
Cantera tutorial-V2.1

Benedetta Franzelli, Jean-Philippe Rocchi, Pierre Wolf
CERFACS, 42 Avenue Gaspard Coriolis, 31057 Toulouse Cedex, France

franzell@cerfacs.fr
modified by Pierre Wolf

wolf@cerfacs.fr

modified December 2, 2010

Contents

1 What is CANTERA? 3

2 Download and compile CANTERA 4
2.1 Download for basic users . 4
2.2 Download for developpers . 4
2.3 compilation on a MACINTOSH . 4
2.4 compilation on a UNIX machine . 6

3 Computing a 1D premixed Flame 7
3.1 How to run the program . 7
3.2 What the program does . 8

3.2.1 Characterizing gas . 8
3.2.2 Building domain . 10
3.2.3 Creating solutions . 11

3.3 Some useful modifications . 12
3.3.1 Saving solution in TECPLOT or IGOR format 12
3.3.2 Solutions for different equivalence ratio 14

4 Computing a 1D counterflow diffusion Flame 17
4.1 How to run the program . 17
4.2 What program does . 18

4.2.1 Parameter values . 18
4.2.2 Creating gas object and solution . 18

4.3 A useful modification: write solution in TECPLOT format 20

1

5 About convergence 22
5.1 Some parameters that rule convergence . 22

6 Simplified chemistry 24
6.1 The organization of input file .cti . 24
6.2 New chemical schemes . 29

6.2.1 Methane-Air: 1 step mechanism MP1 29
6.2.2 Methane-Air: 2 steps mechanism CM2 31
6.2.3 Hydrogen-Oxygen: 7 steps mechanism H2O2 35

6.3 Kerosene-air: 2 steps mechanism 2S KERO BFER 39

7 Reverse equilibrium reaction 40
7.1 Calculate the kinetic parameters in the reverse direction 40
7.2 Modify file .cti splitting reversible reaction into two irreversible reactions . . 42

8 Creating an initial solution for AVBP 44

9 Continuation method 46

10 Using a previous solution as initial guess 49

11 How to use the AVBP simplified transport properties 50

12 How to use the PEA 51

13 How to compile Cantera 54

2

This documents explains quickly how to use CANTERA at CERFACS.

1 What is CANTERA?

Cantera is an open-source, object-oriented software package for problems involving chemically-
reacting flows. Capabilities include:

• multiphase chemical equilibrium

• thermodynamic and transport properties

• homogeneous and heterogeneous kinetics

• reactor networks

• one-dimensional flames

• reaction path diagrams

• interfaces for MATLAB, Python, C++, and Fortran (see [1])

Some informations are given at http://www.cantera.org
Many modules are usable on all platforms (MAC OS X, Linux & Windows).
It is downloadable on the web-site.
CANTERA can be directly used at CERFACS with nuage.

3

2 Download and compile CANTERA

2.1 Download for basic users

• to get the last version on the network:

svn checkout file:///home/cfd2/cantera/svn/CANTERA/
tags/cantera-1.8.0-beta-AVBP1.0 ./cantera-1.8.0-beta-AVBP1.0

• to get the last version on a MAC:

svn checkout svn+ssh://LOGIN@nuage/home/cfd2/cantera/svn/CANTERA/
tags/cantera-1.8.0-beta-AVBP1.0 ./cantera-1.8.0-beta-AVBP1.0

2.2 Download for developpers

Developers will check out the last version under development in the trunk folder (not in
the tags folder)

• to get the last version on the network:

svn checkout file:///home/cfd2/cantera/svn/CANTERA/
trunk/cantera-1.8.0-beta ./cantera-1.8.0-beta

• to get the last version on a MAC:

svn checkout svn+ssh://LOGIN@nuage/home/cfd2/cantera/svn/CANTERA/
trunk/cantera-1.8.0-beta ./cantera-1.8.0-beta

A commit will update only the version in the trunk folder (dowload version), and keep the
tags folder clean. Once a version ready to be tagged, the version from trunk is copied in
the tags folder.

2.3 compilation on a MACINTOSH

1. in

./Cantera/cxx/demos/Makefile.in

replace

@INSTALL@ Makefile -m ug+rw,o+r @ct_demodir@/cxx

4

by

@INSTALL@ Makefile @ct_demodir@/cxx

2. in ./configure replace

dir1="\$NUMPY_HOME/include/python"

by

dir1="\$NUMPY_HOME"

3. in ./preconfig replace ”n” by ”y” at the line to choose the package NUMPY

USE_NUMEPY=\${USE_NUMPY:="y"}

4. in ./preconfig give the address of NUMPY package

NUMPY_HOME=${NUMPY_HOME:="THE_ADDRESS"}

Do not forget to deleted the # symbol.
A trick to get this address is to find the file arrayobject.h on your MAC.Then, it
might be:

THE_ADDRESS/numpy/arrayobject.h

5. in ./preconfig choose the directory where Cantera will be install

CANTERA_CONFIG_PREFIX=\${CANTERA_CONFIG_PREFIX:="INSTALL_DIRECTORY"}

6. then, launch

./preconfig
make
make install

5

2.4 compilation on a UNIX machine

1. open

./tools/scr/finish_install.py.in

replace lib/python by lib64/python

2. open preconfig replace ”n” by ”y” at the line to choose the package NUMERIC

USE_NUMERIC=\${USE_NUMERIC:="y"}

3. in ./preconfig choose the directory where Cantera will be install

CANTERA_CONFIG_PREFIX=\${CANTERA_CONFIG_PREFIX:="INSTALL_DIRECTORY"}

4. then, launch

./preconfig
make
make install

6

3 Computing a 1D premixed Flame

This first example uses c++ routine.

3.1 How to run the program

To run a Cantera program:

1. go to your install directory

2. go to the directory

./demos/cxx/flamespeed/

3. change the parameter of the flame you want you create in the file

flamespeed.cpp

4. verify that setup_cantera is correctly filled. Normally, it must not be changed it.
It should looks like that:

#!/bin/sh
LD_LIBRARY_PATH=INSTALL_DIRECTORY/cantera-1.80/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH
PATH=INSTALL_DIRECTORY/cantera-1.80/bin:$PATH
export PATH
PYTHON_CMD=/usr/bin/python2
export PYTHON_CMD
alias ctpython=/usr/bin/python2

5. source the file setup_cantera

source \~/setup_cantera

6. copy the 1D premixed flame example

cp /home/cfd2/cantera/CANTERA/INSTALL_DIR/cantera-1.80/demos/cxx/flamespeed/flamespeed.cpp .

7. fill in properly the file flamespeed.cpp (Section 3.2)

8. compile this c++ file. To do that, a make file is needed. The demo.mak is an example
of makefile, it must be copied, renamed and filled in properly.

7

cp /home/cfd2/cantera/CANTERA/INSTALL_DIR/cantera-1.80/demos/cxx/demo.mak .

In the file flamespeed.mak, the name of the executable and the object name must
be chosen:

the name of the executable program to be created
PROG_NAME = flamespeed

the object files to be linked together.
OBJS = flamespeed.o

Moreover, the libraries and include files directory:

the directory where the Cantera libraries are located
CANTERA_LIBDIR=/home/cfd2/cantera/CANTERA/INSTALL_DIR/cantera-1.80/lib

the directory where Cantera include files may be found.
CANTERA_INCDIR=/home/cfd2/cantera/CANTERA/INSTALL_DIR/cantera-1.80/include

Then, everything is compiled by typing:

make -f flamespeed.mak

It will create the executable named flamespeed. It can be executed by typing:
./flamespeed

By default, solutions are written in CSV format, they can be opened with Microsoft excel
or OpenOffice Spreadsheet.

3.2 What the program does

Studied gas (Section 3.2.1), domain built (Section 3.2.2), solution and its visualization
(Section 3.2.3) are ruled by flamespeed.cpp.

3.2.1 Characterizing gas

To describe the gas:

1. choose the chemical scheme corresponding to studied fuel:

8

IdealGasMix gas("gri30.cti","gri30_mix");

The first parameter is the name of the file that contains the chemical scheme. The
second parameter is the identification name of the chemical scheme. The gri30_mix
use the GRI-Mech 3.0 mechanism that contains 325 reactions and 53 species (see [2]).
A set of chemical scheme (files .cti) could be found in directory
/home/cfd2/cantera/CANTERA/INSTALL DIR/cantera-1.80/data. User could also
write his own chemical scheme in Cantera format (see Section 6) or some chemical
scheme in Chemkin format could be converted, using the ck2cti utility program.

2. choose inlet temperature, pressure and velocity:

doublereal temp = 300.0; // K
doublereal pressure = 1.0*OneAtm; //atm
doublereal uin=0.3; //m/sec

3. choose inlet gas composition. Cantera allows to set state by specifying the value of
one quantity from each of the three columns in Table 1. The methods to set the
state have names that begin with setState_, which is followed by three uppercase
letters. The letters denote the properties that are being specied and they must be
in the same order as the columns of the table (see [3]). For example, for set the

Temperature (T) Density (R) Mole Fractions (X)
Specific Enthalpy (H) Pressure (P) Mass Fractions (Y)
Specific Entropy (S)

Table 1: Quantity to set the gas composition.

temperature, pressure and mole fractions it is called the method:

gas.setState_TPX(temp, pressure, "CH4:1.0, O2:2.0, N2:7.52").

Note that the mole fractions will be updated when the equivalence ratio is introduced.

After these operations, the equilibrate(gas,"HP") function is called to set the gas to a
state of chemical equilibrium, holding fixed specific enthalpy and pressure. The value of
density, temperature and mass fractions before the equilibrate function will be imposed
at the inlet and will be used to construct the initial guess. The values at the equilibrium
state will be used to construct the initial guess.

9

3.2.2 Building domain

Generally they must not be changed:

1. the definition of 1D premixed flame and specification of the objects to use to compute
kinetic rates and transport properties:

FreeFlame flow(&gas);
Transport* tr = newTransportMgr("Mix", &gas);
flow.setTransport(*tr);
flow.setKinetics(gas);
flow.setPressure(pressure);

Here the ”Mix” transport class has been chosen. To set the ”AVBP” transport class,
the following line should be used:

Transport* tr = newTransportMgr("AVBP", &gas);

Please, be sure that you are using the canteraAVBP version. Verify it in your makefile:

the directory where the Cantera libraries are located
CANTERA_LIBDIR=/home/cfd2/cantera/CANTERA/INSTALL_DIR/canteraAVBP/lib

the directory where Cantera include files may be found.
CANTERA_INCDIR=/home/cfd2/cantera/CANTERA/INSTALL_DIR/canteraAVBP/include

2. the creation of inlet (imposing mole fractions, momentum and temperature) and
outlet:

Inlet1D inlet;
inlet.setMoleFractions(DATA_PTR(x));
inlet.setMdot(mdot);
inlet.setTemperature(temp);
Outlet1D outlet;

The length of domain lz, the number of points nz and their location z could be chosen. An
additional node is added at the end of domain to help calculation in case of zero gradient
at the outlet. Then an initial grid is created:

flow.setupGrid(nz, z);

10

3.2.3 Creating solutions

Domain and solution are created:

1. domain is characterized by inlet, outlet and flow and it is inserted in a container:

vector<Domain1D*> domains;
domains.push_back(&inlet);
domains.push_back(&flow);
domains.push_back(&outlet);
Sim1D flame(domains);

2. initial guess for temperature, velocity and mass fractions is supplied. Ramp values
from inlet to adiabatic flame conditions over 70% of domain are assumed and then
level off at equilibrium. The percentage could be chosen. The initial guess could be
visualize to check its correctness:

flame.showSolution();

3. grid refinement criteria must be specified:

double ratio=10.0;
double slope=0.2;
double curve=0.02;
double prune=-0.00005;
flame.setRefineCriteria(flowdomain,ratio,slope,curve,prune);

The ratio parameter controls the maximum size ratio between adjacent cells; slope
and curve should be between 0 and 1 and control adding points in regions of high
gradients and high curvature, respectively. If prune is positive, points will be removed
if the relative slope and curvature for all components fall below the prune level.

4. Node for fixed temperature point is added. The energy equation is disabled and the
problem is solved without refining the grid:

flow.fixTemperature();
refine_grid=false;
flame.setFixedTemperature(900.0);
flame.solve(loglevel,refine_grid);

5. The energy equation is then turned on and the problem is solved again:

11

flow.solveEnergyEqn();
flame.solve(loglevel,refine_grid);

6. Temperature, velocity and mole fractions species are visualized as functions of the
spatial variable. Finally adiabatic flame temperature and flame speed are visualized:

Adiabatic flame temperature from equilibrium is: 2225.32
Flame speed for phi=1 is 0.39228 m/s.

3.3 Some useful modifications

The source of these examples could be found in directory:

/home/cfd2/cantera/CANTERA/EXAMPLES/PREMIXED.

3.3.1 Saving solution in TECPLOT or IGOR format

To save temperature, velocity, mole fractions and reaction rates in a TECPLOT, CSV or
IGOR format :

1. copy file example_utils.h in the work directory

cp /home/cfd2/cantera/CANTERA/CERFACS_ADDED/include/example_utils.h .

2. open the flamespeed.cpp file and insert the command #include "example_utils.h":

#include <cantera/Cantera.h>
#include <cantera/onedim.h>
..
#include <cantera/transport.h>
#include "example_utils.h"

3. modify function flamespeed creating a 2D array to hold the output variables, and
store the values for the initial state just before the last for-cicle:

printf("\n%9s\t%8s\t%5s\t%7s\n","z (m)", "T (K)", "U (m/s)", "Y(CO)");
Array2D soln(2*nsp+5, 1);
for(int n=0;n<np;n++){

...
}

4. in that for-cicle add a command to save solution to make a TECPLOT data file

12

Figure 1: Velocity, temperature and mole fraction of CO for equivalence ratio φ = 1.0

13

for(int n=0;n<np;n++){
...

flow.setGas(flame.solution() + flame.start(flowdomain), n);
(n == 0) ? saveSoln(0, flow.grid(n), Uvec[n], gas, soln)
: saveSoln(flow.grid(n), Uvec[n], gas, soln);

}

5. after for-cicle define some useful variables:

char str_phi[4];
sprintf(str_phi, "%1.2f", phi);
string plotTitle = "1D laminar flame phi = ";
plotTitle += str_phi;
string filename, extension;

6. construct the output file (TECPLOT/Excel/IGOR):

filename = "soln_phi";
extension = ".dat"; // ".csv" ; ".IGOR"
filename = filename + "-" + str_phi + extension;
plotSoln(filename, "TEC", plotTitle, gas, soln); // "XL" ; "IGO"

NOTE: In file ”example utils.h” to calculate the reaction rates the chemical scheme is
called two times:

IdealGasMix new_gas("gri30.cti","gri30_mix").

If a different chemical scheme is used (for example CM2), this line must be changed:

IdealGasMix new_gas("CM2.cti","CM2_mix").

3.3.2 Solutions for different equivalence ratio

Sometimes could be useful to memorize into an output file the values of some variables
as function of the equivalence ratio φ. Modifying file flamespeed.cpp it is possible to
memorize flame speed, adiabatic temperature and mole fractions of the equilibrium state
for different φ. The idea is to solve the same problem with different equivalence ratio
thanks a for-cicle. To obtain this:

1. modify the parameter of function flamespeed:

int flamespeed(doublereal& p, ofstream& myresult) {
...

}

14

First parameter is the value of equivalence ratio, despite the second parameter is the
name of input file where results as function of φ are memorized;

2. set the variable phi equal to the parameter p and delete the first if-state:

vector_fp x;
x.resize(nsp);

double phi = p;
/* if (np > 0) phi = *(double*)(p);

if (phi == 0.0) {
cout << "Enter phi: ";
cin >> phi;

}
*/

3. after the last for-cicle save in the output file some interesting variables (flame speed,
adiabatic temperature and mole fractions):

for(int n=0;n<np;n++){
...
}

//SAVE SOLUTION AS FUNCTION OF PHI
myresult<<phi<<" ";
myresult<<flame.value(flowdomain,flow.componentIndex("u"),0)<<" ";
myresult<<flame.value(flowdomain,flow.componentIndex("T"),np-1)<<" ";
for(int n=0; n<nsp;n++)

myresult<<flame.value(flowdomain,n+4,np-1)<<" ";
myresult<<"\n";

4. modify the main function adding a for-cicle for equivalence ratio between p_min and
p_max:

#ifndef CXX_DEMO
int main() {

doublereal p_min=0.5;
doublereal p_max=2.6;
ofstream myresult;
myresult.open("myresult_phi.dat");

int error_flag;
for(doublereal p=p_min;p<p_max; p+=0.1)

15

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Equivalence Ratio

1400

1600

1800

2000

2200

2400
A

d
ia

b
at

ic
 T

em
p

er
at

u
re

 (
K

)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Equivalence Ratio

0

0.08

0.16

0.24

0.32

0.4

0.48

F
la

m
e

S
p
ee

d
 (

m
/s

)

Figure 2: Adiabatic temperature and flame speed as function of φ

error_flag=flamespeed(p, myresult);
myresult.close();
return error_flag;

}
#endif

At each iteration results are saved in file "myresult_phi.dat".

16

4 Computing a 1D counterflow diffusion Flame

This second example uses python routine.

4.1 How to run the program

To run this example:

1. connect to nuage and work using bash shell

2. create a work directory

mkdir MY_SECOND_1D_FLAME

3. copy /usr/local/cantera/bin/setup cantera to his work directory

cp /usr/local/cantera/bin/setup_cantera MY_SECOND_1D_FLAME

4. verify that setup_cantera is correctly filled. Normally, it must not be changed. It
should looks like that:

#!/bin/sh
LD_LIBRARY_PATH=/usr/local/cantera/lib:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH
PATH=/usr/local/cantera/bin:$PATH
export PATH
PYTHON_CMD=/usr/bin/python2
export PYTHON_CMD
alias ctpython=/usr/bin/python2

5. source the file setup_cantera

source setup_cantera

6. copy the 1D nonpremixed counterflow flame example

cp /usr/local/cantera/demos/python/flames/npflame1.py .

7. fill in properly the file npflame1.py (Section 4.2)

8. execute it by typing python npflame1.py. By default, solutions are written in CSV
format, you can open it with Microsoft excel or OpenOffice Spreadsheet.

17

4.2 What program does

The program is composed by 2 part. Firstly, all the parameter values could be changed
(see Section 4.2.1). Secondly, the gas object is created, the flame is solved and saved (see
Section 4.2.2).

4.2.1 Parameter values

The parameter values are grouped at beginning to simplify changing flame conditions:

1. the good boundary conditions

p = OneAtm # pressure
tin_f = 300.0 # fuel inlet temperature
tin_o = 300.0 # oxidizer inlet temperature
mdot_o = 0.72 # kg/m^2/s
mdot_f = 0.24 # kg/m^2/s

comp_o = ’O2:1, N2:3.76’; # air composition
comp_f = ’CH4:1’; # fuel composition

2. the initial grid. By default, distance between inlets is 2 cm and it starts with an
evenly-spaced 6-point grid:

initial_grid = 0.02*array([0.0, 0.2, 0.4, 0.6, 0.8, 1.0],’d’)

3. the tolerance values for steady-state problem and for time stepping

tol_ss = [1.0e-5, 1.0e-9] # [rtol, atol] for steady-state
problem

tol_ts = [1.0e-3, 1.0e-9] # [rtol, atol] for time stepping

4.2.2 Creating gas object and solution

Now to create the gas object and to solve the flame:

1. choose the good chemical scheme:

gas = GRI30(’Mix’)

By default, GRI-Mech 3.0 with mixture-averaged transport properties is used. To
use another mechanism, function IdealGasMix(’mech.cti’) could be used to read
a mechanism in Cantera format.

18

2. create an object representing the counterflow flame configuration:

f = CounterFlame(gas = gas, grid = initial_grid)

It consists of a fuel inlet on the left, the flow in the middle, and the oxidizer inlet on
the right.

3. set the state of the two inlets and the error tolerances:

f.fuel_inlet.set(massflux = mdot_f,
mole_fractions = comp_f,
temperature = tin_f)

f.oxidizer_inlet.set(massflux = mdot_o,
mole_fractions = comp_o,
temperature = tin_o)

f.set(tol = tol_ss, tol_time = tol_ts)

4. construct the initial solution estimate. To do so, it is necessary to specify the fuel
species:

f.init(fuel = ’C2H6’)

If a fuel mixture is being used, a representative species must be specified here for the
purpose of constructing an initial guess.

5. check the correctness of the starting estimate:

f.showSolution().

Then, to solve a diffusion flame:

1. the energy equation is disabled and the problem is solved without refining the grid:

f.set(energy = ’off’)
f.solve(loglevel, 0)

2. grid refinement criteria are specified, the energy equation is turned on and problem
is solved again:

f.setRefineCriteria(ratio = 200.0, slope = 0.1, curve = 0.2, prune = 0.02)
f.set(energy = ’on’)
f.solve(1)

19

0 0.005 0.01 0.015 0.02

x (m)

0

500

1000

1500

2000

2500
T

em
p

er
at

u
re

 (
K

)

0 0.005 0.01 0.015 0.02

x (m)

0

0.2

0.4

0.6

0.8

1

M
o
le

 F
ra

c
ti

o
n
s

O2
C2H6
N2

Figure 3: Temperature and mole fractions of O2, C2H6 and N2

3. the solution is saved in a .xml format and velocity, temperature and mole fractions
are written into a CSV file:

f.save(’npflame1.xml’)
z = f.flame.grid()
T = f.T()
u = f.u()
V = f.V()
fcsv = open(’npflame1.csv’,’w’)
writeCSV(fcsv, [’z (m)’, ’u (m/s)’, ’V (1/s)’, ’T (K)’]

+ list(gas.speciesNames()))
for n in range(f.flame.nPoints()):

f.setGasState(n)
writeCSV(fcsv, [z[n], u[n], V[n], T[n]]+list(gas.moleFractions()))

fcsv.close().

4.3 A useful modification: write solution in TECPLOT format

The source of this example could be found in directory:

/home/cfd2/cantera/CANTERA/EXAMPLES/DIFFUSION.

To save velocity, temperature and mole fractions TECPLOT format:

1. copy directory MODULE PYTHON in the work directory:

cp -r /home/cfd2/cantera/CANTERA/CERFACS_ADDED/include/MODULE_PYTHON .

20

2. add the directory MODULE PYTHON to npflame1.py file and import the module
which contains function writeTEC():

from MODULE_PYTHON import *

from Cantera import *
from Cantera.OneD import *
from Cantera.OneD.CounterFlame import CounterFlame
from Cantera.num import array

3. add these lines at the end of the code:

generate the file for visualization with TECPLOT
fdat = open(’diffusion_flame.dat’,’w’)
title = ’diffusion_flame plot’
writeTEC(fdat,[’TITLE =’,’"’, title,’"’])
writeTEC(fdat,[’VARIABLES =’])
writeTEC(fdat,[’"space (m)"’])
writeTEC(fdat,[’"u (m/s)"’])
writeTEC(fdat,[’"V (1/s)"’])
writeTEC(fdat,[’"T (K)"’])
for m in range(gas.nSpecies()):

writeTEC(fdat,[’"’, gas.speciesName(m), ’"’])
for n in range(f.flame.nPoints()):

f.setGasState(n)
writeTEC(fdat, [z[n], u[n], V[n], T[n]]+list(gas.moleFractions()))

fdat.close()

print ’solution for plotting (TECPLOT) saved to diffusion_flame.dat’

Solution is saved in file diffusion_flame.dat.

21

5 About convergence

While Cantera calculates a solution, commonly three problems could occur:

1. calculation stops with error:

Procedure: OneDim::timeStep
Error: Time integration failed

2. calculation runs infinitely,

3. solutions are no-physicals.

Despite method equilibrate has generally no problem of convergence, suitable parameters
must be chosen to make converge function solve. Unfortunately since these problems are
highly nonlinear, there is no foolproof way to get a converged solution. Probably the best
bet is to start with a simpler mechanism and generate a flame solution that can be used as
the initial guess with the bigger mechanism. Cantera automatically takes care of changed
species order in the arrays when it starts from a previous solution generated with a different
mechanism as long as the corresponding species in each mechanism have the same name
(i.e., if methane is called ’CH4’ in one, it must be in the other too.) so it is easy to start
with small mechanisms and work up. Moreover convergence could be reached holding the
temperature fixed, or not refining the grid, or refining it more. One useful thing is to
increase the value of loglevel to about 5, which will cause a great deal of information to
be printed, including which solution component is not converging.
Concerning no-physical solutions with premixed flames, temperature in burnt gas obtained
with solve must have nearly the same value that adiabatic temperature obtained with
equilibrate method. If they are not nearly the same, it means that programs stops
running before convergence is reached. Calculated values are necessarily fault.

5.1 Some parameters that rule convergence

Setting suitable parameters generally guarantee convergence. To improve convergence:

1. modify the length of domain lz or the number of initial points nz;

2. modify the grid refinement criteria (ratio, slope, curve and prune)

3. set relative and absolute tolerances for steady-state problem and time stepping (by
default rtol=1.0e-8, atol=1.0e-15):

setTolerancesSS(doublereal rtol, doublereal atol)
setTolerancesTS(doublereal rtol, doublereal atol)

22

4. set minimum and maximum time step (by default tmin=1.0e-16, tmax=10.0):

setMinTimeStep(doublereal tmin)
setMaxTimeStep(doublereal tmax)

5. set time step (by default stepsize= 1.0e-5, tsteps= [1, 2, 5, 10]):

setTimeStep(doublereal stepsize, int n, integer *tsteps)

6. set maximum number of grid points (by defaul npoints =3000):

setMaxGridPoints(int dom, int npoints).

See how to use them reading C++ example of Section 6.2.3.

23

6 Simplified chemistry

The files .cti describe the thermochemical and transport properties of the mixture in a
Cantera format.
These input files can be found in directory: /home/cfd2/cantera/CANTERA/INSTALL DIR/cantera-
1.80/data.
It is possible to introduce new chemical schemes:

1. converting chemical schemes in CHEMKIN format thanks to function ck2cti;

2. writing a new .cti file.

The Chemkin to Cantera input file converter ck2cti.exe could be found at
http://tech.groups.yahoo.com/group/cantera/, the Cantera User’s Group site.
In this section, firstly the organization of an input file is described and then some new
chemical schemes are introduced and tested (MP1, CM2 and H2O2).

6.1 The organization of input file .cti

To get started, let’s take a look at definition of air that could be found in file
/home/cfd2/cantera/CANTERA/INSTALL DIR/cantera-1.80/data/air.cti.
It is composed by four part:

1. The default unit system may be set with a units directive. The best choice to
import an AVBP chemical schemes into Cantera (no unit conversion is required) is:

units(length = "cm", time = "s",
quantity = "mol", act_energy = "cal/mol").

The length and time units are used to construct the units for reaction pre-exponential
factors. The energy units are used for molar thermodynamic properties, in combina-
tion with the units for quantity.
Since activation energies are often specied in units other than those used for ther-
modynamic properties, a separate eld is devoted to the default units for activation
energies.

units(length = cm, quantity = mol, act_energy = kcal/mol)
kf = Arrhenius(A = 1.0e14, b = 0.0, E = 54.0) # E is 54 kcal/mol

Note that unit conversions are not done until the entire file has been read. Only
one units directive should be present in a file, and the defaults it species apply to
the entire file. If the file does not contain a units directive, the default units are
meters, kilograms, kilomoles, and seconds. The allowed values for the fields of the
units directive are listed in Table 2.

24

Field Allowed values
length ’cm’, ’m’, ’mm’
quantity ’mol’, ’kmol’, ’molec’
times ’s’, ’min’, ’hr’, ’ms’
energy ’J’, ’kJ’, ’cal’, ’kcal’
act_energy ’kJ/mol’, ’J/mol’, ’J/kmol’

’kcal/mol’, ’cal/mol’, ’eV’, ’K’

Table 2: Allowed values for the fields of the units directive.

2. A model for a gas that uses the ideal gas equation of state named air.

ideal_gas(name = "air",
elements = " O N Ar ",
species = """ O O2 N NO NO2 N2O N2 AR """,
reactions = "all",
transport = "Mix",
initial_state = state(temperature = 300.0,

pressure = OneAtm,
mole_fractions = ’O2:0.21, N2:0.78, AR:0.01’))

A chemical reacting ideal gas mixture of multiple species is described by

ideal_gas(name,elements,species,reactions,
kinetics,transport,initial_state,options)

where:

• name : a string to identify the phase. Must be unique among the phase names
within the file

• elements: a string of element symbols

• species : a string or sequence of strings of species symbols

• reactions : the homogeneous reactions. If omitted, no reactions will be in-
cluded. The string ’all’ includes all reactions defined locally in the input file

• transport: the transport property model. One of the strings ’none’, ’multi’
or ’mix’. Default = ’none’.

• initial-state: initial thermodynamic state, specified with an embedded state
entry

• options: special processing options. A string or sequence of strings in the
format described in Table 3.

25

Option String Meaning
no_validation Turn off all validation. Use when the denition has been

previously validated to speed up importing the
denition into an application. Use with caution!

skip_undeclared_elements When importing species, skip any containing undeclared
elements, rather than flagging them as an error.

skip_undeclared_species When importing reactions, skip any containing undeclared
species, rather than flagging them as an error.

Table 3: The possible string for options

Apart from the ideal_gas, there are several other different types of phases. Currently
these are stoichiometric_solid, stoichiometric_liquid and ideal_solution.

3. The definition of species:

species(name = "O",
atoms = " O:1 ",
thermo = (

NASA([200.00, 1000.00], [3.168267100E+00, -3.279318840E-03,
6.643063960E-06, -6.128066240E-09, 2.112659710E-12,
2.912225920E+04, 2.051933460E+00]),

NASA([1000.00, 3500.00], [2.569420780E+00, -8.597411370E-05,
4.194845890E-08, -1.001777990E-11, 1.228336910E-15,
2.921757910E+04, 4.784338640E+00])

),
transport = gas_transport(

geom = "atom",
diam = 2.75,
well_depth = 80.00),

note = "L 1/90"
)

...

To obtain the species data for a new chemical scheme just copy the species data from
gri30.cti file that could be found in the same directory of air.cti file. For more
details see [4].

4. The reaction equations which determine the reactant and product stoichiometry:

Reaction 1
three_body_reaction("2 O + M <=> O2 + M", [1.20000E+17, -1, 0],

26

efficiencies = " AR:0.83 ")
Reaction 2
reaction("N + NO <=> N2 + O", [2.70000E+13, 0, 355])
...
Reaction 6
falloff_reaction("N2O (+ M) <=> N2 + O (+ M)",

kf = [7.91000E+10, 0, 56020],
kf0 = [6.37000E+14, 0, 56640],
efficiencies = " AR:0.625 ")

Cantera accepts various reaction types:

(a) A homogeneous chemical reaction with pressure-independent rate coefficient and
mass-action kinetics:

reaction(equation, rate_coeff, id, options)

where:

• equation: A string specifying the chemical equation.
• rate_coeff: The rate coefficient for the forward direction. If a sequence of

three numbers is given, these will be interpreted as [A, n, E] in the modied
Arrhenius function ATn exp(−E/RT).
• id An optional identication string. If omitted, it defaults to a four-digit

numeric string beginning with 0001 for the first reaction in the file.
• options Processing options, as described in Table 4.

Option String Meaning
skip It can be used to temporarily remove this reaction

from the phase or interface that imports it
duplicate In some cases, it may be appropriate to include

duplicate reactions, for example if
a reaction can proceed through two distinctly different

pathways, each with its own rate expression.
negative_A If there are duplicate reactions such that the total rate is

positive, then negative A parameters are acceptable

Table 4: The possible string for options

(b) A three-body reaction:

three_body_reaction(equation, rate_coeff, efficiencies, id, options)

27

where:

• equation: a string specifying the chemical equation. The reaction can
be written in either the association or dissociation directions, and may be
reversible or irreversible.
• rate_coeff: the rate coefficient for the forward direction. If a sequence of

three numbers is given, these will be interpreted as [A, n, E] in the modied
Arrhenius function ATn exp(−E/RT).
• efficiencies: a string specifying the third-body collision efficiencies. The

efficiencies for unspecified species are set to 1.0.
• id An optional identication string. If omitted, it defaults to a four-digit

numeric string beginning with 0001 for the first reaction in the file.
• options Processing options, as described in Table 4.

(c) A gas-phase falloff reaction:

falloff_reaction(equation, rate_coeff_inf, rate_coeff_0,
efficiencies, falloff, id, options)

where:

• equation: a string specifying the chemical equation.
• rate_coeff_inf : the rate coefficient for the forward direction in the high-

pressure limit. If a sequence of three numbers is given, these will be inter-
preted as [A, n, E] in the modied Arrhenius function ATn exp(−E/RT).
• rate_coeff_0: the rate coefficient for the forward direction in the low-

pressure limit. If a sequence of three numbers is given, these will be inter-
preted as [A, n, E] in the modied Arrhenius function ATn exp(−E/RT).
• efficiencies: a string specifying the third-body collision efficiencies. The

efficiency for unspecified species is set to 1.0.
• falloff: an embedded entry specifying a falloff function. If omitted, a

unity falloff function (Lindemann form) will be used.
• id An optional identication string. If omitted, it defaults to a four-digit

numeric string beginning with 0001 for the first reaction in the file.
• options Processing options, as described in Table 4.

OBSERVATION: The pre-exponential of the Arrenhius law is expressed in cgs,
that is the unity used by AVBP. No unity conversion is needed. Moreover, in AVBP
a negative pre-exponential indicates that the backward reaction should be taken into
account. However, the value used in the code is obviously positive. In Cantera the
pre-exponential must be positive and to specify that the reaction should be treated
as reversible => must be replaced with <=>.

For more details and for more complicate reactions see [4].

28

6.2 New chemical schemes

It is possible to solve with Cantera a 1D premixed flame described with the AVBP chemistry
(see http://www.cerfacs.fr/ avbp/AVBP V6.X/AVBPHELP/PARAM/chemistry/index.php).
Unfortunally, some limitations exist:

1. it is not possible to give orders for reversible equation. It is possible to avoid this
problem splitting reversible equation into two irreversible equation (see Section 7);

2. it is not possible to specify orders for non-reactant;

3. reaction order must be non-negative.

6.2.1 Methane-Air: 1 step mechanism MP1

The source of these examples could be found in directory:

/home/cfd2/cantera/CANTERA/EXAMPLES/MP1.

The MP1 mechanism has only one reaction equation:

CH4 + 2O2 => CO2 + 2H2O. (1)

To study it with Cantera:

1. open the input_premix.dat file for MP1 mechanism

1 ! nreac (number of chemical reactions)

*** Reaction # 1 : CH4 + 2 O2 => CO2 + 2 H2O
4 ! nspec (number of species involved in the reaction)
’CH4’ -1.00 +1.00 0.0
’O2’ -2.00 +0.50 0.0
’CO2’ +1.00 +0.00 0.0
’H2O’ +2.00 +0.00 0.0
1.1d10 ! Pre-exponential factor (cgs)
20000.0d0 ! Activation Energy (cal/mol)
0d0
0

2. create a directory to save all new chemical schemes:

mkdir MY_REACTIONS

29

3. copy and rename the gri30.cti file:

cp /home/cfd2/cantera/CANTERA/INSTALL_DIR/cantera-1.80/data/gri30.cti MP1.cti

4. modify ideal_gas definition of MP1.cti file (just name, elements and species):

ideal_gas(name = "MP1",
elements = " O H C N ",
species = """ O2 H2O CH4 CO2 N2 """,
reactions = "all",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

ideal_gas(name = "MP1_mix",
elements = " O H C N ",
species = """ O2 H2O CH4 CO2 N2 """,
reactions = "all",
transport = "Mix",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

ideal_gas(name = "MP1_multi",
elements = " O H C N",
species = """ O2 H2O CH4 CO2 N2 """,
reactions = "all",
transport = "Multi",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

5. change not species data and delete reaction data;

6. write at the end the reaction:

Reaction 1
reaction(" CH4 + 2 O2 => CO2 + 2 H2O ", [1.1E+10, 0.0, 20000],

order="CH4:1.0 O2:0.50")

7. follow instructions of Section 3.1 to copy and run the flamespeed.cpp file (but before
running it remember to modify it);

8. add the directory with the new reactions in main function:

30

#ifndef CXX_DEMO
int main() {

addDirectory("/home/cfd2/cantera/CANTERA/MY_REACTIONS")
return flamespeed(0, 0);

}
#endif

9. modify the definition of IdealGasMix in flamespeed function:

int flamespeed(int np, void* p) {
try {

int i;
IdealGasMix gas("MP1.cti","MP1_mix");
...

}
...
}

10. modify some parameters (length of domain and grid refinement criteria):

// create an initial grid
int nz=5;
doublereal lz= 0.012;
...
int flowdomain=1;
double ratio=1.1;
double slope=0.0005;
double curve=0.0005;
double prune=0.005;

6.2.2 Methane-Air: 2 steps mechanism CM2

The source of these examples could be found in directory:

/home/cfd2/cantera/CANTERA/EXAMPLES/CM2.

The CM2 mechanism has two reaction equations:

CH4 + 1.5O2 => CO + 2H2O

CO + 0.5O2 <=> CO2.
(2)

To study it with Cantera:

31

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Equivalence Ratio

1400

1600

1800

2000

2200

2400
A

d
ia

b
at

ic
 T

em
p

er
at

u
re

 (
K

)
GRI3.0
MP1_CANTERA
MP1_AVBP

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Equivalence Ratio

0

0.1

0.2

0.3

0.4

0.5

F
la

m
e

S
p
ee

d
 (

m
/s

) MP1_CANTERA
GRI3.0
MP1_AVBP

Figure 4: Adiabatic temperature and flame speed as function of φ for MP1 mechanism

1. open the input_premix.dat file for CM2 mechanism:

2 ! nreac (number of chemical reactions)

*** Reaction # 1 : CH4+ 1.50O2=>CO+2H2O
4 ! nspec (number of species involved in the reaction)
’CH4’ -1.00 +0.90 0.0
’O2’ -1.50 +1.10 0.0
’CO’ +1.00 +0.00 0.0
’H2O’ +2.00 +0.00 0.0
2.0D15 ! Pre-exponential factor (cgs)
35000.0D0 ! Activation Energy (cal/mol)

*** Reaction # 2 : CO+ 5.00E-01O2<=>CO2
3 ! nspec (number of species involved in the reaction)
’CO’ -1.00 +1.00 0.0
’O2’ -0.50 +0.50 0.0
’CO2’ +1.00 +0.00 1.0
-2.0D9 ! Pre-exponential factor (cgs)
12000.0D0 ! Activation Energy (cal/mol)

2. copy and rename MP1.cti file directory MY REACTIONS:

cp MP1.cti CM2.cti

3. modify ideal_gas definition of CM2.cti file (just name and species):

ideal_gas(name = "CM2",

32

elements = " O H C N ",
species = """ O2 H2O CH4 CO CO2 N2 """,
reactions = "all",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

ideal_gas(name = "CM2_mix",
elements = " O H C N ",
species = """ O2 H2O CH4 CO CO2 N2 """,
reactions = "all",
transport = "Mix",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

ideal_gas(name = "CM2_multi",
elements = " O H C N",
species = """ O2 H2O CH4 CO CO2 N2 """,
reactions = "all",
transport = "Multi",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

4. change not species data and delete reaction data;

5. write at the end the reactions:

Reaction 1
reaction(" CH4 + 1.5 O2 => CO + 2 H2O ", [0.2000E+16, 0.0, 35000],

order="CH4:0.9 O2:1.10 ")
Reaction 2
reaction("CO + 0.5 O2 <=> CO2", [0.2E+10, 0.0, 12000])

6. follow instructions of Section 3.1 to copy and run the flamespeed.cpp file (but before
running it remember to modify it);

7. add the directory with the new reactions in main function:

#ifndef CXX_DEMO
int main() {

addDirectory("/home/cfd2/cantera/CANTERA/MY_REACTIONS")
return flamespeed(0, 0);

33

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Equivalence Ratio

1400

1600

1800

2000

2200

2400
A

d
ia

b
at

ic
 T

em
p

er
at

u
re

 (
K

)
CM2_CANTERA
CM2_AVBP
GRI3.0

0.5 1 1.5 2 2.5

Equivalence Ratio

0

0.1

0.2

0.3

0.4

0.5

F
la

m
e

S
p
ee

d
 (

m
/s

)

CM2_CANTERA
CM2_AVBP
GRI3.0

Figure 5: Adiabatic temperature and flame speed as function of φ for CM2 mechanism

}
#endif

8. modify the definition of IdealGasMix in flamespeed function:

int flamespeed(int np, void* p) {
try {

int i;
IdealGasMix gas("CM2.cti","CM2_mix");
...

}
...
}

9. modify some parameters (length of domain and grid refinement criteria):

// create an initial grid
int nz=5;
doublereal lz= 0.012;
...
int flowdomain=1;
double ratio=1.1;
double slope=0.0005;
double curve=0.0005;
double prune=0.005;

34

6.2.3 Hydrogen-Oxygen: 7 steps mechanism H2O2

The source of these examples could be found in directory:

/home/cfd2/cantera/CANTERA/EXAMPLES/H2O2.

This mechanism has seven reaction equations:

H +O2 <=> O +OH

O +H2 <=> H +OH

O2 +H2 <=> OH +OH

H2 +OH <=> H2O +H

OH +OH <=> H2O +O

H +OH +M <=> H2O +M

H +H +M <=> H2 +M

(3)

To study it with Cantera:

1. open the input_premix.dat file for H2O2 mechanism;

2. copy and rename the MP1.cti file directory MY REACTIONS:

cp MP1.cti H2O2.cti

3. modify ideal_gas definition of H2O2.cti file (just name, elements and species):

ideal_gas(name = "H2O2",
elements = " O H ",
species = """ H O O2 OH H2 H2O """,
reactions = "all",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

ideal_gas(name = "H2O2_mix",
elements = " O H ",
species = """ H O O2 OH H2 H2O """,
reactions = "all",
transport = "Mix",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

35

ideal_gas(name = "H2O2_multi",
elements = " O H ",
species = """ H O O2 OH H2 H2O """,
reactions = "all",
transport = "Multi",
initial_state = state(temperature = 300.0,

pressure = OneAtm))

4. change not species data and delete reaction data;

5. write at the end the reactions:

Reaction 1
reaction(" H + O2 <=> O + OH ", [3.62E+17, -0.91, 16530])
Reaction 2
reaction(" H2 + O <=> H + OH ", [1.53E+05, 2.67, 6296])
Reaction 3
reaction(" H2 + O2 <=> 2 OH ", [5.13E+13, 0.0, 48050])
Reaction 4
reaction(" OH + H2 <=> H2O + H ", [6.64E+13, 0.0, 5155])
Reaction 5
reaction(" 2 OH <=> H2O + O ", [1.9E+13, 0.0, 1091])
Reaction 6
three_body_reaction(" H + OH + M <=> H2O + M ", [6.67E+22, -2.0, 0.0],

efficiencies = "H:1.0 H2:2.5 O:1.0 O2:1.0 OH:1.0 H2O:16.0 ")
Reaction 7
three_body_reaction(" 2 H + M <=> H2 + M ", [2.2E+18, -1.0, 0.0],

efficiencies = "H:1.0 H2:2.5 O:1.0 O2:1.0 OH:1.0 H2O:16.0 ")

6. follow instructions of Section 3.1 to copy and run the flamespeed.cpp file (but before
running it remember to modify it);

7. add the directory with the new reactions in main function:

#ifndef CXX_DEMO
int main() {

addDirectory("/home/cfd2/cantera/CANTERA/MY_REACTIONS")
return flamespeed(0, 0);

}
#endif

8. modify the definition of IdealGasMix in flamespeed function:

36

int flamespeed(int np, void* p) {
try {

int i;
IdealGasMix gas("H2O2.cti","H2O2_mix");
...

}
...
}

9. delete line (actually CH4 and N2 are not defined in H2O2.cti file and this line cause
an error):

gas.setState_TPX(temp, pressure, "CH4:1.0, O2:2.0, N2:7.52");

10. modify the initial composition of gas:

double phi = 0.0;
if (np > 0) phi = *(double*)(p);
if (phi == 0.0) {

...
}

//VALUE MOLAR FRACTIONS
doublereal nu_F=2;
doublereal nu_O=1;
doublereal fa_stoic=nu_O/nu_F;
doublereal X_F=phi/(phi+fa_stoic);
doublereal X_O2=fa_stoic/(phi+fa_stoic);
for(int k=0;k<nsp;k++){

if(k==gas.speciesIndex("H2")){ x[k]=X_F; }
else if(k==gas.speciesIndex("O2")){ x[k]=X_O2; }
else{ x[k]=0; }

}

11. modify some parameters (length of domain and grid refinement criteria):

// create an initial grid
int nz=10;
doublereal lz= 0.5;
...
int flowdomain=1;
double ratio=1.1;

37

1 1.5 2 2.5 3 3.5 4

Equivalence Ratio

2000

2200

2400

2600

2800

3000

3200
A

d
ia

b
at

ic
 T

em
p

er
at

u
re

 (
K

)
H202_CANTERA
H2O2_complex

1 1.5 2 2.5 3 3.5 4

Equivalence Ratio

4

5

6

7

8

9

10

11

F
la

m
e

S
p

ee
d

(m
/s

)

H202_CANTERA
H2O2_complex

Figure 6: Adiabatic temperature and flame speed as function of φ for H2O2 mechanism

double slope=0.01;
double curve=0.01;
double prune=-0.005;

12. set new parameters to improve convergence as explained in Section 5 :

double prune=-0.005;
int npmax=300;
doublereal timestep=1.0e-7;
int num_steps=4;
integer* tsteps=new int[num_steps];
tsteps[0]=1;
tsteps[1]=2;
tsteps[2]=5;
tsteps[3]=10;
doublereal tmin=1.0e-8;
doublereal tmax=1.0e-2;

flow.setTolerancesTS(1.0e-4,1.0e-5);
flow.setTolerancesSS(1.0e-5,1.0e-15);
flame.setMinTimeStep(tmin);
flame.setMaxTimeStep(tmax);
flame.setTimeStep(timestep,num_steps,tsteps);
flame.setMaxGridPoints(flowdomain,npmax);
flame.setRefineCriteria(flowdomain,ratio,slope,curve,prune);

38

6.3 Kerosene-air: 2 steps mechanism 2S KERO BFER

An example of a calculation of a kerosene flame with the 2S KERO BFER mechanism
can be found in the directory: /home/cfd2/cantera/CANTERA/2S_KERO_BFER/. Please
note that BFER mechanisms (the present kerosene and the 2 steps methane-air) require
input pea.dat files to get correct flame speeds with rich mixtures (see Section 12 for more
details on input pea.dat and PEA formalism).

39

7 Reverse equilibrium reaction

Sometimes knowing the kinetic parameters of a reversible reaction written in the reverse
direction could be necessary. As seen in Section 6.2, it is not possible to define orders for
a reversible reaction.
To set orders for a reversible reaction in Cantera:

1. calculate the kinetic parameters in the reverse direction using function reverse;

2. modify file .cti splitting reversible reaction into two irreversible reactions;

3. solve flame.

The source of these examples could be found in directory:

/home/cfd2/cantera/CANTERA/EXAMPLES/REVERSE.

7.1 Calculate the kinetic parameters in the reverse direction

The first step is realized following what is done in [6]:

1. values of the equilibrium constant K are determined. The variation of equilibrium
constant against the temperature can be determined thanks to a 1D-ame:

K =
Πj(Xj)νj

Πi(Xi)νi
(4)

Where Xi and Xj are respectively the molar fractions of the reactant i and product j.
νi and νj are respectively the stoichiometric coefficients of the reactant i and product
j.

2. reaction rates are modeled using an Arrhenius law:

kf = AT β exp
(
−Ea
RT

)
(5)

where A is the pre-exponential factor, Ea the activation energy, R the universal gas
constant and T the temperature.

3. values of T ln(kfK) as function of T are calculated;

4. from the plotting of values of T ln(kfK) as function of T, the kinetic parameters for
the reverse direction are obtained with XMGRACE starting from equation 6:

T ln
(
kf

K

)
= T ln(A2)− Ea2

R
(6)

where A2 is the pre-exponential factor and Ea2 the activation energy for the reverse
direction.

40

1000 2000 3000 4000 5000

Temperature

0

10

20

30

40

50

lo
g

1
0

(K
)

CANTERA
NBS

Figure 7: Logarithms to the base 10 of the equilibrium constant K calculated with Cantera
and based on information provided by the National Bureau of Standards

To calculate the kinetic parameters with Cantera (CM2 mechanism is chosen as an exam-
ple):

1. create a work directory:

mkdir REVERSE

2. copy file CM2_reverse.cpp:

cp /home/cfd2/cantera/CANTERA/CERFACS_ADDED/demos/CM2_reverse.cpp

3. copy /usr/local/cantera/bin/setup cantera to your work directory:

cp /usr/local/cantera/bin/setup_cantera MY_FIRST_1D_FLAME

4. source the file setup_cantera:

source setup_cantera

5. compile this c++ file. To do that, fill properly CM2_reverse.mak:

6. plot with XMGRACE values of T ln
(
kf
K

)
(memorized into reverse.dat with log 10(K)):

300 45.4503 -32045.8
500 25.8264 -26791.1
...
4900 -0.034825 82370.7
5100 -0.136757 87176.3

41

0 1000 2000 3000 4000 5000

Temperature

-40000

-20000

0

20000

40000

60000

80000

T
ln

(k
f/

K
)

Figure 8: T ln
(
kf
K

)
against T

7. use option Data → Transformation → Regression, obtaining:

y = -38452 + 24.773 * x

which means Ea2 = 76404 and A2 = 5.7e10.

7.2 Modify file .cti splitting reversible reaction into two irreversible re-
actions

To split the reversible reaction:

1. copy chemical schemes CM2.cti:

cp CM2.cti CM2_reverse.cti

2. about species, modify only name:

ideal_gas(name = "CM2_reverse",...)
ideal_gas(name = "CM2_reverse_mix",..)
ideal_gas(name = "CM2_reverse_multi",..)

3. modify reaction data:

Reaction 1
reaction(" CH4 + 1.5 O2 => CO + 2 H2O ",

[0.2000E+16, 0.0, 35000], order="CH4:0.9 O2:1.10 ")

42

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Equivalence Ratio

1400

1600

1800

2000

2200

2400
A

d
ia

b
at

ic
 T

em
p

er
at

u
re

 (
K

)

CM2_REVERSE
CM2

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

Equivalence Ratio

0

0.1

0.2

0.3

0.4

0.5

F
la

m
e

S
p
ee

d
 (

m
/s

)

CM2_REVERSE
CM2

Figure 9: Adiabatic temperature and flame speed as function of φ for CM2 mechanism
with splitting of reversible reaction

Reaction 2
reaction(" CO + 0.5 O2 => CO2", [0.2E+10, 0.0, 12000])
Reaction 2bis
reaction(" CO2 => CO + 0.5 O2", [5.7E+10, 0.0, 76404])

To check if parameters obtained are correct just check if flame speed of a 1D premixed
flame governed by the new mechanism are equal to results of CM2 mechanism. To do this,
follow Section 6.2.2 changing in flamespeed.cpp:

IdealGasMix(’CM2_reverse.cti’,’CM2_reverse_mix’).

43

8 Creating an initial solution for AVBP

To create an initial solution for AVBP, similar instructions to the Section 3.3.1 are neces-
sary:

1. copy file initial_sol_AVBP.h in the work directory

cp /home/cfd2/cantera/CANTERA/CERFACS_ADDED/include/initial_sol_AVBP.h .

2. open the flamespeed.cpp file and insert the command #include "initial_sol_AVBP.h":

#include <cantera/Cantera.h>
#include <cantera/onedim.h>
..
#include <cantera/transport.h>
#include "initial_sol_AVBP.h"

3. modify function flamespeed. After the calculation of the flame, solution is saved in
a file .csv :

(a) define the name of the file and of the plot:

string plotTitle = "1D flame";
string filename;
filename = "Initial_solution_AVBP.csv";

(b) Values of the spatial variable, of velocity and species mass fractions in a format
that can be used by moulinette CAN2AV.

Array2D soln(nsp+4,1);
for(int n=0;n<np;n++){

flow.setGas(flame.solution()+flame.start(flowdomain),n);
(n==0) ? saveSolnAVBP(0, flow.grid(n),

flame.value(flowdomain,flow.componentIndex("u"),n),
gas,soln)

: saveSolnAVBP(flow.grid(n),
flame.value(flowdomain,flow.componentIndex("u"),n),
gas,soln);

}
plotSolnAVBP(filename, plotTitle, gas, soln);
cout<<endl<<"Solution for AVBP saved as: "<<filename;
cout<<endl<<"Remember to convert it with moulinette CAN2AV"<<endl;

4. create file can2av.choices:

44

ofstream choices;
choices.open("can2av.choices");
choices<<"’./Initial_solution_AVBP.csv’ ! CANTERA last or restart file(1)"<<endl;
choices<<"’./Init.sol_0000000.h5’ ! The AVBP solution"<<endl;
choices<<"’./mesh.coor’ ! The AVBP mesh coordinate"<<endl;
choices<<"’./input_species.dat’ ! The AVBP species file"<<endl;
choices<<"’./input_premix.dat’ ! The AVBP premix file"<<endl;
choices<<gas.pressure()<<" ! Pressure of CANTERA flame"<<endl;
choices<<nsp<<" ! Number of species "<<endl;
choices<<np<<" ! Number of CANTERA grid points"<<endl;
choices.close();

cout<<endl<<"File can2av.choices created."<<endl;

NOTE: The output file must be converted to AVBP format using CAN2AV Moulinette.
Please make attention: species must be in the same order in input_species.dat of AVBP
and in file .cti of CANTERA.

45

9 Continuation method

In this section it is explained how to realize the following operations:

1. create a premixed flame solution for a given pressure p, equivalence ratio φ and
temperature for the fresh gas Tfresh;

2. use this solution as initial guess for a flame with a value of pressure, equivalence ratio
or temperature slightly different;

3. iterate this procedure for different values of p, φ and Tfresh;

4. saving into a file the values of flame speed and adiabatic temperature at each iteration.

This method reduces the computational time and improves convergence .
First, follow the instructions of section 3.1 to create the initial flame solution. Then modify
flamespeed function:

1. delete the for-cycle that prints at screen results (or check that all species for which
mass fraction is saved are actually defined in file .cti):

vector<doublereal> zvec,Tvec,COvec,CO2vec,Uvec;
printf("\n%9s\t%8s\t%5s\t%7s\n","z (m)", "T (K)", "U (m/s)", "Y(CO)");
for(int n=0;n<np;n++){

Tvec.push_back(flame.value(flowdomain,flow.componentIndex("T"),n));
COvec.push_back(flame.value(flowdomain,flow.componentIndex("CO"),n));
CO2vec.push_back(flame.value(flowdomain,flow.componentIndex("CO2"),n));
Uvec.push_back(flame.value(flowdomain,flow.componentIndex("u"),n));
zvec.push_back(flow.grid(n));
printf("%9.6f\t%8.3f\t%5.3f\t%7.5f\n",flow.grid(n),Tvec[n],Uvec[n],COvec[n]);

}
cout << endl<<"Adiabatic flame temperature from equilibrium is: "<<Tad<<endl;
cout << "Flame speed for phi="<<phi<<" is "<<Uvec[0]<<" m/s."<<endl;

2. after having calculate the initial solution, define some new variables (that will be new
values of temperature, pressure and φ):

flame.solve(loglevel,refine_grid);

// CALCULATE NEW SOLUTION WITH DIFFERENT PHI, TEMP or PRESSION
int np=flow.nPoints();
doublereal temp_new=temp;
doublereal press_new=pressure;
double phi_new=phi;

46

3. open file where flame speed,adiabatic temperature and equilibrium mass fractions are
saved at each iteration and save initial solution:

ofstream myresult;
myresult.open("my_result.dat");
myresult<<phi_new<<" ";
myresult<<flame.value(flowdomain,flow.componentIndex("u"),0)<<" ";
myresult<<flame.value(flowdomain,flow.componentIndex("T"),np-1)<<" ";
for(int n=0; n<nsp;n++)

myresult<<flame.value(flowdomain,n+4,np-1)<<" ";
myresult<<"\n";

Note that in this case equivalence ratio is varied and so results are recorded in function
of phi_new. If pressure or temperature are varied press_new or temp_new must be
recorded.

4. start the for-cycle that calculate new flame with different values of p, φ and Tfresh
(in this case 10 iterations are performed):

a. define the new values (in this case only equivalence ratio is changed):

for(int k=0;k<10;k++){
temp_new=temp_new;//*1.01;
press_new=press_new;//*1.01;
phi_new=phi_new+0.05;
X_F=1/(1+4.76*fa_stoic/phi_new);
X_O2=1/((phi_new/fa_stoic)+4.76);
X_N2=3.76*X_O2;
for(int k=0;k<nsp;k++){

if(k==gas.speciesIndex("CH4")){ x[k]=X_F; }
else if(k==gas.speciesIndex("O2")){ x[k]=X_O2; }
else if(k==gas.speciesIndex("N2")){ x[k]=X_N2; }
else{ x[k]=0.0; }

}

b. impose the new values and calculate new solution:

inlet.setTemperature(temp_new);
inlet.setMoleFractions(DATA_PTR(x));
flow.setPressure(press_new);
flame.solve(loglevel,refine_grid);

47

c. save solution (as function of equivalence ratio phi_new), end for-cycle and close
the solution file:

myresult<<phi_new<<" ";
myresult<<flame.value(flowdomain,flow.componentIndex("u"),0)<<" ";
myresult<<flame.value(flowdomain,flow.componentIndex("T"),np-1)<<" ";
for(int n=0; n<nsp;n++)

myresult<<flame.value(flowdomain,n+4,np-1)<<" ";
myresult<<"\n";

}
myresult.close();

This procedure calculates flames at different equivalence ratio faster than procedure of
3.3.2. Actually, last procedure generates gas and domain at each iteration, on the contrary
new method generates them only one time. Even more important, in this method at each
new equivalence ratio calculation the previous solution is used as initial solution, on the
contrary in section 3.3.2 the initial condition is built at each calculation.

48

10 Using a previous solution as initial guess

A Cantera solutio could also be saved in specific format (.xml) that could be read by
Cantera itself, that means that it is possible to save a Cantera solution and afterwards
use it as initial guess for another calculation. This possibility could be used to refine the
previous solution, for example, or perform continuation calculations. Remeber always that
reading a previous solution from a file could make you loose time at a previous moment,
but it could make you gain time and accurancy during the calculation. To save a solution
in XML format in flamespeed.cpp use (obviously after having calculate your solution with
flame.solve(flowdomain, refine_grid)):

flame.save("previous_solution.xml","1","phi=1.0");

where first parameter is file name, second parameter is a string to identify the solution
(in fact, different solutions could be saved in the same file and called using the identifyer
string) and the third parameter is a comment string. Note that all three parameters have
to be given (even if you don’t want to comment your flame, you have do do it!!). Note that
when saving solution with flame.save("previous_solution.xml","1","phi=1.0") if a
solution in file "previous_solution.xml" with id ”1” still exits the new solution will be
automatically saved with id ”1 1” and so on (”1 2”, ”1 3”,...).

Now it is possible to use the solution as an initil guess for a new calculation. From
flamespeed.cpp write command flame.restore("previous_solution.xml","1") after
having creating the initial solution in the usual way:

double z1=0.7;
double uout;
uout=inlet.mdot()/rho_out;
uin=inlet.mdot()/rho_in;
locs[0]=0.0; locs[1]=z1; locs[2]=1.0;
value[0]=uin; value[1]=uout; value[2]=uout;
flame.setInitialGuess("u",locs,value);
value[0]=temp; value[1]=Tad; value[2]=Tad;
flame.setInitialGuess("T",locs,value);
for(i=0;i<nsp;i++){

value[0]=yin[i]; value[1]=yout[i]; value[2]=yout[i];
flame.setInitialGuess(gas.speciesName(i),locs,value);

}
flame.restore("previous_solution.xml","1");

Note that the first parameter is the name of file containing the initial solution and the
second parameter is the id of solution to import. The initial guess will be supplied with
the solution saved into the file.

49

11 How to use the AVBP simplified transport properties

Handling with complex transport and thermodynamic properties when constructing a re-
duced chemical scheme is useless. Thus, simpler properties have been derived under the
assumptions of unity Lewis numbers for all species and constant Prandtl number:

Lek =
λ

ρcpDk
= 1 , (7)

Pr =
µcp
λ

= Pr0 , (8)

where ρ is the gas mixture density, cP is the gas mixture specific heat capacity at constant
pressure, λ is the gas mixture thermal conductivity, Dk is the diffusion coefficient for species
k, and µ is the gas mixture dynamic viscosity following a Second Sutherland law or a power
law. In Cantera, it is possible to do this using a transport class named ”AVBP”. Before
run your computation, you must verify in the .cpp file that the transport class has been
activated:

Transport* tr = newTransportMgr("AVBP", &gas);

Moreover,the canteraAVBP version must be used. Verify it in your makefile:

the directory where the Cantera libraries are located
CANTERA_LIBDIR=/home/cfd2/cantera/CANTERA/INSTALL_DIR/canteraAVBP/lib

the directory where Cantera include files may be found.
CANTERA_INCDIR=/home/cfd2/cantera/CANTERA/INSTALL_DIR/canteraAVBP/include

The transport properties are read by the input premix.dat and input thermo.dat files.
These files have the same format as the AVBP files, but be carefull: notation form 1.0d-5
is not correctly read by Cantera, 1.0e-5 form must be used (’e’ instead of ’d’). Finally,
remind you to add them to your directory. An example on how to use the AVBP transport
class could be found at the directory:

/home/cfd2/cantera/CANTERA/2S_KERO_BFER/

50

12 How to use the PEA

Reduced chemical mechanisms are usually not able to predict flame speed in rich regimes.
The so-called PEA (Pre-Exponential Adjustment) is a way to get correct flame speed on
the rich side. Basically, the pre-exponential constant is adjusted versus local equivalence
ratio to reproduce the proper flame speed dependency with rich mixtures (Fig. 10).

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Equivalence Ratio

1400

1600

1800

2000

2200

2400

A
d

ia
b

at
ic

 T
em

p
er

at
u

re
 (

K
) MP1_PEA

MP1_AVBP
GRI3.0

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

Equivalence Ratio

0

0.1

0.2

0.3

0.4

0.5

F
la

m
e

S
p
ee

d
 (

m
/s

)

MP1_PEA
MP1_AVBP
GRI3.0

Figure 10: Adiabatic temperature and flame speed as function of φ for MP1 mechanism
with PEA enabled

PEA is currently available with the trunk version of Cantera and is implemented for
1D domains. Its is thus available for both the premixed and diffusion flame examples
presented in the previous sections of the current tutorial. Usage is very similar to AVBP:
an input pea.dat file is required and follows the exact same format as AVBP’s input pea.dat
(shown here for the two steps methane BFER mechanism):

2 ! ipea: =0 -> no PEA; =1 -> PEA_1 -> =2 -> PEA_2
’CH4’ ! name of the fuel species
1 4 0 ! number of carbon and hydrogen atoms in fuel
’C’ ! atom retained for mixture fraction calculation
’N2’ 0.e0 0.767e0 !
’O2’ 0.e0 0.233e0 !
’H2O’ 0.e0 0.e0 !
’CO2’ 0.e0 0.e0 !
’CO’ 0.e0 0.e0 !
’CH4’ 1.e0 0.e0 ! species, mass fractions in fuel tank and oxydizer tank

-- PEA on fuel oxidation reaction only ---
-- f=f1+f2
-- f1 = 1/2*{1+tanh[(phi0-phi)/sigma0]}

51

-- f2 = B*1/4*{1+tanh[(phi-phi1)/sigma1]}*{1+tanh[(phi2-phi)/sigma2]}
PEA_1
3.00e0 ! phi0
2.50e0 ! sigma0
0.00e0 ! B
9.00e-5 ! phi1
0.00e0 ! sigma1
8.00e0 ! phi2
9.00e0 ! sigma2

-- PEA on fuel oxidation (1) and CO-CO2 equilibrium (2) reactions ---------------------------
-- f1 = 2/[{1+tanh[(phi0,1-phi)/sigma0,1]}+B1{1+tanh[(phi-phi1,1)/sigma1,1]}+C1{1+tanh[(phi-phi2,1)/sigma2,1]}]
-- f2 = 0.5*{1+tanh[(phi0,2-phi)/sigma0,2]}+B2/2*{1+tanh[(phi-phi1,2)/sigma1,2]}+C2/2*{1+tanh[(phi-phi2,2)/sigma2,2]}*{1+tanh[(phi3,2-phi)/sigma3,2]}
PEA_2
1.10e0 ! phi01
0.09e0 ! sigma01
0.37e0 ! B1
1.13e0 ! phi11
0.03e0 ! sigma11
6.7e0 ! C1
1.6e0 ! phi21
0.22e0 ! sigma21
0.95e0 ! phi02
0.08e0 ! sigma02
2.5e-5 ! B2
1.3e0 ! phi12
0.04e0 ! sigma12
0.0087e0 ! C2
1.2e0 ! phi22
0.04e0 ! sigma22
1.2e0 ! phi32
0.05e0 ! sigma32

The first line contains a switch to choose which formalism to apply:

• 0 : No PEA is applied

• 1 : PEA formalism number 1, mostly used for one-step mechanisms

• 2 : PEA formalism number 2, mostly used for two-steps mechanisms

52

The second line specifies which species is the fuel. Please note that Cantera will use
this line to calculate the mixture fraction required by the PEA formalism.

For more details, please refer to AVBP website :

http://www.cerfacs.fr/~avbp/AVBP_V6.X/AVBPHELP/PARAM/pea.php

NOTE: When the input pea.dat file is missing, no correction is applied (ipea
set to 0) and the fuel is arbitrarily set to methane (CH4). As a consequence,
mixture fraction will be corrupted if the considered fuel is not methane. How-
ever it should be noticed that this quantity is needed only in a PEA calculation.
If your mechanism does not require PEA, results such as temperature, mass
fractions or flame speed will be correct even if the mixture fraction is not
correctly calculated. In most cases (including the examples in the present doc-
ument), mixture fraction is never used.

To retrieve mixture fraction, the getMixFrac() class has been implemented and can be
accessed through both Python and C++ programs, as in the examples below:

• Python

Z_mixFrac = []
for n in range(f.flame.nPoints()):

Z_mixFrac.append(0.0)
Z_mixFrac[n] = f.flame.getMixFrac(n)
f.setGasState(n)

• C++

for(int n=0;n<np;n++){
Tvec.push_back(flame.value(flowdomain,flow.componentIndex("T"),n));
COvec.push_back(flame.value(flowdomain,flow.componentIndex("CO"),n));
CO2vec.push_back(flame.value(flowdomain,flow.componentIndex("CO2"),n));
CH4vec.push_back(flame.value(flowdomain,flow.componentIndex("CH4"),n));
Uvec.push_back(flame.value(flowdomain,flow.componentIndex("u"),n));
zvec.push_back(flow.grid(n));
Z_mix_frac.push_back(flow.getMixFrac(n));

}

53

13 How to compile Cantera

Before compiling, some scripts need to be updated to your configuration. Open the sources
folder and do these changes.
If you compile on the CERFACS network, you will have to do these changes:

• file preconfig, line 31

CANTERA_CONFIG_PREFIX=${CANTERA_CONFIG_PREFIX:="INSTALL_DIRECTORY"}

• file preconfig, line 78

USE_NUMERIC=${USE_NUMERIC:="y"}

• file tools/src/finish install.py.in, line 35, 55, 58, 74

replace /lib/python by /lib64/python

If you compile on a MAC, you will have to do these change:

• file preconfig, line 31

CANTERA_CONFIG_PREFIX=${CANTERA_CONFIG_PREFIX:="INSTALL_DIRECTORY"}

• file preconfig, line 84

USE_NUMPY=${USE_NUMPY:="y"}

• file preconfig, line 84

NUMPY_HOME=${NUMPY_HOME:="NUMPY_PACKAGE_DIRECTORY"}

To get the right numpy home address (NUMPY PACKAGE DIRECTORY), look for
the file ”arrayobject.h” on your MAC. It will be at the address:

NUMPY_PACKAGE_DIRECTORY/numpy/arrayobject.h

• file configure, line 84

NUMPY_HOME=${NUMPY_HOME:="NUMPY_PACKAGE_DIRECTORY"}

54

References

[1] D.G.Goodwin, Cantera Fortran Users Guide, http://sourceforge.net/projects/cantera,
2001.

[2] Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty,
Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson,
Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, and Zhiwei Qin
http://www.me.berkeley.edu/gri mech/

[3] D.G.Goodwin, Cantera C++ Users Guide, http://sourceforge.net/projects/cantera,
2002.

[4] D.G.Goodwin, Defining Phases and Interfaces, http://sourceforge.net/projects/cantera,
2003 .

[5] S.Roux, Influence de la modelisation du melange air/carburant et de l’etendue du do-
maine de calcul dans la simulation aux grandes echelles des instabilites de combustion.
Application des foyers aeronautiques - TH/CFD/07/38. PhD thesis, InstitutNational
Polytechnique de Toulouse, 2007.

[6] G.Lacaze, Arrenhius kinetic parameters for a reversed equilibrium reaction
WN/CFD/07/39, CERFACS, November 20 2006.

55

