5.31788e-07 2.90491e-07 -36.8004

CH4 9.62339e-07 5.60923e-07 -48.2144

CO 0.00944946 0.00961662 -38.7093

CO2 0.0848248 0.135634 -56.0308

HCO 6.55507e-09 6.91108e-09 -49.3739

CH2O 1.59975e-07 1.74522e-07 -54.8062

CH2OH 2.53795e-09 2.86168e-09 -58.996

CH3O 1.3173e-10 1.48533e-10 -57.8179

CH3OH 3.35483e-09 3.90561e-09 -68.9764

C2H 3.33461e-13 3.0325e-13 -30.48

16th November 2015 54

C2H2 7.90407e-11 7.47743e-11 -43.2563

C2H3 8.87674e-13 8.72267e-13 -48.6783

C2H4 2.48124e-11 2.52904e-11 -58.1174

C2H5 4.13776e-13 4.36901e-13 -63.5043

C2H6 2.59501e-13 2.83507e-13 -74.0743

HCCO 1.2309e-10 1.8349e-10 -51.4245

CH2CO 2.57465e-10 3.93233e-10 -63.6932

HCCOH 5.26311e-12 8.03846e-12 -60.6554

N 1.51208e-08 7.69499e-09 -13.759

NH 3.90756e-09 2.13166e-09 -26.0397

NH2 1.0095e-08 5.87671e-09 -36.8968

NH3 2.67378e-08 1.65444e-08 -49.6978

NNH 8.46979e-10 8.93074e-10 -40.2511

NO 0.00142824 0.00155707 -31.3634

NO2 2.66748e-07 4.45868e-07 -48.6093

N2O 1.07917e-07 1.7257e-07 -44.8307

HNO 2.79413e-08 3.14848e-08 -43.9954

CN 4.43542e-10 4.19277e-10 -26.5269

HCN 1.51036e-07 1.48304e-07 -39.0752

H2CN 1.09596e-12 1.11627e-12 -48.5579

HCNN 8.92163e-13 1.33005e-12 -41.5252

HCNO 3.80754e-08 5.95199e-08 -45.5661

HOCN 3.6565e-09 5.71588e-09 -57.2235

HNCO 1.75399e-07 2.74186e-07 -59.1872

NCO 7.27407e-09 1.11045e-08 -46.4238

N2 0.699624 0.712078 -27.6542

AR 0.0089787 0.0130318 -26.183

C3H7 8.08875e-20 1.26631e-19 -90.5628

C3H8 6.4608e-20 1.03511e-19 -100.834

CH2CHO 1.13568e-14 1.77613e-14 -74.0555

CH3CHO 3.16313e-13 5.0628e-13 -81.8362

16th November 2015 55

4.2.4 Autoignition timing

Introduction

An interesting feature of 0D simulations is that it allows to compute the temporal evolution of a

mixture under specific conditions towards its equilibrium state. That evolution can be viewed as

a sort of ’autoignition’ of the mixture. To go further, that last exercise will guide you through

such a computation of the autoignition timing of a methane/air mixture. Several definitions of the

autoignition timing can be found on the literature. The most commonly accepted definition relies

on the temperature gradient : the time of the sharpest temperature increase is spotted as being the

autoignition point. In order to catch this time with precision, the time step of the simulation should

be as small as possible.

A simple script to catch the autoignition timing

Go into the ’Autoignition’ subdirectory of the ’Tuto4’ directory. You will find a partially filled script

’Autoignition simple.py’ :

###

#

Autoignition of a methane air mixture at stoichiometry

and atmospheric pressure, for different

initial temperature

#

###

import sys

import numpy as np

from cantera import *

###

#Mechanism used for the process

gas = Solution(’gri30.cti’)

#Initial temperature, Pressure and stoichiometry

gas.TPX = 1250, one_atm, ’CH4:0.5,O2:1,N2:3.76’

16th November 2015 56

#Specify the number of time steps and the time step size

nt = 100000

dt = 1.e-6 #s

#Storage space

mfrac = np.zeros(gas.n_species,’d’)

#...

tim = np.zeros(nt,’d’)

temp = np.zeros(nt,’d’)

dtemp = np.zeros(nt-1,’d’)

###

#Create the batch reactor and fill it with the gas

r = ...

Now create a reactor network consisting of the single batch reactor

sim = ...

#Run the simulation

Initial simulation time

time = 0.0

#Loop for nt time steps of dt seconds.

for n in range(nt):

time += dt

sim.advance(time)

#save the time and temperature of each time step

tim[n] = time

temp[n] = r.T

#and save the final mass fraction of species

mfrac[:] = r.thermo.Y

16th November 2015 57

###

Catch the autoignition timing

###

Dtmax = [0,0.0]

for n in range(nt-1):

dtemp[n] = (temp[n+1]-temp[n])/dt

if (dtemp[n]>Dtmax[1]):

Dtmax[0] = n

Dtmax[1] = dtemp[n]

Local print

Autoignition = (tim[Dtmax[0]]+tim[Dtmax[0] + 1])/2.

print ’Autoignition time (s) = ’ + str(Autoignition)

Posterity

Autoignition = Autoignition*1000 #ms

FinalTemp = temp[nt-1]

###

Save results

###

write output CSV file for importing into Excel

csv_file = ’Phi-1_P-1_T-1250_UV.csv’

with open(csv_file, ’w’) as outfile:

writer = csv.writer(outfile)

writer.writerow([’Auto ignition time [ms]’,’Final Temperature [K]’] + gas.species_names)

writer.writerow([Autoignition, FinalTemp] + list(mfrac[:]))

print ’output written to ’+csv_file

Fill in the blanks by specifying the type of reactor and defining a ReactorNet object, as in the first

exercise, section 4.2.1. With this script, we will catch the autoignition timing of a mixture of methane

and air, with an initial stoichiometric composition and an initial temperature of 1250 K.

16th November 2015 58

Results

Find the complete script in Appendix C.3.4. You should get a screen printout that looks like this :

WARNING: ’Use of Sundials 2.2 and 2.3’ is deprecated. Support for these versions will

be removed in Cantera 2.2.

Autoignition time = (s) 0.0215205

output written to Phi-1_P-1_T-1250_UV.csv

It should create a ’Phi-1 P-1 T-1250 UV.csv’ file in your directory, the content of which should look

something like :

Auto ignition time [ms],Final Temperature [K],H2,H,O,O2,...,CH3CHO

21.5205,2836.02735401,0.00136159069637,0.000307040605043,...,1.13610521252e-22

You could try to modify this script and catch the autoignition timing for another initial temperature,

for example. Be careful as you will certainly have to modify the time step resolution while doing so,

under the ’#Specify the number of time steps and the time step size’ section of the previous script.

Catch the autoignition timing for different initial temperature (OPTIONAL)

Now, it is often of interest to catch the autoignition timing of a mixture for several initial temperature

and/or composition in a single script. To do this, you could simply loop upon the initial gaseous

composition. In this last exercise, we will modify our previous script to catch the autoignition timing of

a mixture of methane and air under atmospheric pressure and stoichiometric condition; but for several

different initial temperature. Copy your previous script under a new name, say, ’Autoignition Tvar.py’.

Open this script in your favorite editor. Begin by commenting out the part setting the gas composition

:

#Initial temperature, Pressure and stoichiometry

#gas.TPX = 1250, one_atm, ’CH4:0.5,O2:1,N2:3.76’

And replace it by the specifics of each computation :

#Initial temperatures

Tmin = 0.65 # Kelvin

Tmax = 0.85 # Kelvin

npoints = 11

Next, modify the ’Storage’ section :

16th November 2015 59

#Storage

#Temperature storage variables

Ti = np.zeros(npoints,’d’)

Ti2 = np.zeros(npoints,’d’)

#The initial storage variable become case dependent

tim = np.zeros(nt,’d’)

temp_cas = np.zeros(nt,’d’)

dtemp_cas = np.zeros(nt-1,’d’)

#Additional storage variables are needed to differentiate each case

Autoignition_cas = np.zeros(npoints,’d’)

FinalTemp_cas = np.zeros(npoints,’d’)

mfrac_cas = np.zeros([npoints,gas.n_species],’d’)

Note that all storage variables now become storage vectors, storage vectors are now storage matrices,

etc. You can remove the rest of the script, as we will now begin the loop over the several initial

conditions :

#Loop over initial conditions

for j in range(npoints):

Ti2[j] = Tmin + (Tmax - Tmin)*j/(npoints - 1)

Ti[j] = 1000/Ti2[j]

#Set gas state, always at stoichiometry

gas.TPX = Ti[j], one_atm, ’CH4:0.5,O2:1,N2:3.76’

#Create the ideal batch reactor

r = ...

Now create a reactor network consisting of the single batch reactor

sim = ...

Initial simulation time

time = 0.0

#Loop for nt time steps of dt seconds.

for n in range(nt):

time += dt

sim.advance(time)

tim[n] = time

16th November 2015 60

temp_cas[n] = r.T

mfrac_cas[j][:] = r.thermo.Y

###

Catch the autoignition timings

###

Get autoignition timing

Dtmax = [0,0.0]

for n in range(nt-1):

dtemp_cas[n] = (temp_cas[n+1]-temp_cas[n])/dt

if (dtemp_cas[n]>Dtmax[1]):

Dtmax[0] = n

Dtmax[1] = dtemp_cas[n]

Local print

Autoignition = (tim[Dtmax[0]]+tim[Dtmax[0] + 1])/2.

print ’For ’ +str(Ti[j]) +’, Autoignition time = (s) ’ + str(Autoignition)

Posterity

Autoignition_cas[j] = Autoignition*1000 #ms

FinalTemp_cas[j] = temp_cas[nt-1]

###

Save results

###

write output CSV file for importing into Excel

csv_file = ’Phi-1_P-1_Trange_UV.csv’

with open(csv_file, ’w’) as outfile:

writer = csv.writer(outfile)

writer.writerow([’Auto ignition time’,’Final Temperature’] + gas.species_names)

for i in range(npoints):

writer.writerow([’cas Ti = ’, Ti[j]])

writer.writerow([Autoignition_cas[i], FinalTemp_cas[i]] +

list(mfrac_cas[i,:]))

print ’output written to ’+csv_file

16th November 2015 61

###

Plot results

###

create plot

plot(Ti2,Autoignition_cas, ’^’, color = ’orange’)

xlabel(r’Temp [1000/K]’, fontsize=20)

ylabel("Autoignition [ms]")

title(r’Autoignition of CH_{4} + Air mixture at Φ = 1, and P = 1

bar’,fontsize=22,horizontalalignment=’center’)

axis([0.60,0.90,0.0,100.0])

grid()

#show()

savefig(’Phi-1_P-1_Trange_UV.png’, bbox_inches=’tight’)

Notice that the advancement of the reactor is now embedded inside the loop, and is done for each

initial condition.

Results

Find the complete script in Appendix C.3.4. You should get a screen printout with the autoignition

timing for each initial condition :

WARNING: ’Use of Sundials 2.2 and 2.3’ is deprecated. Support for these versions will

be removed in Cantera 2.2.

For 1538.46153846, Autoignition time = (s) 0.0007635

For 1492.53731343, Autoignition time = (s) 0.0011935

For 1449.27536232, Autoignition time = (s) 0.0018745

For 1408.45070423, Autoignition time = (s) 0.0029495

For 1369.8630137, Autoignition time = (s) 0.0046315

For 1333.33333333, Autoignition time = (s) 0.0072415

For 1298.7012987, Autoignition time = (s) 0.0112545

For 1265.82278481, Autoignition time = (s) 0.0173695

For 1234.56790123, Autoignition time = (s) 0.0266145

For 1204.81927711, Autoignition time = (s) 0.0404795

For 1176.47058824, Autoignition time = (s) 0.0611185

output written to Phi-1_P-1_Trange_UV.csv

16th November 2015 62

The plot it generates is shown in fig. 4.4.

16th November 2015 63

Figure 4.4: Autoignition time of a methane-air mixture at stoichiometry and under atmospheric

pressure, for different initial temperatures.

16th November 2015 64

5. Tutorial 5 : 1D simulations

5.1 Introduction

The goal of this section is to introduce one-dimensional flame simulations with Cantera. Three types

of such simulations are available with Cantera version 2.1.1, each of which will be the subject matter of

an exercise : premixed flat flame simulations, burner stabilized flat flame simulations and counterflow

diffusion flame simulations.

An important thing to understand when trying to perform such computations, is that Cantera

is not very ”robust”. If you remember from the lecture, it uses a modified Newton algorithm, the

convergence of which is greatly sensitive to the initial conditions and settings of the solver. The type

of mechanism used for the chemistry description as well as the transport model chosen can also be the

cause of convergence failures... Now, a few solver properties can be tuned to help with the convergence,

as we will see in the exercises, but in most cases it is best to start with a ”standard” computation

(atmospheric conditions, stoichiometry) and to iterate from there: it will be both easier and faster to

reach a reliable solution.

Cantera 1D calculations can also be very long. Obviously, whether you choose a detailed or a

reduced mechanism for a particular simulation of a mixture will impact your results and performances.

Using a detailed mechanism could provide reliable mass fractions and temperature profiles; but the

simulation time can take up to several days. Eventually, it all depends on the information you seek,

and the accuracy level that is acceptable to you. See fig. 5.1 for an example of laminar flame speed

calculation for Kerosene-air mixture with two radically different schemes.

16th November 2015 65

Figure 5.1: Flame speed versus equivalence ratio at 300 K, for three pressures (1, 3 and 12 atm).

Comparison between a reduced scheme (from Luche’s thesis, 991 reactions and 91 species) and a

global scheme (2S KERO BFER developped by Benedetta Franzelli at CERFACS, 2 global steps and

6 species)

16th November 2015 66

5.2 General structure of a 1D simulation with Cantera

An interesting feature of all standard 1D flames is that their script can be structured in a similar

fashion. With the Python interface, it should be composed of :

• As usual, a package definition section. You will always require cantera and numpy

• The definition of a gaseous object : import a gas and set its state (we have reviewed this step

in all previous tutorials)

• A 1D domain, initialy discretized

• And eventually, the flame, with :

– a gaseous composition (use the gaseous object previously defined)

– a set of equations to integrate (depending upon the type of flame)

– inlets/boundaries conditions

• Storage/plot options

The next sections will review the last two steps, and specifics will be provided on each exercise, when

relevant.

5.2.1 1D domains and discretization

All 1D simulations require a spatial domain. The simplest way to define such domains is to specify a

uniform grid, with a few points :

initial_grid = 0.02*array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0],’d’) # m

Or with lots of points using numpy :

initial_grid = numpy.linspace(0, 0.02, 300)

But usually, you will find that the solver prefers to start with a grid that is refined in the boundary

regions :

initial_grid = 2*array([0.0, 0.001, 0.01, 0.02, 0.029, 0.03],’d’)/3

It is also best to start with a grid that is not too wide, 2 cm is a good start. Cantera will add points,

refining your grid in the region of steepest gradients, according to the level of precision you require

(see next section). However, you will need to continue the computation of your flame, starting from

a previously stored profile, if you want to extend your domain.

16th November 2015 67

5.2.2 Flame objects

Once your grid is set, the next step is the definition of the flame object. This step depends upon the

type of simulation you are running. All flame objects should be initialized by specifying a gaseous

composition. With each type of flame comes a set of governing equations, and inlets/boundaries

definitions. We will see this in more details in the exercises.

FreeFlame object

For a premixed simulation, this is done through the Cantera ”FreeFlame” object :

f = FreeFlame(gas, initial_grid)

In Cantera, the FreeFlame object is composed of three domains : ’self.inlet’, ’self.flame’, and ’self.outlet’.

Depending on which quantity you are interested in, or want to define, you will need to act on one or

the other domain. Some non-physical quantities are also directly applied on the flame. This is pretty

self explanatory, as we will see in the exercises.

BurnerFlame object

For a burner simulation, this is done through the Cantera ”BurnerFlame” object :

f = BurnerFlame(gas, initial_grid)

In the same fashion, a burner stabilized flame object is composed of three domains : ’self.burner’,

’self.flame’, and ’self.outlet’.

CounterflowDiffusionFlame object

For a counterflow flame simulation, this is done through the Cantera ”CounterflowDiffusionFlame”

object :

f = CounterflowDiffusionFlame(gas, initial_grid)

In the same fashion, this type of flame object is composed of three domains : ’self.fuel inlet’, ’self.flame’,

and ’self.oxidizer inlet’.

5.2.3 Boundary conditions

They are specific to the type of simulation being performed, and will thus be reviewed in the different

exercises.

16th November 2015 68

5.2.4 Save and restart your computation : the ’xml’ format

You can store a flame solution in different formats (see Appendix B), but you should always call the

internal Cantera function ’save’ after each evaluations of a flame object f :

f.save(’yourfile.xml’,’name_of_solution’, ’description_of_solution’)

This will give you the possibility to restart a flame simulation from a previously stored solution. In

order to do so, you will need the ’.xml’ saving file of a previous simulation, and the ’name of solution’

of the run you want to restart from. For example, if you saved a solution in a python script with the

line:

f.save(’ch4_adiabatic.xml’,’energy’, ’solution with the energy equation enabled’)

You can restore it in a new python script by invoking the ’restore’ function on a new flame object g :

g.restore(’ch4_adiabatic.xml’, ’energy’)

Of course, the new flame object must be compatible : you need ’almost’ the same gaseous object (the

mechanism used can contain more or less species than the mechanism used to compute the stored

solution), and ’almost’ the same initial grid (you could extend or refine your domain within reason).

The ’restore’ function is usually called right after the gas is imported and the flame object initial-

ized:

g = FreeFlame(gas)

g.restore(’ch4_adiabatic.xml’, ’energy’)

Once your flame is restored, you can modify the inlet conditions and flame pressure to compute

different conditions; and/or any solver parameters so as to alter the transport model or convergence

settings.

NOTE : Save relevant information

It is straightforward, with the new Python interface of Cantera2.1.1, to save relevant data, by invoking

the special ’write csv’ function:

#Write the velocity, temperature, density, and mole fractions to a CSV file

yourflame.write_csv(’yourfile.csv’, species = ’X’, quiet=False)

This will write the velocity, temperature, density and mole or mass fractions, respectively, to a CSV

file; depending on whether species = ’X’ or ’Y’ is specified, respectively.

16th November 2015 69

5.3 About transport properties in 1D simulations

Cantera provides a set of transport manager classes that manage the computation of transport prop-

erties. Every object representing a phase of matter for which transport properties are needed has

a transport manager assigned to it. In Cantera, for gaseous phases, you have the choice between a

’Mixture-averaged’ transport model and a ’Multicomponent’ transport model. Setting a model in a

1D simulation is done with the function ’transport model’ applied on the flame object f :

f.transport_model = ’Multi’ # or ’Mix’

The two transport models are based on that described by Kee, Coltrin, and Glarborg in ”Theoret-

ical and Practical Aspects of Chemically Reacting Flow Modeling.” Basically, in the mixture-averaged

formulations, the diffusion velocity of species k is related to the species gradients by a Fickian formula,

where only a ’mixture diffusion coefficient’ is needed. This is also referred to as the Hirshfelder and

Curtis approximation. The multicomponent formulation, on the other hand, takes into consideration

the diffusion of species k into each species j.

The multicomponent formulation should always provide you with the most reliable results... but

at what cost ? Indeed, using a multicomponent formulation will result in an exponential growth of

the required calculation time when your reaction mechanism becomes heavier; whereas this growth is

somewhat linear with a mixture-averaged formulation. Furthermore, starting with a multicomponent

formulation will almost always end up in a failure, so that if you need to use this formulation you

will have to change your transport model in a continuation; or by restoring a solution as we have seen

in the previous section. If a continuation is performed where the transport model is changed, it is

recommended to leave the other refinement criteria untouched.

5.4 Solver properties

The properties required by the solver to integrate the 1D equations can be summarized as follow:

• the set of equations to solve

• tolerances values for the Newton integration

• maximum number of iterations before a Jacobian is re-computed

• time stepping values for the Newton time-stepping iterations

• grid refinement settings

16th November 2015 70

5.4.1 Set of equations to solve

The first thing to specify is whether you want the energy equation to be solved. If you need to compute

a flame with a heavy mechanism, for example, it is often recommended to start by running a first

flame without, by setting the flame parameter ’energy enabled’ to ’False’:

f.energy_enabled = False

5.4.2 Newton integration

Tolerances values

Now, the flame will be solved through Newton iterations, the convergence of which is governed by

specified relative and absolute error tolerances (rtol and atol, respectively). You will need to specify

those tolerances limits. This is done through the ’set steady tolerances’ and ’set transient tolerances’

functions, which respectively set the tolerances limits for the Newton and modified time-stepping

Newton iterations :

#Tolerance properties

tol_ss = [1.0e-5, 1.0e-9] # [rtol atol] for steady-state problem

tol_ts = [1.0e-5, 1.0e-9] # [rtol atol] for time stepping

f.flame.set_steady_tolerances(default=tol_ss)

f.flame.set_transient_tolerances(default=tol_ts)

Note that those functions are applied on the ’flame’ itself, as they will be used for computation in

the entire flame domain; but could also be specified relative to a chosen subset of species, if needed.

Standard values are between 1.0e-05 and 1.0e-13. It is possible to refine their values in a continuation

computation.

Jacobian evaluations

Next, specify the maximum number of times the Jacobian can be used before it must be re-evaluated.

Recall from the presentation this morning that it might be recomputed before, though. This is done

through a specific function ’set max jac age’, called on a flame object f:

f.set_max_jac_age(50, 50)

Standard values are between 30 an 50.

16th November 2015 71

Time-stepping for the modified Newton iterations

Time-stepping for the modified Newton iterations are defined on the flame object f as follows:

f.set_time_step(1.0e-5, [2, 5, 10, 20, 80]) #s

This means that a first set of 2 timesteps with value 1.0e-5 will be taken before trying a Newton

iteration with the solution obtained. If this fails, 5 timesteps with value 1.0e-05 will be taken, and

so on. Usually, it is best to start with a time stepping of the order of 1.0e-05, but note that in some

cases, with very sensitive chemistries, you might need to go as low as 1.0e-07. The time required to

complete your simulation will increase in consequence.

Grid refinement

Finally, you need to specify the grid refinement criteria :

f.set_refine_criteria(ratio = 10.0, slope = 1, curve = 1, prune = 0.05)

The different fields definitions are :

-ratio : additional points will be added if the ratio of the spacing on either side of a grid point exceeds

this value

-slope : maximum difference in value between two adjacent points, scaled by the maximum difference

in the profile (0.0 < slope < 1.0). Adds points in regions of high slope.

-curve : maximum difference in slope between two adjacent intervals, scaled by the maximum difference

in the profile (0.0 < curve < 1.0). Adds points in regions of high curvature.

-prune : if the slope or curve criteria are satisfied to the level of prune, the grid point is assumed

not to be needed and is removed. Set prune significantly smaller than slope and curve. Set to zero to

disable pruning the grid.

For a first computation, it is best to put the ratio value to a sufficiently high value; and to let the

’slope’ and ’curve’ values to 1. Use ’prune’ if you see that Cantera tries to refine your grid too much,

and that the number of points starts to exceed a reasonable value (≈ 200 points is enough).

5.5 Exercises

5.5.1 A premixed flat flame simulation

Introduction

We will start by computing a simple methane/air flame at stoichiometry, and under atmospheric

pressure and temperature, with the GRIMech3.0 mechanism. Note that we will provide the general

16th November 2015 72

way of computing such a flame, but that several computations in a row can be performed, loops upon

initial conditions can be added and so on ...

Prepare your run

Go into the subfolder ’1DpremixedFlame’ of the folder ’Tuto5’ and open in your favorite text editor

the partially filled ’premixed flame.py’. You will need to specify the mixture composition : up until

now, we have seen different ways to define the stoichiometry, you can choose whichever method you

prefer.

x = zeros(m,’d’)

x[ifuel] = ...

x[io2] = ...

x[in2] = ...

gas.TPX = tin, p, x

Note the chosen way to specify a grid here, with an array :

#Initial grid, chosen to be 0.02cm long :

- Refined grid at inlet and outlet, 6 points in x-direction :

initial_grid = 2*array([0.0, 0.001, 0.01, 0.02, 0.029, 0.03],’d’)/3

Next, if we remember the structure of a 1D simulation provided in section 5.2, we will need to define

the flame object. Following what was said in section 5.2.2, define a flame object suited to a 1D

premixed flame simulation; and the associated inlet conditions, accounting for the fresh gas state.

#Create the free laminar premixed flame

f = ...

#set inlet conditions

f.inlet.X = ...

f.inlet.T = ...

For a freely propagating 1D flat flame, you only need one boundary condition: you need to specify

the fresh gas composition and temperature at the inlet, where the gas is unburned.

16th November 2015 73

Solve your first flame

Once all is properly set, you can launch a first flame calculation. This is done in the script under the

section ’First flame’. This section has been filled for you, but you should take the time to read and

understand each line. Mostly, the purpose of this section is to properly set the solver properties. You

can refer to section 5.4 for information about each function used. Recall that a first flame should always

be computed without solving the energy equation, as specified through the function ’energy enabled’.

f.energy_enabled = False

For the first computation, again depending on the scheme and on your conditions, you can choose to

compute the flame on the initial grid or to allow the solver to refine it according to the parameters’

configurations previously set with the function ’set refine criteria’ (see section 5.4.2). This is done

through the ’refine grid’ field :

refine_grid = False # True to enable refinement, False to

disable

f.solve(loglevel, refine_grid)

It is not always necessary to set this to ’False’, if your refinement criteria are loose enough.

Launch your script as such :

$ python premixed_flame.py

And verify that it runs. You should get a screen printout of the sort :

WARNING: ’class GRI_30_Kinetics’ is deprecated. To be removed in Cantera 2.2.

...

Take 20 timesteps 0.01498 -1.307

Attempt Newton solution of steady-state problem... success.

Problem solved on [7] point grid(s).

..

grid refinement disabled.

Solution saved to file ch4_adiabatic.xml as solution no_energy.

16th November 2015 74

Continue your simulation

Once a first flame is solved, without the energy equation and with very loose grid refinement criteria,

you will need to perform a continuation. This is done under the section ’Second flame’ and subsequent

’Third flame’ and so on of your script. Try first to perform a Second flame by uncommenting the

proper section of your script and filling in the blanks :

1. Enable the energy equation

2. Refine the grid refinement criteria : divide all previous values by 2

3. Enable the grid refinement

Then, note that the flame is solved AND saved again, with the special function ’save’ on the same

’.xml’ file than the first flame (see section 5.2.4). Indeed, each time you call the ’solve’ function, your

flame is recomputed and all the variables change state. It is possible than convergence may fail and

that the solver crashes. Only if you monitor the evolution of your flame in between each computation

will you be able to debug/restart your simulation and save precious time !

Note, next, that the flamespeed will be printed on your screen, through the line :

#See the sl to get an idea of whether or not you should continue

print(’mixture-averaged flamespeed = 0:7f m/s’.format(f.u[0])) #m/s

As a first test for the convergence of your flame, if you do not want to investigate all the variables;

you could print the laminar flame on your monitor in between ’solve’. It is accessed through the ’u’

function, applied on the flame, which returns the array containing the velocity at each grid point.

At this point, you should launch your script again :

$ python premixed_flame.py

...

##

Refining grid in flame.

New points inserted after grid points 16 17 20 21 22 23 24

to resolve C C2H C2H2 C2H3 C2H4 C2H5 C2H6 C3H7 C3H8 CH CH2 CH2(S) CH2CO

CH2OH CH3 CH3CHO CH3O HCCO HCCOH HCN HCO N

##

16th November 2015 75

..

Attempt Newton solution of steady-state problem... success.

Problem solved on [49] point grid(s).

..

no new points needed in flame

Solution saved to file ch4_adiabatic.xml as solution energy.

mixture-averaged flamespeed = 0.389712 m/s

Next fill in subsequent sections ’Third flame and so on’, by copying information from the section

’Second flame’ :

1. Modify the grid refinement criteria

2. Solve the flame

3. Save the flame

Add as many continuation as you see fit, and refine your settings progressively. Typically, you should

find that convergence is reached for values of ’slope’ and ’curve’ of about 0.05, and ’ratio’ of about 2-3.

$ python premixed_flame.py

...

##

Refining grid in flame.

New points inserted after grid points 11 13 27 36 133

to resolve point 11 point 13 point 133 point 27 point 36

##

..

Attempt Newton solution of steady-state problem... success.

Problem solved on [179] point grid(s).

..

16th November 2015 76

no new points needed in flame

Solution saved to file ch4_adiabatic.xml as solution energy continuation.

mixture-averaged flamespeed continuation = 0.374865 m/s

Save your simulation

When you fill confident that your flame has reached convergence, you can save the flame’s state in a

’.csv’ format with the ’write csv’ function. Uncomment the ’Save your results if needed’ (last) section

of your script :

f.write_csv(’ch4_adiabatic.csv’, quiet=False)

This will write the velocity, temperature, density, and specified species profiles (mole ’X’ or mass ’Y’

fractions) into a ’filename.csv’ file (see section 5.2.4)

$ python premixed_flame.py

...

##

Refining grid in flame.

New points inserted after grid points 11 13 27 36 133

to resolve point 11 point 13 point 133 point 27 point 36

##

..

Attempt Newton solution of steady-state problem... success.

Problem solved on [179] point grid(s).

..

no new points needed in flame

Solution saved to file ch4_adiabatic.xml as solution energy continuation.

mixture-averaged flamespeed = 0.374865 m/s

Solution saved to ’ch4_adiabatic.csv’.

This file should look something like :

z (m),u (m/s),V (1/s),...,CH2CHO,CH3CHO

16th November 2015 77

0.0,0.374864629014,-1.60997586636e-133,...,2.31960438205e-28,0.0

...

0.02,2.7862260761,0.0,...,5.84177268453e-25,1.37675030861e-26

From this file -or directly on the python script- you could generate plots for the temperature, u, rho,

mole fractions ...

Change transport model (OPTIONAL)

You could uncomment the lines under the section ’Change transport model’ of your script. Notice that

in our case, switching to the more accurate multicomponent formulation of the transport properties

does not change much the final temperature nor flamespeed ... But the computation time has increased!

$ python premixed_flame.py

...

Problem solved on [179] point grid(s).

..

no new points needed in flame

Solution saved to file ch4_adiabatic.xml as solution energy_multi.

multicomponent flamespeed = 0.379524 m/s

multicomponent final T = 2209.478891 K

Solution saved to ’ch4_adiabatic.csv’.

Results

From the ’.csv’ file previously generated, you could obtain fig. 5.2. The mixture-averaged laminar

flame speed is 0.374856 m/s, and final temperature is 2209.461188 K. Find a complete script in

Appendix C.4.1.

Restart your computation from an ’.xml’ file (OPTIONAL)

As an example, take the ’.xml’ output of your previously computed stoichiometric freely propagat-

ing flat flame. Depending on the number of continuation that you performed, your ’.xml’ file will

have more or less solutions to restart from ... Try to generate a new python script; say, ’pre-

mixed flame continuation.py’, that will restart a flame from the last solution in your ’.xml’ file. Modify

the flame settings, so that :

16th November 2015 78

Figure 5.2: Temperature and important species’ mole fractions evolution through a free premixed flat

flame, computed for a methane-air mixture at stoichimometry and under atmospheric conditions with

the GRIMech3.0 mechanism.

16th November 2015 79

• φ = 0.8

• T inlet = 600 K

• P = 1 atm

You don’t need to alter the solver properties.

Results

$ python premixed_flame_continuation.py

...

Importing datasets:

axial velocity radial velocity temperature lambda

H2 H O O2 OH H2O HO2 H2O2

C CH CH2 CH2(S) CH3 CH4 CO CO2 HCO CH2O CH2OH

CH3O CH3OH C2H C2H2 C2H3 C2H4 C2H5 C2H6 HCCO CH2CO

HCCOH N NH NH2 NH3 NNH NO NO2 N2O HNO CN HCN

H2CN HCNN HCNO HOCN HNCO NCO N2 AR C3H7 C3H8 CH2CHO

CH3CHO

...

Problem solved on [192] point grid(s).

..

no new points needed in flame

Solution saved to file ch4_adiabatic.xml as solution new_conditions.

mixture-averaged flamespeed = 1.057021 m/s

mixture-averaged final T = 2196.804178 K

Solution saved to ’ch4-air_adiabatic_phi0.8-T600.0.csv’.

The simulation is going faster than if started from scratch. This is really useful when you need

to obtain the laminar flame speed for several initial compositions, or under different pressures, for

example. To check that the ’restore’ function is doing its job, you could try printing the flame’s state

after a restore, with the ’show solution()’ function applied to the flame object. Find a complete script

un Appendix C.4.2.

16th November 2015 80

5.5.2 A burner stabilized flat flame simulation

Introduction

As seen in introduction of this tutorial, another type of premixed flat flame that Cantera can simulate

is burner stabilized. The only difference in modelizing this sort of premixed flame from the freely

propagating one resides in the specification of a mass flow rate as a boundary condition, to ”fix” the

location of the flame in space. See fig. 5.3.

Figure 5.3: From R.J. Kee, M.E. Coltrin and P. Glarborg ”Chemically Reacting Flow”

The steps for defining a simulation script are the same as those for a freely propagating flat flame,

up to the definition of the flame. From there, the settings will be specific to a burner stabilized flame,

but we will notice many similarities.

A simple script

Go into the subfolder ’1DburnerFlame’ of the ’Tuto5’ folder, and open the python script you will find

there in your favorite text editor. Remember the steps to define a 1D simulation script with Cantera,

section 5.2 :

• a package section

• the gaseous object settings

• a 1D domain

• a flame, with :

– a gaseous composition

16th November 2015 81

– a set of equations to integrate

– inlet conditions

– specific boundary conditions

Try to understand each line of the script in regards of those aforementioned steps. Notice the additional

boundary condition required for a burner stabilized 1D simulation :

...

f = ct.BurnerFlame(gas, initial_grid)

f.burner.T = tburner

f.burner.X = reactants

mdot = 0.04

f.burner.mdot = mdot

...

Once your flame is properly defined, you need to specify the settings for the solver. This is done

in exactly the same fashion as for the freely propagation premixed flat flame.

Next, several flames are computed in a row, with refined settings. Here also, the subsequent

solutions are saved in between ’solve’ callings; while the final solution is saved in a ’.csv’ file, to be

able to visualize the evolution of the flame properties throughout the domain.

Results

See fig. 5.5 and 5.4. A complete script is provided in Appendix C.4.3.

16th November 2015 82

Figure 5.4: Evolution of the main species through a burner stabilized premixed flat flame, computed for

a methane-air mixture at φ = 1.3, Tini = 373 K and under atmospheric pressure with the GRIMech3.0

mechanism and the multicomponent diffusion enabled.

Figure 5.5: Evolution of the temperature through a burner stabilized premixed flat flame, computed for

a methane-air mixture at φ = 1.3, Tini = 373 K and under atmospheric pressure with the GRIMech3.0

mechanism and the multicomponent diffusion enabled.

16th November 2015 83

5.5.3 A counterflow diffusion flame simulation

Introduction

This section will be dedicated to the simulation of a counterflow diffusion flame. This is the only

configuration for diffusion flames that Cantera version 2.1.1 handles. We will use the GRIMech3.0

mechanism to generate an ethane-air mixture (C2H6).

A simple script

Go into the subfolder ’1DcounterflowFlame’ of the ’Tuto6’ folder, and open the python script you

will find there in your favorite text editor. Remember the steps to define a 1D simulation script with

Cantera, section 5.2, with a few specifics in this case :

• a package section

• the gaseous object settings

• a 1D domain

• the flame components will be :

– a gaseous composition

– a set of equations to solve

– inlets conditions (two inlets)

– specific boundaries conditions (two inlets)

– an initial profile

Try to understand each line of the script in regards of those aforementioned steps.

Note that there are now two boundaries : one for the fuel and another for the oxidizer. Try to be

consistent with Cantera’s logic and always put the fuel inlet on the left and the oxidizer inlet on the

right...

Here we start with a domain of about 2 cm, with evenly spaced points. With those settings, the

global strain rate will approximatively be equal to 40 s−1.

Note, next, that you are required to specify the fuel for the initial guess: together with the inlet

flow rates and composition, it will enable the construction of an initial solution. Be careful that

the oxidizer and corresponding stoichiometry must be specified if it is not O2 ! The initial guess is

generated by assuming infinitely fast chemistry.

16th November 2015 84

For the solver, the settings and procedure is the same as for the other type of flames we just

reviewed: we start again by disabling the energy equation, then the tolerances for the Newton integ-

rations are specified and a first flame without grid refinement is solved. The simulation is continued

by first enabling the energy equation, and then lowering the grid refinements.

Intermediate solutions are systematically stored in a ’.xml’. file while the final solution is stored

in a ’.csv’ file for further visualizations.

Results

See fig. 5.6. complete script is provided in Appendix C.4.4.

16th November 2015 85

Figure 5.6: Spatial evolution of the temperature and some radicals mole fraction through a diffusion

counterflow flame, computed for an ethane-air mixture at T fuel and T air = 300 K, under atmospheric

pressure and for a = 40 s−1; with the GRIMech3.0 mechanism.

16th November 2015 86

A. Appendix: Standard entries and fields found in Cantera’s

data files

A.1 Introduction

Remember from Tutorial 2 that a ’data file’ is composed of three main parts:

• a phases and interfaces area

• a species area (with, possibily, an element area)

• a reactions area

In each one of those parts, specific information to define phases objects are specified, in the form of

entries and directives, the most common of which we will detail hereafter. Each entry and directive

is composed of fields, which are assigned values.

A.2 Phases and interfaces

There are several different types of entries, corresponding to different types of phases. Phases are

created using one of the following:

1. ideal gas

2. stoichiometric solid

3. stoichiometric liquid

4. metal

5. semiconductor

6. incompressible solid

7. lattice

16th November 2015 87

8. lattice solid

9. liquid vapor

10. redlich kwong

11. ideal interface

12. edge

These share many common features, however, which are contained in the phase class of the code.

Fields :

Name

The ’name’ field is a string that identifies the phase. It must not contain any whitespace characters or

reserved XML characters, and must be unique within the file among all phase definitions of any type.

Phases are referenced by name when importing them into an application program, or when defining

an interface between phases.

Declaring the elements

The elements that may be present in the phase or interface are declared in the ’elements’ field. This

must be a string of element symbols separated by spaces and/or commas. Each symbol must either

match one listed in the database file elements.xml, or else match the symbol of an element entry

defined elsewhere in the data file (See Elements). The elements.xml database contains most elements

of the periodic table, with their natural-abundance atomic masses. It also contains a few isotopes (D,

Tr), and an element for an electron (E). This pseudo-element can be used to specify the composition

of charged species. Note that two-character symbols should have an uppercase first letter, and a

lowercase second letter (e.g. Cu, not CU). It should be noted that the order of the element symbols in

the string determines the order in which they are stored internally by Cantera. For some calculations,

such as multi-phase chemical equilibrium, it is important to synchronize the elements among multiple

phases, so that each phase contains the same elements with the same ordering. In such cases, simply

use the same string in the ’elements’ field for all phases:

ideal_gas(name = "gasmix",

elements = "H C O N Ar",

...)

16th November 2015 88

Declaring the species

The species that are present are declared in the ’species’ field. They are not defined there, only

declared. Species definitions may be imported from other files, or species may be defined locally using

species entries elsewhere in the file. If a single string of species symbols is given, then it is assumed

that these are locally defined. For each one, a corresponding species entry must be present somewhere

in the file, either preceding or following the phase entry. Note that the string may extend over multiple

lines by delimiting it with triple quotes.

species = """ H2 H O O2 OH H2O HO2 H2O2 C CH

CH2 CH2(S) CH3 CH4 CO CO2 HCO CH2O CH2OH CH3O

CH3OH C2H C2H2 C2H3 C2H4 C2H5 C2H6 HCCO CH2CO HCCOH

N NH NH2 NH3 NNH NO NO2 N2O HNO CN

HCN H2CN HCNN HCNO HOCN HNCO NCO N2 AR C3H7

C3H8 CH2CHO CH3CHO """,

include all species defined in this file

species = ’all’

If the species are imported from another file, instead of being defined locally, then the string should

begin with the file name (without extension), followed by a colon:

import selected species from silicon.xml

species = "silicon: SI SI2 SIH SIH2 SIH3 SIH4 SI2H6"

In this case, the species definitions will be taken from file silicon.xml, which must exist either in the

local directory or somewhere on the Cantera search path. It is also possible to import species from

several sources, or mix local definitions with imported ones, by specifying a sequence of strings:

species = ["CL2 CL F F2 HF HCL", # defined in this file

"air: O2 N2 NO", # imported from ’air.xml’

"ions: CL- F-"] # imported from ’ions.xml’

Note that the strings must be separated by commas, and enclosed in square brackets or parentheses.

Declaring the reactions

The reactions amongst the species are declared in the ’reactions’ field. Just as with species, reactions

may be defined locally in the file, or may be imported from one or more other files. All reactions must

only involve species that have been declared for the phase. If all reactions defined locally in a file are

to be included in the phase definition, then assign the ’reactions’ field the string ’all’:

16th November 2015 89

import all reactions defined in this file

reactions = "all"

import all reactions defined in rxns.xml

reactions = "rxns: all"

Unlike species, reactions do not have a name, but do have an optional ’id’ field. If the ’id’ field is not

assigned a value, then when the reaction entry is read it will be assigned a four-digit string encoding

the reaction number, beginning with ’0001’ for the first reaction in the file, and incrementing by one

for each new reaction. If only some of the reactions defined in a file are to be included, then a range

can be specified using the reaction ’id’ fields :

import reactions defined in this file

reactions = ’nox-12 to nox-24’

import reactions 1-14 in rxns.xml

reactions = "rxns: 0001 to 0014"

It is also possible to import reactions from several sources, as for the species :

import reactions from several sources

reactions = ["all", # all local reactions

"gas: all", # all reactions in gas.xml

"gri30: 0005 to 0008"] # reactions 5 to 8 in gri30.xml

Kinetics models for phases

A kinetics model is a set of equations to use to compute reaction rates. In most cases, each type of

phase has an associated kinetics model that is used by default, and so the ’kinetics’ field does not

need to be assigned a value. For example, the ideal gas entry has an associated kinetics model called

GasKinetics that implements mass-action kinetics, computes reverse rates from thermochemistry for

reversible reactions, and provides various pressure-independent and pressure-dependent reaction types.

Other models could be implemented, and this field would then be used to select the desired model.

Transport models for phases

A transport model is a set of equations used to compute transport properties. For ideal gas phases

for example, two transport models are available; the one desired can be selected by assigning a string

to this field.

16th November 2015 90

option meaning

’no validation’ Turn off all validation. Use when the definition has been previously

validated to speed up importing the definition into an application

’skip undeclared elements’ When importing species, skip any containing undeclared elements,

rather than flagging them as an error

’skip undeclared species’ When importing reactions, skip any containing undeclared species,

rather than flagging them as an error

’skip undeclared third bodies’ When importing reactions with third body efficiencies,

ignore any efficiencies for undeclared species,

rather than flagging them as an error.

’allow discontinuous thermo’ Disable the automatic adjustment of NASA polynomials

to eliminate discontinuities in enthalpy and entropy

at the midpoint temperature.

Table A.1: Summary of the ’options’ fields for phases entries

ideal_gas(name="gas1",

...,

transport="Multi", # use multicomponent formulation

...)

ideal_gas(name="gas2",

...,

transport="Mix", # use mixture-averaged formulation

...)

Options for phases

The ’options’ field is used to indicate how certain conditions should be handled when importing the

phase definition. The ’options’ field may be assigned a string or a sequence of strings from the table

A.2.

Phases for interfaces

The ’phases’ field specifies the bulk phases that participate in the heterogeneous reactions. Although in

most cases this string will list one or two phases, no limit is placed on the number. This is particularly

useful in some electrochemical problems, where reactions take place near the triple-phase bounday

where a gas, an electrolyte, and a metal all meet.

16th November 2015 91

Site density for interfaces

The ’site density’ field is the number of adsorption sites per unit area.

Initial state

The phase or interface may be assigned an initial state to which it will be set when the definition is

imported into an application and an object created. This is done by assigning field ’initial state’ an

embedded entry of type state, which will differ depending on whether a phase or an interface is under

consideration. Usually, temperature and pressure will be used for a gas :

ideal_gas(name = "gas",

...

initial_state = state(temperature = 300.0,

pressure = OneAtm))

Most of the attributes defined here are immutable, meaning that once the definition has been imported

into an application, they cannot be changed by the application. For example, it is not possible to

change the elements or the species. The temperature, pressure, and composition, however, are mutable

they can be changed. This is why the field defining the state is called the ’initial state’; the object in

the application will be initially set to this state, but it may be changed at any time.

Ideal gas mixtures :

Many combustion simulations make use of reacting ideal gas mixtures. These can be defined using

the ideal gas entry seen above. The Cantera ideal gas model allows any number of species, and any

number of reactions among them. An example of an ideal gas entry is shown below:

ideal_gas(name=’NOx-submech’,

elements=’N O Ar’,

species=’gri30: N2 O2 N O NO NO2 N2O AR’,

reactions=’gri30:all’,

transport=’Mix’,

initial_state=state(temperature=500.0,

pressure=(1.0, ’atm’),

mole_fractions=’N2:0.78, O2:0.21, AR:0.01’),

options = (’skip_undeclared_elements’,

16th November 2015 92

’skip_undeclared_species’,

’skip_undeclared_third_bodies’))

This entry defines an ideal gas mixture that contains 8 species, the definitions of which are imported

from file ’gri30.xml’. Transport properties are to be computed using mixture rules, and the state of

the gas is to be set initially to 500 K, 1 atm, and an air-like composition. As previously stressed, two

transport models can be used, and only one kinetic model is implemented; so that it is not necessary

to define it.

A.3 Elements

The element entry defines an element or an isotope of an element. Note that these entries are not often

needed, since the the database file ’elements.xml’ that comes with Cantera is searched for element

definitions when importing phase and interface definitions. An explicit element entry is needed only

if an isotope that is not in this file is required:

element(symbol=’C-13’,

atomic_mass=13.003354826)

element("O-!8", 17.9991603)

A.4 Species

Species are a top-level kind of entry of the data file. Their definitions are not embedded in a phase or

interface entry.

Fields :

Name

The ’name’ field may contain embedded parentheses, + or - signs to indicate the charge, or just about

anything else that is printable and not a reserved character in XML. Some example name specifications:

name = ’CH4’

name = ’KERO’

name = ’argon_2+’

name = ’C(s)’

Elemental composition :

The elemental composition is specified in the atoms entry, as follows:

16th November 2015 93

atoms = "C:1 O:2" # CO2

atoms = "C:1, O:2" # CO2 with optional comma

For surface species, it is possible to omit the ’atoms’ field entirely, in which case it is composed of

nothing, and represents an empty surface site. This can also be done to represent vacancies in solids.

A charged vacancy can be defined to be composed solely of electrons:

species(name = ’oxygen-vacancy’,

atoms = ’O:0, E:2’,

...)

Note that an atom number of zero may be given if desired, but is completely equivalent to omitting

that element. The number of atoms of an element must be non-negative, except for the special element

E that represents an electron.

Thermodynamic properties :

The phase and ideal interface entries discussed in the last section implement specific models for the

thermodynamic properties appropriate for the type of phase or interface they represent. Although

each one may use different expressions to compute the properties, they all require thermodynamic

property information for the individual species. For the phase types implemented at present, the

properties needed are:

1. The molar heat capacity at constant pressure c0p(T) for a range of temperatures at a reference

pressure P0;

2. The molar enthalpy h(T0,P0) at a reference pressure P0 a reference temperature T0;

3. The absolute molar entropy s(T0,P0) at (T0, P0).

Several entries exists to implement different parametrizations (functional form) for the heat capacity.

Note that there is no requirement that all species in a phase use the same parametrization; each species

can use the one most appropriate to represent how the heat capacity depends upon the temperature.

Currently, three entry types are implemented, all of which provide species properties appropriate for

models of ideal gas mixtures, ideal solutions, and pure compounds. Non-ideal phase models are not

yet implemented, but may be in future releases. When they are, additional entry types may also be

added that provide species-specific coefficients required by specific non-ideal equations of state. The

only one worth reviewing here is the ’NASA’ parametrization, which represents c0p(T) with a fourth-

order polynomial. In Cantera, it is defined by an embedded ’NASA’ entry. Very often, two NASA

parametrizations are used for two contiguous temperature ranges. This can be specified by assigning

the ’thermo’ field of the species entry a sequence of two NASA entries:

16th November 2015 94

use one NASA parameterization for T < 1000 K, and another for T > 1000 K.

species(name = "O2",

atoms = " O:2 ",

thermo = (

NASA([200.00, 1000.00], [3.782456360E+00, -2.996734160E-03,

9.847302010E-06, -9.681295090E-09, 3.243728370E-12,

-1.063943560E+03, 3.657675730E+00]),

NASA([1000.00, 3500.00], [3.282537840E+00, 1.483087540E-03,

-7.579666690E-07, 2.094705550E-10, -2.167177940E-14,

-1.088457720E+03, 5.453231290E+00])))

In some cases, species properties may only be required at a single temperature or over a narrow tem-

perature range. In such cases, the heat capacity can be approximated as constant, and the ’const cp’

parameterization.

A.5 Reactions

Cantera supports a number of different types of reactions, including several types of homogeneous

reactions, surface reactions, and electrochemical reactions. For each, there is a corresponding entry

type. The simplest entry type is ’reaction’, which can be used for any homogeneous reaction that

has a rate expression that obeys the law of mass action, with a rate coefficient that depends only on

temperature. All of the entry types that define reactions share some common features.

Fields :

Reaction equation

The reaction equation determines the reactant and product stoichiometry. A relatively simple parsing

strategy is currently used, which assumes that all coefficient and species symbols on either side of the

equation are delimited by spaces:

2 CH2 <=> CH + CH3 # OK

2 CH2<=>CH + CH3 # OK

2CH2 <=> CH + CH3 # error

CH2 + CH2 <=> CH + CH3 # OK

2 CH2 <=> CH+CH3 # error

16th November 2015 95

The incorrect versions here would generate undeclared species errors and would halt processing of the

data file. In the first case, the error would be that the species 2CH2 is undeclared, and in the second

case it would be species CH + CH3. Whether the reaction is reversible or not is determined by the

form of the equality sign in the reaction equation. If either <=> or= is found, then the reaction is

regarded as reversible, and the reverse rate will be computed from detailed balance. If, on the other

hand, => is found, the reaction will be treated as irreversible.

Reaction rate

The rate coefficient is specified with an embedded entry corresponding to the rate coefficient type.

At present, the only implemented type is the modified Arrhenius function, which is defined with an

’Arrhenius’ entry:

rate_coeff = Arrhenius(A=1.0e13, n=0, E=(7.3, ’kcal/mol’))

rate_coeff = Arrhenius(1.0e13, 0, (7.3, ’kcal/mol’))

As a shorthand, if the ’rate coeff’ field is assigned a sequence of three numbers, these are assumed to

be (A,n,E) in the modified Arrhenius function:

rate_coeff = [1.0e13, 0, (7.3, ’kcal/mol’)] # equivalent to above

The units of the pre-exponential factor A can be specified explicitly if desired.

The identifying string An optional identifying string can be entered in the ’id’ field, which can

then be used in the reactions field of a phase or interface entry, to identify this reaction. If omitted,

the reactions are assigned ’id’ strings as they are read in, beginning with ’0001’, ’0002’, etc. Note that

this ’id’ string is only used when selectively importing reactions.

The options Certain conditions are normally flagged as errors by Cantera. In some cases, they

may not be errors, and the ’options’ field can be used to specify how they should be handled.

1. The ’skip’ option can be used to temporarily remove this reaction from the phase or interface

that imports it, just as if the reaction entry were commented out.

2. Normally, when a reaction is imported into a phase, it is checked to see that it is not a duplicate

of another reaction already present in the phase, and an error results if a duplicate is found. But

in some cases, it may be appropriate to include duplicate reactions, for example if a reaction

can proceed through two distinctly different pathways, each with its own rate expression. If

the ’duplicate’ option is specified, then the reaction must have a duplicate. Any reaction that

specifies that it is a duplicate, but cannot be paired with another reaction generates an error.

3. Cantera normally does not allow negative pre-exponential factors. But if there are duplicate

reactions such that their total rate is positive, then negative A parameters are acceptable, as

long as the ’negative A’ option is specified.

16th November 2015 96

Efficiencies

In a three-body reaction, different species may be more or less effective in acting as the collision

partner. These effects can be accounted for by defining a collision efficiency for each species, through

the ’efficiencies’ field. Some examples from GRI-Mech 3.0 are shown below:

three_body_reaction("2 O + M <=> O2 + M", [1.20000E+17, -1, 0],

" AR:0.83 C2H6:3 CH4:2 CO:1.75 CO2:3.6 H2:2.4 H2O:15.4 ")

three_body_reaction("O + H + M <=> OH + M", [5.00000E+17, -1, 0],

efficiencies = " AR:0.7 C2H6:3 CH4:2 CO:1.5 CO2:2 H2:2 H2O:6 ")

three_body_reaction(

equation = "H + OH + M <=> H2O + M",

rate_coeff = [2.20000E+22, -2, 0],

efficiencies = " AR:0.38 C2H6:3 CH4:2 H2:0.73 H2O:3.65 "

)

As always, the field names are optional if the field values are entered in the declaration order.

Falloff parameterization

A falloff reaction is one that has a rate that is dependent upon pressure and temperature. This type

of reaction have a ’falloff’ field that can be specified through different embedded entries in Cantera.

Usually, a ’Troe’ entry will be specified :

falloff_reaction("H + CH2 (+ M) <=> CH3 (+ M)",

kf = [6.00000E+14, 0, 0],

kf0 = [1.04000E+26, -2.76, 1600],

falloff = Troe(A = 0.562, T3 = 91, T1 = 5836, T2 = 8552),

efficiencies = " AR:0.7 C2H6:3 CH4:2 CO:1.5 CO2:2 H2:2 H2O:6 ")

Note that if the ’falloff’ is omitted in a falloff reaction entry, then a unity falloff function (Lindemann

form) is assumed.

16th November 2015 97

B. Appendix: Standard Python commands for Cantera

When working with the Python interface, the Python rules of syntax apply. If you are not familiar

with this language, do not panic: it will not take you more than a few hours to get acquainted with the

few important basic rules. This section is meant to provide you with every Python information you

will need to properly use Cantera. The rest is optional, and can help you save time during calculation,

or present it in a more elegant way... Nothing you cannot do without !

B.1 Generalities

B.1.1 Indented commands

The first thing you should know is that Python is very fond of intents. When you design a script, every

new information needs to be put on a new line, with the same indent than the block of information it

belongs to. For example, whenever you start an ”if” statement, you will need to indent the subsequent

block of information :

if expression:

statement(s)

else:

statement(s)

Notice the ”:” following the ”if” condition. This is mandatory, and will tell the code that the state-

ments’ enunciation will be provided next. Also, note that you do not need and ”end” statement:

stopping the indentation will inform the code that it is out of the ”if” statements.

B.1.2 Comment your results

As in every python script, the # character is used to comment a line. Everything on its right will be

ignored by the compiler. Use it to comment properly your scripts or input files so as to recall what

you define:

##

16th November 2015 98

Create the gas object

gas = . . .

You could also enclose several lines with three ” ’ ”, so that everything in between is commented out.

Be careful, though, it does not work for indented commands. Here is an example :

#################

#Third flame:

#Uncommented

f.energy_enabled = True

f.set_refine_criteria(ratio=2, slope=0.2, curve=0.2, prune=0.04)

#and solve the problem again

f.solve(loglevel = 1, refine_grid = True)

#save your results

f.save(’c2h6_diffusion.xml’,’energy continuation’)

VS

’’’

#################

#Third flame:

#Commented

f.energy_enabled = True

f.set_refine_criteria(ratio=2, slope=0.2, curve=0.2, prune=0.04)

#and solve the problem again

f.solve(loglevel = 1, refine_grid = True)

#save your results

f.save(’c2h6_diffusion.xml’,’energy continuation’)

’’’

B.1.3 Import packages

Another important feature of Python is that depending on what kind of application you will use it for,

you will need to use specific functions or functionalities. Those come in the form of ”packages” that

16th November 2015 99

needs to be ”loaded” whenever needed, usually at the beginning of a script. It is the case when using

Cantera through Python : Cantera is just a ”package” of functions and objects ! You can import a

package in two different ways :

from cantera import *

or

import cantera as ct

The second way is preferred when several packages are loaded, some of which might share an object

with the same name. In such a case, access the right one with ’ct.’ at the beginning :

import cantera as ct

gas = ct.Solution(’gri30.cti’)

Now, when working with Cantera, two other packages are usually required. First off, numpy, which is

the fundamental package for scientific computing with Python :

from numpy import *

or

import numpy as np

and matplotlib, which is the package that will allow you to plot your results :

from matplotlib.pylab import *

or

import matplotlib.pylab as plt

The ”sys” package and the ”csv” package to display and save your results might also be required.

Those packages can be loaded with the simple command :

import sys

import csv

16th November 2015 100

B.1.4 String tricks

A string can be enclosed in double or single quotes, but they must match. To create a string containing

single quotes, enclose it in double quotes and vice versa.

>>> print ’I love "NY"’

I love "NY"

>>> print "I love ’NY’"

I love ’NY’

Another interesting Python feature is the possibility to break a line into several ones :

>>> print ’I love "NY"’

I love "NY"

>>> print (’I’

... ’ love’

... ’ "NY"’)

I love "NY"

Specifically, with Cantera, try to use the multi-line form whenever possible to make everything easier

to understand and modify. Prefer :

species = """ CH4 O2 CO2 H2O CO H2

HO2 H OH O CH3 H2O2

CH2O HCO CH3O N2""",

to the equivalent :

species = """ CH4 O2 CO2 H2O CO H2 HO2 H OH O ...""",

B.1.5 Variables

Variables can be used to specify a field that might be re used and/or very long and complicated to write.

For example, if multiple phases are to be defined that all need to be at the same initial temperature,

define a temperature variable, so that subsequent temperature fields can easily be initialized :

T_0 = (300, ’K’)

...

...

phaseOne(

...

16th November 2015 101

temperature = T_0

)

phaseTwo(

...

temperature = T_0

)

...

B.1.6 Loops

In order to perform several calculations in a row, you will need to loop over an array of relevant datas,

and perform a simulation every time. This is done through a ”for” or ”if” loop, with Python. Let

us take an example : say we need to perform several free propagating flame calculations, with the

pressure as the varying parameter for example. The script will look something like this :

#import

...(import packages)...

#prepare your run

...(set variables)...

nb_P = 25

P_min = 1

P_max = 50

P = np.zeros(nb_P,’d’)

for j in range(0,nb_P):

P[j] = P_min + (P_max - P_min)*j/(nb_P - 1)

gas.TPX = 300, P[j], ’H2:2., O2:1., N2:3.76’

#Create the free laminar premixed flame

f = FreeFlame(gas, initial_grid)

...(settings and solve)...

The rules of indentation discussed previously apply, and don’t forget the ”:” at the end of the ”if”

expression. The ”if” expression here is given by a

range(...)

In python, it specifies that the loop will occur ’nb P’ - 0 = 25 - 0 times, with the variable ’j’ taking

on different values ’0’, ’1’, ..., ’nb P-1’ each loop. This ’j’ is used inside the loop to seek for the right

pressure ’P[j]’ value, so that a calculation is performed inside each loop with the right gaseous settings.

16th November 2015 102

Now, the loops could also be on the number of points of your simulation :

simulation.n_points

Or the number of species, reactions, etc. :

gas.species_names # returns a list of species names

gas.n_species # number of species

gas.n_reactions # number of reactions

gas.X # returns an array of moles fractions

gas.Y # returns an array of mass fractions

But the syntax will remain the same, and will look something like this :

for j in range(0,gas.n_species):

...(statement(s))...

You could also specify that you want to loop through a subset of the number of species in your

gas. For example in :

for j in range(2,gas.n_species):

...(statement(s))...

the variable ’j’ will take on values from ’2’ to the number of species - 1.

This way of performing a loop is classic, and will be used throughout the tutorials.

B.2 Storage

B.2.1 Storage variables

In python, whenever you need to store information, you will do so through a variable or a multi-

dimensional array. We have seen in the previous paragraph that defining a variable is straightforward;

but an array needs to be defined prior to its utilization. Usually, an array of the right length, initialized

with ’0’ will be created, with the help of the numpy package :

import numpy as np

...

xeq = np.zeros(gas.n_species)

16th November 2015 103

Here, ’xeq’ will be an array filled with ’0’ of length ’gas.n species’; so, of length the number of species

that your gas contains. Remember that indexing the arrays starts at ’0’, so that in this example, the

last array’s value will have index ’gas.n species - 1’. Keeping this in mind, the array’s values can be

specified or re-specified whenever necessary. For example :

xeq[2] = gas.X[2]

will store the value of the mole fraction of the third species of your mechanism, into the third array’s

value.

Now, mutlidimensional arrays can also be defined. This is done with the simple command :

2D_array = np.zeros((gas.n_species,nb_points))

3D_array = np.zeros((gas.n_species,nb_points1,nb_points2))

...

This will instantiate multidimensional arrays, of dimensions specified in between the double paren-

thesis, with zeroes.

B.2.2 Save and display relevant information : loops

Basically, the guidelines are the same than what was discussed in subsection B.1.6.

B.2.3 Save and display relevant information : the %arg operator

Now, when storing information, the %arg operator can prove to be very useful for string formatting.

It interprets the argument like a format string to be applied to a following list, and returns the string

resulting from this formatting operation. The argument should specify the format : ”s” if it is a

string; ’X.xf’ if it is a double, the ’X’ specifying the maximum numbers before the comma and the ’x’

specifying the precision after the comma; ’X.xe’ if it is a double in the form of an exponential. See

the following ways of storing the temperature and species mole fractions of a simulation :

Print the temperature and mole fractions in

a very conservative way

...

gas.equilibrate("HP", solver = ’vcs’)

Balance record

16th November 2015 104

x = gas.X

tad = gas.T

csv_file = open(’yourfile.csv’,’w’)

csv_file.write(’%s’ % (’T (K)’))

for item in gas.species_names:

csv_file.write(’ %s’ % (item))

csv_file.write("\n")

csv_file.write(’%5.0f’ % (tad))

for i in range(gas.n_species):

csv_file.write(’ %10.5e’ % (x[i]))

print(’Output written to yourfile.csv’)

This will create a ”yourfile.csv” in your working directory, the content of which should be something

like :

T H OH HO2 H2 H2O H2O2 ... P2 P2- P2-H

2348 6.26214e-04 ... 4.14561e-133 5.22651e-133 8.65372e-140

So you can see that, even with a very mediocre knowledge of Python, and the attributes’ names of

the object relevant to your simulations -which can be found through the Cantera’s search tool

http://www.cantera.org/docs/sphinx/html/search.html - you can easily extract the information you

seek.

B.2.4 Save relevant information : the ’csv’ package

Now, importing the ’csv’ package at the beginning of your script could help you and make you save

time. See the following way of storing the same information as we did in the previous subsection :

Print the temperature and mole fractions in

a more clever way

import csv

...

gas.equilibrate("HP", solver = ’vcs’)

Balance record

16th November 2015 105

x = gas.X

tad = gas.T

csv_file = ’yourfile.csv’

with open(csv_file, ’w’) as outfile:

writer = csv.writer(outfile)

writer.writerow([’T (K)’] + gas.species_names)

writer.writerow([tad] + list(x[i]))

See https://docs.python.org/2/library/csv.html, for more information on the ’csv’ module.

Note that there are thousands of python ”tricks” that can make your life easier, but as this is not

the goal of this session, we will not expand further; just remember that the internet is full of python

addicts that will provide answers to all of your questions.

B.3 Display tricks

With python, it is possible to print information directly onto your terminal, to help you check con-

vergence, monitor a particular variable’s evolution ... Here again, the %arg function could come in

handy :

print "** "

print " Initial state :"

print "** "

print "P = " , "%10.4e "% (gas.P)+" Pa"

print "T = " , "%10.4e "% (gas.T)+" K"

print "V = " , "%10.4e "% (gas.volume_mass)+" m3/kg"

print "U = " , "%10.4e "% (gas.int_energy_mass)+" J/kg"

print "H = " , "%10.4e "% (gas.enthalpy_mass)+" J/kg"

print "S = " , "%10.4e "% (gas.entropy_mass)+" J/kg/K"

print ""

print ""

Will return something like :

**

Initial state :

**

16th November 2015 106

P = 1.0000e+05 Pa

T = 4.0000e+02 K

V = 1.2035e+00 m3/kg

U = -2.6590e+05 J/kg

H = -1.4554e+05 J/kg

S = 7.5652e+03 J/kg/K

B.4 Plots with Matplotlib

As explained before, you will need to start by loading the matplotlib package at the beginning of your

script :

from matplotlib.pylab import *

Next, all of the plotting functionalities it offers will be available to you. Information can be found

online: basically, everything you will want to plot can be done. Here is an example of adiabatic flame

temperature versus equivalence ratio for a H2/Air mixture:

...(simulation)...

plot(phi, tad, ’-’)

title(r’Tad vs. Φ for H_{2}/Air flames, at P = 1 atm, Tin = 300 K’)

xlabel(r’Φ’, fontsize=20)

ylabel("Temperature [T]")

show()

The ’plot’ function in the first line takes two arrays of same size in argument, and displays the evolution

of the second one in function of the first one. The ’-’ argument will generate a dotted line plot. The

second line specifies the title of the plot. The third and fourth lines will give labels to the axis.

The ’show()’ function will display the graph automatically. Sometimes, you might prefer not to be

disturbed by plots popping out. In such a case, you could save them instead :

#savefig(’myplot.png’, bbox_inches=’tight’)

Importing the ”sys” package at the beginning of your script, along with matplotlib, you could

interact with it via arguments passed in your terminal. You could then design a specific plot area at

the end of your script, with indentation :

if ’--plot’ in sys.argv:

...(plot options)...

16th November 2015 107

So that launching the script from your terminal with the ’–plot’ argument :

$ python script_plot.py --plot

will result in a plot popping at the end of your simulation, while omitting it will only perform the

simulation.

16th November 2015 108

C. Appendix: Solution to the exercises

C.1 Tutorial 2

C.1.1 List of h2 sandiego.cti errors

1. bar in line 9 is not in a string format

2. Reaction 21 is not commented out line 237

3. the embedded ’Troe’ entry in the ’falloff’ field line 223 does not have the right format for its

fields. Names of the fields should be specified, as the first one is.

C.1.2 submechanisms.cti

Let us work with a new file, ’submechanisms.cti’. Define :

ideal_gas(name = ’hydrogen_submech’,

elements = ’H O’,

species = ’gri30:all’,

reactions = ’gri30:all’,

options = (’skip_undeclared_elements’,

’skip_undeclared_species’,

’skip_undeclared_third_bodies’))

If we load it into a python environment as we did in the first tutorial, we get a gas mixture containing

the 8 species (out of 53 total) that contain only H and O:

>>> import cantera as ct

>>> gas = ct.Solution(’submechanisms.cti’,’hydrogen_submech’)

>>> gas()

hydrogen_submech:

16th November 2015 109

temperature 0.001 K

pressure 0.00412448 Pa

density 0.001 kg/m^3

mean mol. weight 2.01588 amu

1 kg 1 kmol

----------- ------------

enthalpy -3.786e+06 -7.632e+06 J

internal energy -3.786e+06 -7.632e+06 J

entropy 6210.88 1.252e+04 J/K

Gibbs function -3.786e+06 -7.632e+06 J

heat capacity c_p 9669.19 1.949e+04 J/K

heat capacity c_v 5544.7 1.118e+04 J/K

X Y Chem. Pot. / RT

------------- ------------ ------------

H2 1 1 -917934

H 0 0

O 0 0

O2 0 0

OH 0 0

H2O 0 0

HO2 0 0

H2O2 0 0

Printing the equations returns :

>>> for i in range(gas.n_reactions):

... print gas.reaction_equation(i)

...

2 O + M <=> O2 + M

O + H + M <=> OH + M

O + H2 <=> H + OH

O + HO2 <=> OH + O2

O + H2O2 <=> OH + HO2

16th November 2015 110

H + O2 + M <=> HO2 + M

H + 2 O2 <=> HO2 + O2

H + O2 + H2O <=> HO2 + H2O

H + O2 <=> O + OH

2 H + M <=> H2 + M

2 H + H2 <=> 2 H2

2 H + H2O <=> H2 + H2O

H + OH + M <=> H2O + M

H + HO2 <=> O + H2O

H + HO2 <=> O2 + H2

H + HO2 <=> 2 OH

H + H2O2 <=> HO2 + H2

H + H2O2 <=> OH + H2O

OH + H2 <=> H + H2O

2 OH (+ M) <=> H2O2 (+ M)

2 OH <=> O + H2O

OH + HO2 <=> O2 + H2O

OH + H2O2 <=> HO2 + H2O

OH + H2O2 <=> HO2 + H2O

2 HO2 <=> O2 + H2O2

2 HO2 <=> O2 + H2O2

OH + HO2 <=> O2 + H2O

It is exactly the same to extract a ”NOx-less” mechanism for methane/air combustion :

ideal_gas(name = ’NOx-less’,

elements = ’gri30:all,

species = ’gri30:H2 H O O2 OH H2O HO2 H2O2 C CH

CH2 CH2(S) CH3 CH4 CO CO2 HCO CH2O CH2OH CH3O

CH3OH C2H C2H2 C2H3 C2H4 C2H5 C2H6 HCCO CH2CO HCCOH

N2 AR C3H7 C3H8 CH2CHO CH3CHO’,

reactions = ’gri30:all’,

options = (’skip_undeclared_elements’,

’skip_undeclared_species’,

’skip_undeclared_third_bodies’))

...

16th November 2015 111

C.2 Tutorial 3

C.2.1 equil simple.py

homogeneous equilibrium of a gas.

from cantera import *

create an object representing the gas phase

gas = Solution(’gri30.xml’)

set the initial state

gas.TPX = 1000.0, 1.0e05, ’CH4:0.5, O2:1, N2:3.76’

equilibrate the gas holding T and P fixed

gas.equilibrate("TP")

print a summary of the results

print gas()

C.2.2 AdiabaticFlameT.py

"""

Equilibrium calculation : application to the computation of adiabatic flame temperature

and equilibrium composition for a fuel/air mixture as a function of equivalence ratio.

"""

import cantera as ct

import numpy as np

import sys

import csv

##

Edit these parameters to change the initial temperature, the pressure, and

the phases in the mixture.

16th November 2015 112

Import the gas :

gas = ct.Solution(’mech.cti’)

equivalence ratio range

phi_min = 0.3

phi_max = 3.5

npoints = 50

Set the gas composition :

T = 300.0

P = 101325.0

find fuel, nitrogen, and oxygen indices

fuel_species = ’C2H4’

ifuel = gas.species_index(fuel_species)

io2 = gas.species_index(’O2’)

in2 = gas.species_index(’N2’)

air composition

air_N2_O2_ratio = 3.76

stoich_O2 = gas.n_atoms(fuel_species,’C’) + 0.25*gas.n_atoms(fuel_species,’H’)

##

create some arrays to hold the data

phi = np.zeros(npoints)

tad = np.zeros(npoints)

xeq = np.zeros((gas.n_species,npoints))

for i in range(npoints):

phi[i] = phi_min + (phi_max - phi_min)*i/(npoints - 1)

X = np.zeros(gas.n_species)

X[ifuel] = phi[i]

16th November 2015 113

X[io2] = stoich_O2

X[in2] = stoich_O2*air_N2_O2_ratio

set the gas state

gas.TPX = T, P, X

equilibrate the mixture adiabatically at constant P

gas.equilibrate(’HP’)

tad[i] = gas.T

xeq[:,i] = gas.X

print "At phi = ","%10.4f"% (phi[i])+ " Tad = ","%10.4f"% (tad[i])

write output CSV file for importing into Excel

csv_file = ’adiabatic.csv’

with open(csv_file, ’w’) as outfile:

writer = csv.writer(outfile)

writer.writerow([’Phi’,’T (K)’] + gas.species_names)

for i in range(npoints):

writer.writerow([phi[i], tad[i]] + list(xeq[:,i]))

print "Output written to", "%s"%(csv_file)

Plot your results

The mass fractions of selected species

if ’--plot’ in sys.argv:

import matplotlib.pyplot as plt

for i, cas in enumerate(gas.species_names):

if cas in [’O2’,’CO2’,’CO’]:

plt.plot(phi,xeq[i,:], label = cas)

plt.xlabel(’Equivalence ratio’)

16th November 2015 114

plt.ylabel(’Mass fractions’)

plt.legend(loc=’best’)

plt.show()

#plt.savefig(’plot.png’, bbox_inches=’tight’)

’’’

The adiabatic flame temperature

import matplotlib.pyplot as plt

plt.plot(phi, tad)

plt.xlabel(’Equivalence ratio’)

plt.ylabel(’Adiabatic flame temperature [K]’)

plt.show()

#plt.savefig(’plot.png’, bbox_inches=’tight’)

’’’

C.3 Tutorial 4

C.3.1 reactorUV.py

"""

Constant-volume, adiabatic kinetics simulation.

"""

import sys

import numpy as np

import cantera as ct

###

#Mechanism used for the process

gas = ct.Solution(’gri30.xml’)

#Gas state

gas.TPX = 1000.0, ct.one_atm, ’CH4:0.5,O2:1,N2:3.76’

16th November 2015 115

#Create Reactor and fill with gas

r = ct.IdealGasReactor(gas)

#Prepare the simulation with a ReactorNet object

sim = ct.ReactorNet([r])

time = 4.e-1

times = np.zeros(200)

data = np.zeros((200,4))

#Advance the simulation in time

print(’%10s %10s %10s %14s’ % (’t [s]’,’T [K]’,’P [Pa]’,’u [J/kg]’))

for n in range(200):

time += 5.e-3

sim.advance(time)

times[n] = time # time in s

data[n,0] = r.T

data[n,1:] = r.thermo[’O2’,’H’,’CH4’].X

print(’%10.3e %10.3f %10.3f %14.6e’ % (sim.time, r.T,

r.thermo.P, r.thermo.u))

Plot the results if matplotlib is installed.

if ’--plot’ in sys.argv[1:]:

import matplotlib.pyplot as plt

plt.clf()

plt.subplot(2, 2, 1)

plt.plot(times, data[:,0])

plt.xlabel(’Time (ms)’)

plt.ylabel(’Temperature (K)’)

plt.subplot(2, 2, 2)

plt.plot(times, data[:,1])

plt.xlabel(’Time (ms)’)

plt.ylabel(’O2 Mole Fraction’)

plt.subplot(2, 2, 3)

16th November 2015 116

plt.plot(times, data[:,2])

plt.xlabel(’Time (ms)’)

plt.ylabel(’H Mole Fraction’)

plt.subplot(2, 2, 4)

plt.plot(times,data[:,3])

plt.xlabel(’Time (ms)’)

plt.ylabel(’CH4 Mole Fraction’)

plt.tight_layout()

plt.show()

else:

print("To view a plot of these results, run this script with the option --plot")

C.3.2 Modified reactorHP.py

"""

Constant-pressure, adiabatic kinetics simulation.

"""

import sys

import numpy as np

import cantera as ct

###

gri3 = ct.Solution(’gri30.xml’)

#air = ct.Solution(’air.xml’)

gri3.TPX = 1000.0, ct.one_atm, ’CH4:0.5,O2:1,N2:3.76’

#r = ct.IdealGasReactor(gri3)

#env = ct.Reservoir(air)

r=ct.IdealGasConstPressureReactor(gri3)

Define a wall between the reactor and the environment, and

make it flexible, so that the pressure in the reactor is held

at the environment pressure.

16th November 2015 117

#w = ct.Wall(r, env)

#w.expansion_rate_coeff = 1.0e6 # set expansion parameter. dV/dt = KA(P_1 - P_2)

#w.area = 1.0

sim = ct.ReactorNet([r])

time = 4.e-1

times = np.zeros(200)

data = np.zeros((200,4))

print(’%10s %10s %10s %14s’ % (’t [s]’,’T [K]’,’P [Pa]’,’u [J/kg]’))

for n in range(200):

time += 5.e-3

sim.advance(time)

times[n] = time # time in s

data[n,0] = r.T

data[n,1:] = r.thermo[’O2’,’H’,’CH4’].X

print(’%10.3e %10.3f %10.3f %14.6e’ % (sim.time, r.T,

r.thermo.P, r.thermo.u))

Plot the results if matplotlib is installed.

if ’--plot’ in sys.argv[1:]:

import matplotlib.pyplot as plt

plt.clf()

plt.subplot(2, 2, 1)

plt.plot(times, data[:,0])

plt.xlabel(’Time (ms)’)

plt.ylabel(’Temperature (K)’)

plt.subplot(2, 2, 2)

plt.plot(times, data[:,1])

plt.xlabel(’Time (ms)’)

plt.ylabel(’O2 Mole Fraction’)

plt.subplot(2, 2, 3)

plt.plot(times, data[:,2])

plt.xlabel(’Time (ms)’)

16th November 2015 118

plt.ylabel(’H Mole Fraction’)

plt.subplot(2, 2, 4)

plt.plot(times,data[:,3])

plt.xlabel(’Time (ms)’)

plt.ylabel(’CH4 Mole Fraction’)

plt.tight_layout()

plt.show()

else:

print("To view a plot of these results, run this script with the option --plot")

C.3.3 mixing.py

"""

Mixing two streams.

Since reactors can have multiple inlets and outlets, they can be used to

implement mixers, splitters, etc. In this example, air and methane are mixed

in stoichiometric proportions. Due to the low temperature, no reactions occur.

A reaction may occur if the reactor is set in a hot state prior to mixing.

Note that the air stream and the methane stream use *different* reaction

mechanisms, with different numbers of species and reactions. When gas flows

from one reactor or reservoir to another one with a different reaction

mechanism, species are matched by name. If the upstream reactor contains a

species that is not present in the downstream reaction mechanism, it will be

ignored. In general, reaction mechanisms for downstream reactors should

contain all species that might be present in any upstream reactor.

"""

import cantera as ct

Use air for stream a.

gas_a = ct.Solution(’air.xml’)

gas_a.TPX = 300.0, ct.one_atm, ’O2:0.21, N2:0.78, AR:0.01’

mw_a = gas_a.mean_molecular_weight/1000 #kg/mol

16th November 2015 119

Use GRI-Mech 3.0 for stream b (methane) and for the mixer. If it is desired

to have a pure mixer, with no chemistry, use instead a reaction mechanism

for gas_b that has no reactions.

gas_b = ct.Solution(’gri30.xml’)

gas_b.TPX = 300.0, ct.one_atm, ’CH4:1’

mw_b = gas_b.mean_molecular_weight/1000 #kg/mol

Create reservoirs for the two inlet streams and for the outlet stream. The

upsteam reservoirs could be replaced by reactors, which might themselves be

connected to reactors further upstream. The outlet reservoir could be

replaced with a reactor with no outlet, if it is desired to integrate the

composition leaving the mixer in time, or by an arbitrary network of

downstream reactors.

res_a = ct.Reservoir(gas_a)

res_b = ct.Reservoir(gas_b)

downstream = ct.Reservoir(gas_b)

Create a reactor for the mixer. A reactor is required instead of a

reservoir, since the state will change with time if the inlet mass flow

rates change or if there is chemistry occurring.

#gas_b.TPX = 300.0, ct.one_atm, ’O2:0.21, N2:0.78, AR:0.01’

gas_b.TPX = 300.0,ct.one_atm,’O2:1., N2:3.78, CH4:0.5’

gas_b.equilibrate("HP")

mixer = ct.IdealGasReactor(gas_b,energy=’on’)

print(mixer.thermo.report())

create two mass flow controllers connecting the upstream reservoirs to the

mixer, and set their mass flow rates to values corresponding to

stoichiometric combustion.

mfca = ct.MassFlowController(res_a, mixer, mdot=mw_a*2./0.21)

mfcb = ct.MassFlowController(res_b, mixer, mdot=mw_b*1.0)

connect the mixer to the downstream reservoir with a valve.

16th November 2015 120

outlet = ct.Valve(mixer, downstream, K=10)

sim = ct.ReactorNet([mixer])

Since the mixer is a reactor, we need to integrate in time to reach steady

state. A few residence times should be enough.

print(’{0:>14s} {1:>14s} {2:>14s} {3:>14s} {4:>14s}’.format(

’t [s]’, ’T [K]’, ’h [J/kg]’, ’P [Pa]’, ’X_CH4’))

t = 0.0

for n in range(100):

tres = mixer.mass/(mfca.mdot(t) + mfcb.mdot(t))

t += 2*tres

sim.advance(t)

print(’{0:14.5g} {1:14.5g} {2:14.5g} {3:14.5g} {4:14.5g}’.format(

t, mixer.T, mixer.thermo.h, mixer.thermo.P, mixer.thermo[’CH4’].X[0]))

view the state of the gas in the mixer

print(mixer.thermo.report())

C.3.4 Autoignition scripts

Autoignition simple.py

###

#

Autoignition of a methane air mixture at stoichiometry

#

#

###

import sys

import numpy as np

from cantera import *

###

16th November 2015 121

#Mechanism used for the process

gas = Solution(’gri30.cti’)

#Initial temperature, Pressure and stoichiometry

gas.TPX = 1250, one_atm, ’CH4:0.5,O2:1,N2:3.76’

#Set gas state

#Specify the number of time steps and the time step size

nt = 100000

dt = 1.e-6 #s

#Storage space

mfrac = np.zeros(gas.n_species,’d’)

#...

tim = np.zeros(nt,’d’)

temp = np.zeros(nt,’d’)

dtemp = np.zeros(nt-1,’d’)

###

#Create the batch reactor

r = IdealGasReactor(gas)

Now create a reactor network consisting of the single batch reactor

sim = ReactorNet([r])

#Run the simulation

Initial simulation time

time = 0.0

#Loop for nt time steps of dt seconds.

for n in range(nt):

time += dt

16th November 2015 122

sim.advance(time)

tim[n] = time

temp[n] = r.T

mfrac[:] = r.thermo.Y

###

Catch the autoignition timing

###

Dtmax = [0,0.0]

for n in range(nt-1):

dtemp[n] = (temp[n+1]-temp[n])/dt

if (dtemp[n]>Dtmax[1]):

Dtmax[0] = n

Dtmax[1] = dtemp[n]

Local print

Autoignition = (tim[Dtmax[0]]+tim[Dtmax[0] + 1])/2.

print ’Autoignition time = (s) ’ + str(Autoignition)

Posterity

Autoignition = Autoignition*1000 #ms

FinalTemp = temp[nt-1]

###

Save results

###

write output CSV file for importing into Excel

csv_file = ’Phi-1_P-1_T-1250_UV.csv’

with open(csv_file, ’w’) as outfile:

writer = csv.writer(outfile)

writer.writerow([’Auto ignition time [ms]’,’Final Temperature [K]’] + gas.species_names)

writer.writerow([Autoignition, FinalTemp] + list(mfrac[:]))

print ’output written to ’+csv_file

16th November 2015 123

Autoignition Tvar.py

###

#

Autoignition of a methane air mixture at stoichiometry

and atmospheric pressure, for different

initial temperature

#

###

import sys

import numpy as np

from cantera import *

from matplotlib.pylab import *

###

#Mechanism used for the process

gas = Solution(’gri30.xml’)

#Enter general parameters

Tmin = 0.65 # Kelvin

Tmax = 0.85 # Kelvin

npoints = 11

#Specify the number of time steps and the time step size

nt = 100000

dt = 1.e-6 #s

#Storage

#Temperature storage variables

Ti = np.zeros(npoints,’d’)

Ti2 = np.zeros(npoints,’d’)

#The initial storage variable become case dependent

tim = np.zeros(nt,’d’)

16th November 2015 124

temp_cas = np.zeros(nt,’d’)

dtemp_cas = np.zeros(nt-1,’d’)

#Additional storage variables are needed to differentiate each case

Autoignition_cas = np.zeros(npoints,’d’)

FinalTemp_cas = np.zeros(npoints,’d’)

mfrac_cas = np.zeros([npoints,gas.n_species],’d’)

#################

#Loop over initial conditions

for j in range(npoints):

Ti2[j] = Tmin + (Tmax - Tmin)*j/(npoints - 1)

Ti[j] = 1000/Ti2[j]

#Set gas state, always at stoichiometry

gas.TPX = Ti[j], one_atm, ’CH4:0.5,O2:1,N2:3.76’

#Create the batch reactor

r = IdealGasReactor(gas)

Now create a reactor network consisting of the single batch reactor

sim = ReactorNet([r])

#Run the simulation

Initial simulation time

time = 0.0

#Loop for nt time steps of dt seconds.

print ’time [s] , T [K] , p [Pa] , u [J/kg]’

for n in range(nt):

time += dt

sim.advance(time)

tim[n] = time

temp_cas[n] = r.T

for sp in range(m):

mfrac_cas[j][sp] = r.massFraction(j)

print ’%10.3e %10.3f %10.3f %14.6e’ % (tim[n], r.temperature(),

r.pressure(), r.intEnergy_mass())

16th November 2015 125

mfrac_cas[j][:] = r.thermo.Y

###

Catch the autoignition timings

###

Get autoignition timing

Dtmax = [0,0.0]

for n in range(nt-1):

dtemp_cas[n] = (temp_cas[n+1]-temp_cas[n])/dt

if (dtemp_cas[n]>Dtmax[1]):

Dtmax[0] = n

Dtmax[1] = dtemp_cas[n]

Local print

Autoignition = (tim[Dtmax[0]]+tim[Dtmax[0] + 1])/2.

print ’For ’ +str(Ti[j]) +’, Autoignition time = (s) ’ + str(Autoignition)

Posterity

Autoignition_cas[j] = Autoignition*1000 #ms

FinalTemp_cas[j] = temp_cas[nt-1]

###

Save results

###

write output CSV file for importing into Excel

csv_file = ’Phi-1_P-1_Trange_UV.csv’

with open(csv_file, ’w’) as outfile:

writer = csv.writer(outfile)

writer.writerow([’Auto ignition time’,’Final Temperature’] + gas.species_names)

for i in range(npoints):

writer.writerow([’cas Ti = ’, Ti[i]])

writer.writerow([Autoignition_cas[i], FinalTemp_cas[i]] + list(mfrac_cas[i,:]))

print ’output written to ’+csv_file

###

16th November 2015 126

Plot results

###

create plot

plot(Ti2,Autoignition_cas, ’^’, color = ’orange’)

xlabel(r’Temp [1000/K]’, fontsize=20)

ylabel("Autoignition [ms]")

title(r’Autoignition of CH_{4} + Air mixture at Φ = 1, and P = 1 bar’,

fontsize=22,horizontalalignment=’center’)

axis([0.60,0.90,0.0,100.0])

grid()

#show()

savefig(’Phi-1_P-1_Trange_UV.png’, bbox_inches=’tight’)

C.4 Tutorial 5

C.4.1 premixed flame.py

###

#

ADIABATIC_FLAME - A freely-propagating, premixed flat flame

#

###

#import :

from cantera import *

from numpy import *

###

Prepare your run

###

#Import gas phases with mixture transport model

gas = Solution(’gri30.cti’,’gri30_mix’)

#Parameter values :

16th November 2015 127

#General

p = 1e5 # pressure

tin = 300.0 # unburned gas temperature

phi = 1.

#Stoechiometry :

fuel_species = ’CH4’

m = gas.n_species

stoich_O2 = gas.n_atoms(fuel_species,’C’) + 0.25*gas.n_atoms(fuel_species,’H’)

air_N2_O2_ratio = 3.76

ifuel = gas.species_index(fuel_species)

io2 = gas.species_index(’O2’)

in2 = gas.species_index(’N2’)

x = zeros(m,’d’)

x[ifuel] = phi

x[io2] = stoich_O2

x[in2] = stoich_O2*air_N2_O2_ratio

#Set gas state to that of the unburned gas

gas.TPX = tin, p, x

#Initial grid, chosen to be 0.02cm long :

- Refined grid at inlet and outlet, 6 points in x-direction :

initial_grid = 2*array([0.0, 0.001, 0.01, 0.02, 0.029, 0.03],’d’)/3

#Create the free laminar premixed flame

f = FreeFlame(gas, initial_grid)

#set inlet conditions

16th November 2015 128

f.inlet.X = x

f.inlet.T = tin

###

Program starts here

###

#First flame:

#No energy for starters

f.energy_enabled = False

#Tolerance properties

tol_ss = [1.0e-5, 1.0e-9] # [rtol atol] for steady-state problem

tol_ts = [1.0e-5, 1.0e-9] # [rtol atol] for time stepping

f.flame.set_steady_tolerances(default=tol_ss)

f.flame.set_transient_tolerances(default=tol_ts)

#Max number of times the Jacobian will be used before it must be re-evaluated

f.set_max_jac_age(50, 50)

#Set time steps whenever Newton convergence fails

f.set_time_step(1.0e-5, [2, 5, 10, 20, 80]) #s

#Refinement criteria

f.set_refine_criteria(ratio = 10.0, slope = 1, curve = 1)

#Calculation

loglevel = 1 # amount of diagnostic output (0

to 5)

refine_grid = False # True to enable refinement, False to

disable

16th November 2015 129

f.solve(loglevel, refine_grid)

#Save the results

f.save(’ch4_adiabatic.xml’,’no_energy’,

’solution without the energy equation’)

#################

#Second flame:

#Energy equation enabled

f.energy_enabled = True

#Refinement criteria when energy equation is enabled

f.set_refine_criteria(ratio = 5.0, slope = 0.5, curve = 0.5)

#Calculation and save of the results

refine_grid = True

f.solve(loglevel, refine_grid)

f.save(’ch4_adiabatic.xml’,’energy’,

’solution with the energy equation enabled’)

#See the sl to get an idea of whether or not you should continue

print(’mixture-averaged flamespeed = {0:7f} m/s’.format(f.u[0])) #m/s

#################

#Third flame and so on ...:

#Refinement criteria should be changed ...

f.set_refine_criteria(ratio = 2.0, slope = 0.05, curve = 0.05)

#Calculation and saving of the results should always be done

16th November 2015 130

f.solve(loglevel, refine_grid)

f.save(’ch4_adiabatic.xml’,’energy continuation’,

’solution with the energy equation enabled continuation’)

points = f.flame.n_points

print(’mixture-averaged flamespeed = {0:7f} m/s’.format(f.u[0])) #m/s

print(’mixture-averaged final T = {0:7f} K’.format(f.T[points-1])) #K

’’’

#################

#Change transport model:

#Switch transport model

f.transport_model = ’Multi’

f.solve(loglevel, refine_grid)

f.save(’ch4_adiabatic.xml’,’energy_multi’,

’solution with the multicomponent transport and energy equation enabled’)

points = f.flame.n_points

print(’multicomponent flamespeed = {0:7f} m/s’.format(f.u[0])) #m/s

print(’multicomponent final T = {0:7f} K’.format(f.T[points-1])) #K

’’’

###

Save your results if needed

###

#Write the velocity, temperature, density, and mole fractions to a CSV file

f.write_csv(’ch4_adiabatic.csv’, quiet=False)

C.4.2 premixed flame continuation.py

###

#

16th November 2015 131

ADIABATIC_FLAME - A freely-propagating, premixed flat flame

#

###

#import :

from cantera import *

from numpy import *

###

Prepare your run

###

#Import gas phases with mixture transport model

gas = Solution(’gri30.cti’,’gri30_mix’)

#Parameter values :

#General

p = 1e5 # pressure

tin = 600.0 # unburned gas temperature

phi = 0.8

#Stoechiometry :

fuel_species = ’CH4’

m = gas.n_species

stoich_O2 = gas.n_atoms(fuel_species,’C’) + 0.25*gas.n_atoms(fuel_species,’H’)

air_N2_O2_ratio = 3.76

ifuel = gas.species_index(fuel_species)

io2 = gas.species_index(’O2’)

in2 = gas.species_index(’N2’)

16th November 2015 132

x = zeros(m,’d’)

x[ifuel] = phi

x[io2] = stoich_O2

x[in2] = stoich_O2*air_N2_O2_ratio

#Set gas state to that of the unburned gas

gas.TPX = tin, p, x

#Initial grid, chosen to be 0.02cm long :

- Refined grid at inlet and outlet, 6 points in x-direction :

initial_grid = 2*array([0.0, 0.001, 0.01, 0.02, 0.029, 0.03],’d’)/3

#Create the free laminar premixed flame

f = FreeFlame(gas, initial_grid)

f.restore(’ch4_adiabatic.xml’, ’energy continuation’)

f.inlet.X = x

f.inlet.T = tin

f.P = p

f.solve(loglevel=1, refine_grid=True)

#Save the results

f.save(’ch4_adiabatic.xml’,’new_conditions’,

’Phi 0.8 Tempini 600K et P atm’)

points = f.flame.n_points

print(’mixture-averaged flamespeed = {0:7f} m/s’.format(f.u[0])) #m/s

print(’mixture-averaged final T = {0:7f} K’.format(f.T[points-1])) #K

###

Save your results if needed

###

#Write the velocity, temperature, density, and mole fractions to a CSV file

16th November 2015 133

f.write_csv(’ch4-air_adiabatic_phi’+str(phi)+’-T’+str(tin)+’.csv’, quiet=False)

C.4.3 burner flame.py

"""

A burner-stabilized lean premixed hydrogen-oxygen flame at low pressure.

"""

import cantera as ct

#################

p = 1.e05

tburner = 373.0

reactants = ’CH4:0.65, O2:1., N2:3.76’ # premixed gas composition

gas = ct.Solution(’gri30.cti’,’gri30_mix’)

gas.TPX = tburner, p, reactants

#################

initial_grid = [0.0, 0.0025, 0.005, 0.0075, 0.0099, 0.01] # m

f = ct.BurnerFlame(gas, initial_grid)

f.burner.T = tburner

f.burner.X = reactants

mdot = 0.04

f.burner.mdot = mdot

#################

tol_ss = [1.0e-5, 1.0e-9] # [rtol atol] for steady-state

tol_ts = [1.0e-5, 1.0e-4] # [rtol atol] for time stepping

f.flame.set_steady_tolerances(default=tol_ss)

f.flame.set_transient_tolerances(default=tol_ts)

16th November 2015 134

f.energy_enabled = False

f.set_refine_criteria(ratio = 10.0, slope = 1, curve = 1)

f.set_max_jac_age(50, 50)

f.set_time_step(1.0e-5, [1, 2, 5, 10, 20])

loglevel = 1 # amount of diagnostic output (0 to 5)

f.solve(loglevel, refine_grid = True)

f.save(’ch4_burner_flame.xml’, ’no_energy’,

’solution with the energy equation disabled’)

#################

f.energy_enabled = True

f.set_refine_criteria(ratio=3.0, slope = 0.1, curve = 0.2)

f.solve(loglevel, refine_grid = True)

f.save(’ch4_burner_flame.xml’, ’energy’,

’solution with the energy equation enabled’)

#################

f.transport_model = ’Multi’

f.solve(loglevel, refine_grid = True)

f.save(’ch4_burner_flame.xml’,’energy_multi’,

’solution with the energy equation enabled and multicomponent transport’)

#################

#You can take into account the soret effect (mass flux due to T gradients)

16th November 2015 135

f.soret_enabled = True

f.solve(loglevel, refine_grid = True)

f.save(’ch4_burner_flame.xml’,’energy_soret’,

’solution with the energy equation enabled and multicomponent transport’)

#################

f.write_csv(’ch4_burner_flame.csv’, quiet=False)

C.4.4 diffusion flame.py

"""

An opposed-flow ethane/air diffusion flame

"""

from cantera import *

from numpy import *

##

Create the gas object

gas = Solution(’gri30.xml’, ’gri30_mix’)

#Parameter values :

#General

p = 1e5 # pressure

Different input parameters

tin_f = 300.0 # fuel inlet temperature

tin_o = 300.0 # oxidizer inlet temperature

mdot_f = 0.24 # fuel inlet kg/m^2/s

mdot_o = 0.72 # oxidizer inlet kg/m^2/s

comp_f = ’C2H6:1’ # fuel composition

comp_o = ’O2:0.21, N2:0.78, AR:0.01’ # air composition

#Set gas state for the flame domain

16th November 2015 136

gas.TP = tin_o, p

Distance between inlets is 2 cm.

Start with an evenly-spaced 6-point grid.

initial_grid = linspace(0, 0.02, 6)

’’’

################ generate initial strain info #######

rho_o = p/(8.314/0.029*tin_o)

rho_f = p/(8.314/0.030*tin_f)

vel_o = mdot_o/rho_o

vel_f = mdot_f/rho_f

a = (vel_o + vel_f)/0.02 # s-1

################ generate initial strain info #######

’’’

Create an object representing the counterflow flame configuration,

which consists of a fuel inlet on the left, the flow in the middle,

and the oxidizer inlet on the right.

f = CounterflowDiffusionFlame(gas, initial_grid)

Set the state of the two inlets

f.fuel_inlet.mdot = mdot_f

f.fuel_inlet.X = comp_f

f.fuel_inlet.T = tin_f

f.oxidizer_inlet.mdot = mdot_o

f.oxidizer_inlet.X = comp_o

f.oxidizer_inlet.T = tin_o

construct the initial solution estimate. To do so, it is necessary

to specify the fuel species.

f.set_initial_guess(fuel=’C2H6’)

###

16th November 2015 137

Program starts here

###

#First flame:

#disable the energy equation

f.energy_enabled = False

Set error tolerances

tol_ss = [1.0e-5, 1.0e-11] # [rtol, atol] for steady-state problem

tol_ts = [1.0e-5, 1.0e-11] # [rtol, atol] for time stepping

f.flame.set_steady_tolerances(default=tol_ss)

f.flame.set_transient_tolerances(default=tol_ts)

#and solve the problem without refining the grid

f.solve(loglevel = 1, refine_grid=False)

#################

#Second flame:

#specify grid refinement criteria, turn on the energy equation,

f.energy_enabled = True

f.set_refine_criteria(ratio=3, slope=0.2, curve=0.3, prune=0.04)

#and solve the problem again

f.solve(loglevel = 1, refine_grid = True)

#save your results

f.save(’c2h6_diffusion.xml’,’energy’)

###

Save your results if needed

###

write the velocity, temperature, and mole fractions to a CSV file

f.write_csv(’c2h6_diffusion.csv’, quiet=False)

	Contents
	List of Figures
	1 Tutorial 1 : An example to start with ...
	1.1 Introduction
	1.2 Exercises
	1.2.1 Define a single gas object through a script
	1.2.2 Define a single gas object through the Python terminal
	1.2.3 Continue your simple script: modify the state of your "gas" object
	1.2.4 Conclusion and discussion about gaseous phases

	1.3 To go further ...
	1.3.1 Cantera's 'CTI' format for mechanism files
	1.3.2 Exercise : Generating a 'CTI' input file from CHEMKIN input files

	2 Tutorial 2 : All there is to know about input files
	2.1 Introduction
	2.2 Data files syntax
	2.2.1 Entries and directives
	2.2.2 Cantera specific syntaxing rules
	2.2.3 Supported units

	2.3 Processing the data file
	2.3.1 From the'.cti' file to the '.xml' file
	2.3.2 Cantera pre-processor error printing

	2.4 Summary: General structure of a data file
	2.5 Exercises
	2.5.1 Generate a CTML data file and run your first script !
	2.5.2 A second example
	2.5.3 Generate submechanisms with a special processing option (OPTIONAL)

	3 Tutorial 3 : Equilibrium calculations
	3.1 Equilibrium calculations
	3.1.1 Introduction
	3.1.2 The equilibrate function

	3.2 Exercises
	3.2.1 Generate your first equilibrium script !
	3.2.2 The 'element_potential' solver
	3.2.3 Compare different solvers (OPTIONAL)
	3.2.4 Perform adiabatic flame calculations

	3.3 About convergence, failures of equilibrium calculations

	4 Tutorial 4 : Reactor simulations
	4.1 The Reactor object with Cantera
	4.1.1 Introduction
	4.1.2 The ReactorBase class
	4.1.3 The FlowDevice class
	4.1.4 Walls
	4.1.5 Time evolution inside a Reactor

	4.2 Exercises
	4.2.1 A simple clossed vessel
	4.2.2 A simple constant pressure reactor
	4.2.3 An example of application : mixing two streams (OPTIONAL)
	4.2.4 Autoignition timing

	5 Tutorial 5 : 1D simulations
	5.1 Introduction
	5.2 General structure of a 1D simulation with Cantera
	5.2.1 1D domains and discretization
	5.2.2 Flame objects
	5.2.3 Boundary conditions
	5.2.4 Save and restart your computation : the 'xml' format

	5.3 About transport properties in 1D simulations
	5.4 Solver properties
	5.4.1 Set of equations to solve
	5.4.2 Newton integration

	5.5 Exercises
	5.5.1 A premixed flat flame simulation
	5.5.2 A burner stabilized flat flame simulation
	5.5.3 A counterflow diffusion flame simulation

	A Appendix: Standard entries and fields found in Cantera's data files
	A.1 Introduction
	A.2 Phases and interfaces
	A.3 Elements
	A.4 Species
	A.5 Reactions

	B Appendix: Standard Python commands for Cantera
	B.1 Generalities
	B.1.1 Indented commands
	B.1.2 Comment your results
	B.1.3 Import packages
	B.1.4 String tricks
	B.1.5 Variables
	B.1.6 Loops

	B.2 Storage
	B.2.1 Storage variables
	B.2.2 Save and display relevant information : loops
	B.2.3 Save and display relevant information : the %arg operator
	B.2.4 Save relevant information : the 'csv' package

	B.3 Display tricks
	B.4 Plots with Matplotlib

	C Appendix: Solution to the exercises
	C.1 Tutorial 2
	C.1.1 List of h2_sandiego.cti errors
	C.1.2 submechanisms.cti

	C.2 Tutorial 3
	C.2.1 equil_simple.py
	C.2.2 AdiabaticFlameT.py

	C.3 Tutorial 4
	C.3.1 reactorUV.py
	C.3.2 Modified reactorHP.py
	C.3.3 mixing.py
	C.3.4 Autoignition scripts

	C.4 Tutorial 5
	C.4.1 premixed_flame.py
	C.4.2 premixed_flame_continuation.py
	C.4.3 burner_flame.py
	C.4.4 diffusion_flame.py

