Efficient and scalable parallel graph partitioning and static mapping

Jun-Ho Her
François Pellegrini
Summary of the talk

• Introduction
• Sequential techniques
• Parallel k-way partitioning
• Experimental results
• Conclusion
• On-going Work: parallel k-way static mapping
Introduction - Graph partitioning

• Aims to find small separator or cut keeping graph parts evenly balanced

• Applications in various fields
 • Engineering: VLSI layout, image segmentation
 • Scientific computation: domain decomposition for iterative methods, sparse matrix ordering for direct methods

• NP-complete problem: no polynomial time algorithm for optimal solution in general
 → Many algorithms proposed to date:
 • Heuristics (KL, FM, GG), Meta-heuristics (evolutionary algorithms, bubble-growing), spectral methods, ILP
Introduction - Graph bipartitioning

- K-way graph partitioning can be approximated by a sequence of recursive bipartitionings
 - Bipartitioning is easier to implement than k-way partitioning
 - No need to choose the destination part of vertices
 - It is only an approximation, but a rather good one
 [Simon & Teng, 1993]
Sequential techniques - Multi-level framework

- Principle [Hendrickson & Leland, 1994]
 - Recursive coarsening (matching and contracting)
 - Initial partitioning of the smallest graph
 - Uncoarsening with succession and refinement of the solution
Sequential techniques - Band graph

- Principle [Chevalier & Pellegrini, 2006]
 - Only local improvements along the projected cut is necessary, so work only on a small band around the cut

- “Much” smaller than full graphs
 - Small constant width around the projected cut
 - Small length due to the projected cut
 → Induction from the “good” initial partition and level-by-level relationship
Sequential techniques - Jug of the Danaides (1)

• Principle [Pellegrini, 2007]
 • Analogous to “bubble growing” algorithms but natively integrates the load balancing constraint
 • The graph is modeled as a set of leaking barrels and pipes
 • Two antagonistic liquids flow from two source vertices
 • Liquids vanish when they meet
Sequential techniques - Jug of the Danaides (2)

- Using JotD as the refinement algorithm in the multi-level process:
 - Smooth interfaces
 - Slower than sequential FM (20 times for 500 iterations, but only 3 times for 40 iterations)
 - Band graph anchor vertices used as source vertices
Parallel k-way partitioning

• Three levels of concurrency:
 • In the recursive bipartitioning process itself
 – Straightforward, coarse grain parallelism
 – Redistribution of subgraph data across processors
 • In the coarsening phase of the multi-level algorithm
 – Synchronous probabilistic matching algorithm
 – Folding and duplication in the coarser stages
 • In the refinement process during the uncoarsening phase
Recursive bipartition (1)

• Coarse-grain parallelism

• All subgraphs at a same nested dissection level are processed concurrently on separate subsets of processors

• After a separator has been computed, the two separated subgraphs are folded and redistributed each on a half of the available processors
 • Ability to fold a graph on any number of processors (not only a power of 2)
Recursive bipartition (2)

- The two sub-trees are separated logically but also physically, which reduces network congestion.
- The computation of the two induced subgraphs and their folding can be performed in parallel thanks to the creation of a temporary thread per processor (if MPI is thread-safe).
Coarsening phase (1)

• Matchings are performed in parallel
 • Several algorithms (synchronous or asynchronous) have been studied to reduce dependencies between mating decisions

• The coarsened graph can either be:
 • Kept on the same number of processors: decreases memory and processing cost
 • Folded and duplicated on two subsets of processors: increases quality but also cost
Coarsening phase (2)

- It is preferable to use folding and duplication only in the last stages of the coarsening process
Refinement phase (1)

• As in the sequential algorithm, a distributed band graph is built by keeping only vertices which are at some small distance from the projected separator

• Local optimization algorithms are run on the distributed band graph only
 • Parallel diffusion

• Since this graph is very small, it can be multi-centralized such that sequential local optimization algorithms can be applied to its copies
 • Not scalable but rather inexpensive and yields results which are equivalent to or even better than the sequential version
Refinement phase (2)

• Structure of a distributed band graph
 • Anchor vertices may have very high degrees compared to sequential one
 → Two anchor vertices per process
 • The remote anchor vertices for each part form a clique
Experimental results

- On CCRT-Platine (932 nodes, 4 dual-core procs per node)
- Test graphs

| Graph | $|V| \times 10^3$ | $|E| \times 10^3$ | Avg.Deg. | Description |
|----------------|------------------|------------------|----------|----------------------------------|
| 10MILLIONS | 10424 | 78649 | 15.09 | 3D electromagnetics |
| 23MILLIONS | 23114 | 175686 | 15.20 | 3D electromagnetics |
| 45MILLIONS | 45241 | 335749 | 14.84 | 3D electromagnetics |
| 82MILLIONS | 82294 | 609508 | 14.81 | 3D electromagnetics |
| AUDIKW1 | 944 | 38354 | 81.28 | 3D mechanics mesh |
| BRGM | 3699 | 151940 | 82.14 | 3D geophysics mesh |
| CAGE15 | 5154 | 47022 | 18.24 | DNA electrophoresis |
| COUPOLE8000 | 1768 | 41657 | 47.12 | 3D structural mechanics |
| THREAD | 30 | 2220 | 149.32 | Connector problem |
Comparison – PT-Scotch vs. ParMeTiS (1)

<table>
<thead>
<tr>
<th>Test case</th>
<th>Number of processors:Number of parts</th>
<th>(P_{\text{Peak}}:2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45MILLIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{\text{PTS}})</td>
<td>1.15E+05</td>
<td>1.13E+06</td>
</tr>
<tr>
<td>(C_{\text{PM}})</td>
<td>1.26E+05</td>
<td>1.38E+06</td>
</tr>
<tr>
<td>(t_{\text{PTS}})</td>
<td>24.24</td>
<td>102.29</td>
</tr>
<tr>
<td>(t_{\text{PM}})</td>
<td>84.55</td>
<td>48.24</td>
</tr>
<tr>
<td>82MILLIONS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{\text{PTS}})</td>
<td>1.46E+05</td>
<td>1.90E+06</td>
</tr>
<tr>
<td>(C_{\text{PM}})</td>
<td>1.78E+05</td>
<td>2.12E+06</td>
</tr>
<tr>
<td>(t_{\text{PTS}})</td>
<td>46.48</td>
<td>189.42</td>
</tr>
<tr>
<td>(t_{\text{PM}})</td>
<td>176.4</td>
<td>85.87</td>
</tr>
</tbody>
</table>
Comparison – PT-Scotch vs. ParMeTiS (2)

<table>
<thead>
<tr>
<th>Test case</th>
<th>Number of processors: Number of parts</th>
<th>32:2</th>
<th>32:32</th>
<th>32:1024</th>
<th>384:2</th>
<th>384:256</th>
<th>384:1024</th>
<th>(P_{\text{Peak}}:2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUDIKW1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{PTS})</td>
<td>1.08E+05</td>
<td>2.08E+06</td>
<td>1.00E+07</td>
<td>1.05E+05</td>
<td>5.81E+06</td>
<td>9.96E+06</td>
<td>1.11E+05</td>
<td></td>
</tr>
<tr>
<td>(C_{PM})</td>
<td>1.14E+05</td>
<td>2.04E+06</td>
<td>9.76E+06</td>
<td>1.15E+05</td>
<td>5.76E+06</td>
<td>9.76E+06</td>
<td>1.12E+05</td>
<td></td>
</tr>
<tr>
<td>(t_{PTS})</td>
<td>3.51</td>
<td>11.84</td>
<td>17.35</td>
<td>5.87</td>
<td>10.72</td>
<td>10.06</td>
<td>3.01(128)</td>
<td></td>
</tr>
<tr>
<td>(t_{PM})</td>
<td>3.9</td>
<td>3.59</td>
<td>5.27</td>
<td>4.45</td>
<td>4.62</td>
<td>4.51</td>
<td>2.37(192)</td>
<td></td>
</tr>
<tr>
<td>THREAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{PTS})</td>
<td>5.60E+04</td>
<td>6.15E+05</td>
<td>1.82E+06</td>
<td>5.60E+04</td>
<td>1.29E+06</td>
<td>1.82E+06</td>
<td>5.62E+04</td>
<td></td>
</tr>
<tr>
<td>(C_{PM})</td>
<td>5.62E+04</td>
<td>6.03E+05</td>
<td>1.84E+06</td>
<td>5.73E+04</td>
<td>1.29E+06</td>
<td>1.84E+06</td>
<td>5.63E+04</td>
<td></td>
</tr>
<tr>
<td>(t_{PTS})</td>
<td>0.53</td>
<td>0.97</td>
<td>1.07</td>
<td>0.85</td>
<td>1.27</td>
<td>1.28</td>
<td>0.47(16)</td>
<td></td>
</tr>
<tr>
<td>(t_{PM})</td>
<td>0.77</td>
<td>0.75</td>
<td>1.99</td>
<td>2</td>
<td>0.89</td>
<td>2.07</td>
<td>0.52(8)</td>
<td></td>
</tr>
</tbody>
</table>
Comparison – PT-Scotch vs. ParMeTiS (3)

• For most of the cases, PTS shows better partition quality
 • About 20% better in the bipartitioning cases for graph 82MILLIONS

• For the highest numbers of partitions, ParMeTiS shows slight better quality for AUDIKW1, THREAD, and BRGM
 • The graphs have high average degree
 • Greedy nature of recursive bipartitioning scheme emphasized for these graphs
Runtime and Partition Quality (1)

PT-Scotch
45MILLIONS

Time (sec.) [log]

of Proc [log]

Cut size

of Proc [log]
Runtime and Partition Quality (2)

PT-Scotch

82MILLIONS

![Graph showing runtime and partition quality for PT-Scotch, with log-log scale for number of processors and time, and different markers for different partition sizes.](image)
Cut Size Ratio (C_{PTS} over C_{PM})

- Cut size ratio is most often in favor of PT-Scotch vs. ParMeTiS up to 2048 parts
 - Partition quality of ParMeTiS is irregular for small numbers of parts
 - Gets worse when number of parts increases as recursive bipartitioning prevents performing global optimization
Conclusion

- PT-Scotch compared to ParMeTiS
 - Better partition quality for most cases
 - Faster for small numbers of parts
- Boundary optimization
 - PT-Scotch is the unique parallel tool considering the metric
- On-going work
 - Parallel static mapping (see next slides)
On-going Work - Static mapping (1)

- **Definition**: mapping of $V(S)$ and $E(S)$ of source graph to those of architecture graph, respectively.
- **Partial cost function** for the static mapping:

$$f'_C \overset{\text{def}}{=} \sum_{v \in V(S')} w(\{v, v'\}) |\rho_{S,T}(\{v, v'\})|$$

- To date, Scotch only provides sequential static mapping
 - Parallelization is under way
On-going Work - Static mapping (2)

• A sequential technique: Dual Recursive Bipartitioning
• Brings gains up to 20% on solving time on “regular” multi-core architectures, and even more for really heterogeneous clusters
On-going Work - Static mapping (3)

- Sequential DRB:
 - Accounts for the local cut
 - Accounts for the cocycle (external communication load)
On-going Work - Static mapping (4)

• Parallel Dual Recursive Bipartitioning (first trial)
 • Synchronize at every recursion level
 • Simultaneous decision for each pair

→ Only sequential decision works!
On-going Work - Static mapping (5)

• Two phases in the multi-level framework:
 • Direct k-way parallel phase and sequential DRB phase
• K-way band graph
 • Simple extension from the bipartitioning case
Thank you!