New Computational Ordering to Reach High Performance in the Time-domain BEM for the Wave Equation

Berenger Bramasa, Olivier Coulauda, Guillaume Sylvandb

Sparse Days 2014

a Inria Bordeaux – Sud-Ouest, 33405 Talence, France

b Airbus Group Innovations, Applied Mathematics and Simulation, Toulouse, France
Introduction
Time Domain Boundary Element Method (TD-BEM) for wave equation

- Simulates the propagation of a wave on a mesh
- In Electromagnetism/Acoustics for example
- TD-BEM less studied than frequency-domain BEM
- One time-domain computation is equivalent to many frequency-domain computations
Context

- Airbus Group and Inria collaboration
- We focus on the implementation/optimizations
- The resulting software:
 - will replace an old implementation
 - is a layer of a computational work-flow
 - uses black boxes all around
 - should run industrial simulations
Interaction Matrices, Formulation & Algorithm
Interaction/Convolution matrices

Properties of the system:

▶ a wave \(w \) (with a velocity \(c \) and a wavelength \(\lambda \))
▶ a boundary \(\Omega \) of \(N \) unknowns

Interaction/Convolution Matrix \(M_k \):

▶ Size is \(N \times N \)
▶ Has a NNZ value at \((i,j) \) if unknowns are far from \(\approx k.c. \Delta t \)

The number of non-zero values depends on the distance between the unknowns and the physical properties

▶ Positive definite and sparse

▶ For \(k > K_{max} \) the matrices \(M_k \) are null \((K_{max} = 2 + \ell_{max}/(c \Delta t)) \), with \(\ell_{max} = \max(x,y) \in \Omega \times \Omega \) (\(|x-y| \) the maximum distance between two unknowns)

▶ Computed once if the mesh is static
Interaction/Convolution matrices

Properties of the system:

- a wave w (with a velocity c and a wavelength λ)
- a boundary Ω of N unknowns

Interaction/Convolution Matrix M^k:

- Size is $N \times N$
- Has a NNZ value at (i, j) if unknowns are far from $\approx k.c.\Delta t$
 The number of non-zero values depends on the distance between the unknowns and the physical properties
- Positive definite and sparse
- For $k > K_{max}$ the matrices M^k are null
 ($K_{max} = 2 + \ell_{max}/(c\Delta t)$, with $\ell_{max} = \max_{(x,y)\in\Omega\times\Omega}(|x - y|)$ the maximum distance between two unknowns)
- Computed once if the mesh is static
In the example: three unknowns A, B, C in 1D

- A wave emitted from each unknown is represented at every time steps
- All matrices M^k with $k > 3$ are zero since the highest distance between elements is $\leq 3c\Delta t$
Formulation

Convolution system.

\[\sum_{k \geq 0}^{K^{max}} M^k \cdot a^{n-k} = l^n \]

- \(n \): the time step
- \(M^k \): the convolution matrices
- \(l^n \): the incident wave emitted by a source on the unknowns
- \(a^n \): the state of the system at time \(n \)
Formulation

Convolution system.

\[
\sum_{k \geq 0}^{K_{max}} M^k \cdot a^{n-k} = l^n
\] \hspace{1cm} (1)

- \(n \): the time step
- \(M^k \): the convolution matrices
- \(l^n \): the incident wave emitted by a source on the unknowns
- \(a^n \): the state of the system at time \(n \)

The objective is to compute \(a^n \):

\[
a^n = (M^0)^{-1} \left(l^n - \sum_{k=1}^{K_{max}} M^k \cdot a^{n-k} \right)
\] \hspace{1cm} (2)
Algorithm - Formal view

\(a^n \) is calculated in two steps:

- **First step:** the summation stage using the past

\[
\begin{align*}
 s^n & = \sum_{k=1}^{K_{\text{max}}} M^k \cdot a^{n-k} \\
 \tilde{s}^n & = l^n - s^n
\end{align*}
\] \hspace{1cm} (3)

- **Second step:** the factorization

\[
M^0 a^n = \tilde{s}^n \hspace{1cm} (5)
\]
Algorithm - Formal view

a^n is calculated in two steps:

▶ First step: the summation stage using the past

\[s^n = \sum_{k=1}^{K_{\text{max}}} M^k \cdot a^{n-k} \] \hspace{1cm} (3)
\[\tilde{s}^n = l^n - s^n \] \hspace{1cm} (4)

▶ Second step: the factorization

\[M^0 a^n = \tilde{s}^n \] \hspace{1cm} (5)

The summation is the most expensive part!
Algorithm - Schematic view

\[a^n = (M^0)^{-1} \left(l^n - \sum_{k=1}^{K_{max}} M^k \cdot a^{n-k} \right) \]

\(a^n, a^{n-1}, a^{n-2}, a^{n-3}, a^{n-4}, a^{n-5}\)

Direct Solver

\[a^n, l^n, s^n \rightarrow s^n \]

Direct Solver

\[s^n \rightarrow M^0 \rightarrow s^n \]
Computational order of the summation
Possible order of computation

Front \((k)\)/ SpMV

\[
1 \leq i \leq N, s^n(i) = \sum_{k=1}^{k_{\text{max}}} \sum_{j=1}^{N} M^k(i, j) \times a^{n-k}(j)
\] (7)
Possible order of computation

\[
1 \leq i \leq N, \ s^n(i) = \sum_{k=1}^{k_{\text{max}}} \sum_{j=1}^{N} M^k(i, j) \times a^{n-k}(j)
\]
Possible order of computation

1 ≤ i ≤ N, s^n(i) = \sum_{k=1}^{k_{\text{max}}} \sum_{j=1}^{N} M^k(i, j) \times a^{n-k}(j) \quad (7)
A Slicej:

- When outer loop index is \(j \)
- The concatenation of column \(j \) of the interaction matrices \(M^k \) (except \(M^0 \))
- Size \((N \times (K_{\text{max}} - 1)) \)
- There is one vector per line
- \(\text{Slice}^j(i, k) = M^k(i, j) \neq 0 \) with \(k_s = d(i, j)/(c\Delta t) \) and \(k_s \leq k \leq k_s + p \)
A \textit{Slice}^j:

- When outer loop index is \(j \)
- The concatenation of column \(j \) of the interaction matrices \(M^k \) (except \(M^0 \))
- Size \((N \times (K_{max} - 1)) \)
- There is one vector per line
- \(\text{Slice}^j(i, k) = M^k(i, j) \neq 0 \) with \(k_s = d(i, j)/(c\Delta t) \) and \(k_s \leq k \leq k_s + p \)

One vector per row!
Slice Computation
Computation with slices

Past$\,(t-1:t-4) = a^{p < n}(j) + S^n a^{p < n}(j) + S^n S^{n+1} S^{n+2} S^{n+3} [0 a^{p < n}(j)]$

\[\begin{array}{cccc}
M^1(\ast,j) & M^2(\ast,j) & M^3(\ast,j) & M^4(\ast,j) \\
+ & & & \\
S^n & & & \\
\end{array} \]
Several Summations Per Iteration

Past \(j\) \((t-1:t-4) = a^{p<n}(j) + S^n a^{p<n}(j) + S^n S^{n+1} S^{n+2} S^{n+3} \)
Several Summations Per Iteration
Several Summations Per Iteration

When grouping we need a radiation stage (because the future summation $s^{n<m}$ vectors depends on not yet computed $a^{n\leq p'<m}$)
Several Summations Per Iteration

When grouping we need a radiation stage (because the future summation $s^{n<m}$ vectors depends on not yet computed $a^{n\leq p'<m}$)
Multi-vectors/vector product

With vector length \(v = 4 \) and group size \(n_g = 4 \):

Vector/vector product

Vector/matrix product

Multi-vectors/vector product
Multi-vectors/vector product

With vector length $v = 4$ and group size $n_g = 4$:

To perform $v \times n_g \times 2$ Flop:

- Vectors product loads
 - $2v + 1$ per vector product, total: $n_g(2v + 1)$
Multi-vectors/vector product

With vector length \(v = 4 \) and group size \(n_g = 4 \):

To perform \(v \times n_g \times 2 \) Flop:

- Vectors product loads
 - \(2v + 1 \) per vector product, total: \(n_g(2v + 1) \)
- Vector/matrix product loads
 - \(v + n_g(v + 1) \)
Multi-vectors/vector product

With vector length $v = 4$ and group size $n_g = 4$:

To perform $v \times n_g \times 2$ Flop:

- Vectors product loads
 - $2v + 1$ per vector product, total: $n_g(2v + 1)$

- Vector/matrix product loads
 - $v + n_g(v + 1)$

- Multi-vectors/vector product loads
 - $(v + n_g - 1) + (v) + (n_g)$
Multi-vectors/vector product Algorithm

Example using Axpy:

\[
\text{for } k \text{ from 0 to } n-1 \text{ do }
\]
\[
\text{res}(i, k) = v \ast \text{past}(\text{starts}(i) + k)
\]
\[
\text{endfor}
\]
Multi-vectors/vector product Algorithm

Optimizations:

- Re-use the past values
- Minimize the load of the slices values
- Use SIMD (SSE, AVX) by hand
Slice data structure

- **starts**: a vector of size N to store the starting column of each slice-vector
- **lengths**: a vector of size N to store the length of each slice-vector
- **values**: A block of values to store the slice-vector values in row major

![Diagram](image_url)

$K_{\text{max}} = 5$

$N=5$

<table>
<thead>
<tr>
<th>Starts</th>
<th>Lengths</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 3 0 2 2</td>
<td>2 2 4 1 3</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
</tbody>
</table>
Multi-vectors/vector product

The Multi-vectors/vector product operator:

- Has a good ratio of data loaded against flop
- Is implemented and optimized (C, SSE, AVX, Assembly, etc.)
- But needs a radiation stage if $n_g > 1$ because we pad the past vector with 0
Results & Performance study
Configuration

Hardware:
- **SSE-Host**
 - 2 Quad-core Nehalem Intel Xeon X5550 (2, 66GHz)
 - 24GB (DDR3) of shared memory
- **AVX-Host**
 - 2 Deca-core Ivy-Bridge Intel Xeon E5-2670 v2 (2, 50GHz)
 - 128GB (DDR3) of shared memory

Software:
- Gcc 4.7.2 compiler + Aggressive compilation flags
- In double + single precision floating point numbers
- Open-MPI 1.6.5 + State of the art direct solver Mumps 4.10.0
Performance evaluation of the multi-vectors/vector

SSE-Host, in Double precision, with \(n_g = 8 \), slices have dimensions \(N_r \times v \).

Figure: \(N_r = 1\,000 \)

Figure: \(N_r = 20\,000 \)
Performance evaluation of the multi-vectors/vector AVX-Host, with $N_r = 1000$, $n_g = 8$, slices have dimensions $N_r \times v$.

Figure: Single Precision

Figure: Double Precision
Performance evaluation of the multi-vectors/vector

AVX-Host, with \(N_r = 20000 \), \(n_g = 8 \), slices have dimensions \(N_r \times v \).

Figure: Single Precision

Figure: Double Precision
Test case

We use an airplane test case:

- Composed of 23,962 unknowns
- With 10,823 time iterations
- There are 341 interaction matrices M^k ($\approx 5.5 \times 10^9$ NNZ)
- Computing one summation s^n requires 11 GFlop
- The total simulation costs 130,651 GFlop
- In Double
Parallel Efficiency - Definition

All the simulation data takes 70 GB, in order to stay in-core we use at least 4 nodes.

We use a modified version of the parallel efficiency:

\[\tilde{e}_n = \frac{(r \times T_r)}{(p \times T_p)} \]

- \(T^p \): the time taken by \(p \) Cores
- \(r \): the minimum number of Cores (used as reference)

(original formula is \(e_n = T_1 / (T_p \times p) \))
Parallel Efficiency

In the airplane test case

- v is between 1 and 15 (average is 9.5)
- SSE-Asm \rightarrow 3.9 $GFlop/s$ / Compiler Version \rightarrow 1.7 $GFlop/s$

![Figure: Execution time](image1.png)

![Figure: Parallel efficiency \tilde{e}_n](image2.png)

(SSE-Host, using 4 to 32 nodes, 8 CPU per node and $n_g = 8$)
Conclusion

- High flop-rate
- Good efficiency
- Nice improvement against the previous implementation
Conclusion

- High flop-rate
- Good efficiency
- Nice improvement against the previous implementation

Perspective:
- Run big simulations
Acknowledgement

- Experiments using the PLAFRIM experimental test bed.
- This work is supported by the Airbus Group Defense & Space, Airbus Group Innovations, Inria and Conseil Régional d’Aquitaine initiative.

Thanks - Questions?