

Turbulence and Aeroacoustics Research Team of the Centre Acoustique Laboratoire des Fluides et d'Acoustique UMR CNRS 5509, Ecole Centrale de Lyon



MUSAF II Colloquium Toulouse, September 2013

# Direct computation of jet noise using Large Eddy Simulation

Christophe Bogey

LMFA, UMR CNRS 5509

Ecole Centrale de Lyon

http://acoustique.ec-lyon.fr

# Outline

• Introduction : experimental results and open questions on jet noise

- Computations of jets using Large-Eddy Simulation
  - numerical methods
  - jet inflow specification
- Effects of jet initial conditions
  - effects of nozzle-exit turbulence level
  - effects of Reynolds number
- Influence of jet temperature
- Concluding remarks

#### • Motivations

investigation of real jets (full scale, complex nozzle geometry, heated, two streams, chevrons, installation effects ...)

- providing reliable predictions and better understanding
- $-\operatorname{giving}$  insight for flow control and noise reduction

Reynolds numbers  $\text{Re}_D = u_j D/\nu \sim 10^7$  difficult to reach in experiments and simulations  $\rightarrow$  studies at lower  $\text{Re}_D$  (DNS  $\sim 10^3$ , LES/exp.  $\sim 10^5$ ) and most are for unheated jets



High-bypass-ratio nozzle (CFM56 type) (Loheac *et al.*, SNECMA, 2004)



QTD2 - Boeing - NASA AIAA Paper 2006-2720



Castelain *et al. AIAA J.*, 2008, 45(5)

## Effects of initial conditions

### • Shear-layer visualizations at $\neq \operatorname{Re}_D$

from Castelain *et al.*, ECL  $Re_D = 870,000$ 





as the Reynolds number increases

- coherent structures are weaker / fine-scale turbulence is stronger
- the laminar-turbulent transition moves upstream,

from the mixing layer to the nozzle boundary layer

- the nozzle-exit flow parameters (boundary-layer momentum thickness  $\delta_{\theta}/r_0$  and shape factor H, Reynolds number  $\text{Re}_{\theta} = u_j \delta_{\theta}/\nu$ , peak turbulence level  $u'_e/u_j$ ) vary

### • Effects of initial conditions on flow and sound fields

cf experiments by Hussain & Zedan (1978), Gutmark & Ho (1983), Zaman (1985), Raman et al. (1989), Bridges & Hussain (1987), ...



e.g. sound spectra at 90 deg.
for untripped/tripped jets with
laminar exit conditions
turbulent exit conditions

from Zaman, AIAA J. (1985)

several exit parameters vary and may be unknown in experiments

- $\rightarrow$  what should be prescribed in simulations?
- $\rightarrow$  what is the influence of each parameter?

there is an ongoing discussion on that issue (cf Viswanathan and Clark (2004), Zaman (2012), Karon & Ahuja (2012) and Bogey *et al.* (2010 ...))

### • Effects of temperature on flow and sound fields

cf experiments by Witze (1974), Lau (1981), Lepicovsky (1999), Fisher *et al.* (1974), Tanna (1977), Bridges(05), ...

- overall noise increase for  $M = u_j/c_a < 0.7$ , and reduction for M > 0.7

– noise reduction depending on the emission angle  $\phi$ 



- Effects of temperature on noise components
  - decrease of sound levels for all freq. in the sideline direction
  - growth of low-freq. components in the downstream direction, attributed to entropy sources (cf Morfey et al. (1973 ...))
    - ... questioned by Viswanathan (2004) (contamination?  $\text{Re}_D$  effects?)  $\rightarrow$  is this low-freq. amplification obtained in simulations?



# Outline

• Introduction : experimental results and open questions on jet noise

- Computations of jets using Large-Eddy Simulation
  - numerical methods
  - jet inflow specification
- Effects of jet initial conditions
  - effects of nozzle-exit turbulence level
  - effects of Reynolds number
- Influence of jet temperature
- Concluding remarks

### • Numerical methods

- space derivatives : low-dispersion 11-point finite differences
- time integration : low-dispersion low-dissipation 6-stage Runge-Kutta
- 11-point selective filtering to relax subgrid energy
- $-\operatorname{radiation}$  boundary conditions & outflow sponge zone
  - Ref. : J. Comput. Phys., 2004, 194(1) Acta Acustica, 2002, 88(4) J. Comput. Phys., 2007, 224 Phys. Fluids, 2006, (18)6 - J. Fluid Mech., 2009, 627

### • LES based on relaxation filtering

the flow variables are filtered explicitly after each time step to avoid pile-up of energy at smallest scales

- grid cut-off wave number (at 2 PPW) and filtering cut-off wave number (at  $\sim$  5 PPW) well separated
- energy drained by the filtering at smallest scales
- largest scales unaffected and damped by molecular viscosity

# LES based on relaxation filtering

### • In LES, largest scales must be

well calculated, and mainly dissipated by viscosity (not by numeric/SGS models) to capture Reynolds number effects

a priori dissipation functions

$$- ext{ for viscosity}: oldsymbol{
u} k^2 = rac{
u}{\Delta^2} (k\Delta)^2 
onumber \ - ext{ for filtering}: rac{\sigma_d}{\Delta t} D_f^*(k\Delta) \quad ext{ with } D_f^* ext{ filter transfer fct}$$





#### $M = 0.9 \text{ and } Re_D =$ 1700, 2500 and 5000

vorticity and pressure

Ref.: Bogey & Bailly, Phys. Fluids, 2006, 18 - TCFD, 2006, 20(1)

#### • LES parameters

- grid containing  $n_r \times n_\theta \times n_z = 256 \times 1024 \times 962 = 252$  million points with  $\Delta r/r_0 = 0.35\%$ ,  $r\Delta \theta/r_0 = 0.6\%$ ,  $\Delta z/r_0 = 0.7\%$  at the nozzle lip
- -164,000 time steps

the baseline LES of an isoT jet at  $\text{Re}_D = 10^5$  shown to be accurate see Bogey *et al.*, *PoF*, 2011, 23(3)

- $\rightarrow$  the LES of the other jets with  $\text{Re}_D \leq 10^5$  very likely reliable
- Far-field wave propagation
  - to  $60r_0$  from the nozzle exit
  - by solving the isentropic linearized Euler eq.
  - from LES fields on a surface at  $r = 6.5r_0$
  - $-n_r imes n_ heta imes n_z = 835 imes 256 imes 1155 = 247 imes 10^6$



## Jet inflow specification

### • Boundary-layer tripping in a $2r_0$ -long pipe

- Blasius laminar profile at the pipe inlet
- addition at  $z = -r_0$  of random vortical disturbances of magnitude chosen to provide the intended value of  $u'_e/u_j$

– laminar mean profile at exit (H  $\simeq 2.3$ )





• Spectra of velocity  $u'_z$  at  $r = r_0$  and  $z = 0.4r_0$ 

vs axial and azimuthal wave numbers normalized by exit BL thickness  $\delta$ 



— baseline LES of an isoT jet at  $\text{Re}_D = 10^5$  with  $u'_e/u_j = 9\%$ 

--- LES with twice the resolution • DNS (turb. pipe flow, Eggels et al. (1994))

 $\rightarrow$  qualitative agreement with spectra in turbulent pipe flow and TBL (Tomkins & Adrian (PIV, 2005)) see Bogey *et al.*, PoF, 2011, 23(9)

# Outline

• Introduction : experimental results and open questions on jet noise

- Computations of jets using Large-Eddy Simulation
  - numerical methods
  - jet inflow specification
- Effects of jet initial conditions
  - effects of nozzle-exit turbulence level
  - effects of Reynolds number
- Influence of jet temperature
- Concluding remarks

### • Objective

identify and distinguish between the effects of initial turbulence level and Reynolds number on laboratory-scale subsonic jets ( $\text{Re}_D \simeq 10^5$ )

#### • LES of isothermal round jets at Mach M = 0.9

exiting from a pipe with similar Blasius BL velocity profiles of thickness  $\delta_0 = 0.15r_0$  (momentum thickness  $\delta_{\theta} = 0.018r_0$ ) and various peak turbulence intensities  $u'_e/u_j$ 

 $\rightarrow 4 \text{ jets with } \operatorname{Re}_D = 10^5 \text{ and } u'_e/u_j = 3\%, 6\%, 9\% \text{ or } 12\%$  $(\delta_\theta = 0.018r_0 \text{ yielding } \operatorname{Re}_\theta \simeq 900)$ 

see in J. Fluid Mech., 2012, 701

 $\rightarrow 4$  jets with  $u'_e/u_j = 9\%$  and  $\text{Re}_D = 2.5 \times 10^4$ ,  $5 \times 10^4$ ,  $10^5$  or  $2 \times 10^5$ (and  $\text{Re}_{\theta} = 251$ , 486, 943 or 1856)

see in *PoF*, 2012, 24(10)

- Vorticity norm in the shear layers up to  $z = 3.75r_0$ 
  - $\rightarrow$  jets with  $\text{Re}_D = 10^5$  and





 $\rightarrow$  large-scale structures observed at  $u'_e/u_j = 3\%$  and  $\text{Re}_D = 2.5 \times 10^4$ but stronger fine-scale turbulence with increasing  $u'_e/u_j$  or  $\text{Re}_D$ 

#### • Momentum thickness

17

 ${
m Re}_D=2.5 imes 10^4 
earrow 2 imes 10^5$  $u_e^\prime/u_j=3\% 
earrow 12\%$ 0.3 0.3 0.25 0.25 0.2 0.2  $\delta_\theta / r_0$  $\delta_\theta / r_0$ 0.15 0.15 0.1 0.1  $u'_e$  $Re \nearrow$ 0.05 0.05 0 0 8 2 2 4 10 8 10 0 6 0 4 6 z/r<sub>0</sub> z/r<sub>0</sub>

 $\rightarrow$  for higher  $u'_e/u_j$  or  $\operatorname{Re}_D$ , the shear layers develop more slowly with lower spreading rates

• Peak axial turbulence intensities

 $u_e^\prime/u_j=3\% 
earrow 12\%$ 

 ${
m Re}_D=2.5 imes 10^4 
earrow 2 imes 10^5$ 



 $\rightarrow$  lower rms velocities for higher  $u'_e/u_j$  or  $\text{Re}_D$ 

 $\rightarrow$  overshoot at  $u'_e/u_j = 3\%$  and  $\operatorname{Re}_D = 2.5 \times 10^4$ but nearly monotonical trend at  $u'_e/u_j = 12\%$  and  $\operatorname{Re}_D = 2 \times 10^5$ 

### Effects of jet initial conditions

#### • Fluctuating pressure



• Sound levels at 60 radii from the nozzle exit

 $u_e^\prime/u_j=3\% 
earrow 12\%$ 

 ${
m Re}_D=2.5 imes 10^4 
earrow 2 imes 10^5$ 



 $\triangleright, +, \times$  measurements at  $\operatorname{Re}_D \geq 5 \times 10^5$ 

 $\rightarrow$  as  $u'_e/u_j$  or  $\operatorname{Re}_D$  increase, OASPL decrease and become closer to those for high-Re<sub>D</sub> not very likely to generate vortex-pairing noise • Sound spectra at 60 deg.

 $u_e^\prime/u_j=3\% 
earrow 12\%$ 

 ${
m Re}_D=2.5 imes 10^4 
earrow 2 imes 10^5$ 



 $\triangleright$  measurements at  $\operatorname{Re}_D \geq 5 \times 10^5$  ....  $\operatorname{St}_{\theta} = 0.007$  (half of ML dominant freq.)

 $\rightarrow$  as  $u'_e/u_j$  or  $\operatorname{Re}_D$  increase, the extra hump wrt high- $\operatorname{Re}_D$  measurements is weaker, as large-scale structures no longer dominate the shear layers

# Outline

• Introduction : experimental results and open questions on jet noise

- Computations of jets using Large-Eddy Simulation
  - numerical methods
  - jet inflow specification
- Effects of jet initial conditions
  - effects of nozzle-exit turbulence level
  - effects of Reynolds number
- Influence of jet temperature
- Concluding remarks

## • Objective

to identify and distinguish btw temperature and Reynolds number effects on heated laboratory-scale subsonic jets see AIAA-2013-2140 Q: is the downstream low-freq. noise amplification due to  $Re_D$ ?

#### • LES of round jets at Mach M = 0.9

exiting from a pipe with similar Blasius BL velocity profiles of thickness  $\delta_0 = 0.15r_0$  (momentum thickness  $\delta_{\theta} = 0.018r_0$ ) and peak turbulence intensities  $u'_e/u_j$ 

 $\rightarrow$  one isoT jet at  $\text{Re}_D = 10^5$ 

 $\rightarrow$  two hot jets at  $T_j = 1.5T_a$  and at  $T_j = 2.25T_a$  with the same diameter as the isoT jet, yielding  $\text{Re}_D = 5 \times 10^4$  and  $\text{Re}_D = 2.5 \times 10^4$  due to the variations of viscosity with  $T_j$ 

 $\rightarrow$  one hot jet at  $T_j = 1.5T_a$  with the same  $\text{Re}_D = 10^5$  as the isoT jet

### • Shear-layer development



 $\rightarrow$  with heating, the shear layers develop more rapidly with higher turbulence intensities for the jets at identical D, but shows much less change for a constant  $\operatorname{Re}_D$ 

... strong Reynolds nb effects

## Effects of jet temperature

• Vorticity norm in the jets and pressure outside

with heating :

 $\rightarrow$  emission of additionnal sound waves in the mixing layers for a constant D

 $\rightarrow \text{lower noise in the}$ upstream direction
at a fixed  $\operatorname{Re}_D$ 



Effects of jet temperature

• Sound levels at  $d = 60r_0$  vs emission angle  $\phi$ 

**OASPL** comp. with exp. data OASPL (dB) OASPL (dB)  $\phi$  (deg.) (deg.)

---- isoT, ----  $T_j = 1.5T_a$ , ----  $T_j = 2.25T_a$  for the same D (and  $\operatorname{Re}_D$ ) ----  $T_j = 1.5T_a$  for the same  $\operatorname{Re}_D$  as the isoT case exp. data for M = 0.9 jets with D = 5.1cm from Tanna and Bridges :

--- isoT / ---  $T_j = 2.3T_a$  at d = 72D, ---  $\operatorname{cold}/\operatorname{---} T_j = 1.43T_a$  at d = 40D

 $\rightarrow$  with heating, more noise for the same D, less noise for equal  $\operatorname{Re}_D$ ... in the latter, resemblance to exp. data for high  $\operatorname{Re}_D$  • Difference in sound spectra wrt the isoT case vs  $St_D = fD/u_j$ 

at  $\phi = 30^{\circ}$ 



----  $T_j = 1.5T_a$ , ----  $T_j = 2.25T_a$  for the same D (and  $\operatorname{Re}_D \searrow$ ) ----  $T_j = 1.5T_a$  for the same  $\operatorname{Re}_D$  as the isoT case

 $\rightarrow$  emergence of a low-freq. component independently of Re<sub>D</sub> and reduction of high-freq. noise, in agreement with exp. of Tanna (1977)

... low-freq. amplification due to entropy noise sources?

• Difference in sound spectra wrt the isoT case vs  $St_D = fD/u_j$ 

at  $\phi = 60^{\circ}$ 



 $--- T_j = 1.5T_a, --- T_j = 2.25T_a \text{ for the same } D \text{ (and } \operatorname{Re}_D \text{)}$  $--- T_j = 1.5T_a \text{ for the same } \operatorname{Re}_D \text{ as the isoT case}$ 

--- 1/8, 1/4 and 1/2 of the freq. initially dominating in the mixing layers

- $\rightarrow$  extra noise components as  $\text{Re}_D$  decreases
- ... generation of vortex-pairing noise?

• Difference in sound spectra wrt the isoT case vs  $St_D = fD/u_j$ 

at  $\phi = 90^{\circ}$ 



 $--- T_j = 1.5T_a, --- T_j = 2.25T_a \text{ for the same } D \text{ (and } \operatorname{Re}_D \text{)}$  $--- T_j = 1.5T_a \text{ for the same } \operatorname{Re}_D \text{ as the isoT case}$ 

exp. data for M = 0.9 jets with D = 5.1cm:  $\triangledown$  btw cold and  $T_j = 1.43T_a$  (Bridges)

 $\rightarrow$  for the jet at  $\text{Re}_D = 10^5$ , noise reduction for nearly all freq. in line with exp. of Tanna (1977) and Bridges (2005)

### • Large-Eddy Simulations of jets

even still expensive, they can now allow us to carefully investigate problems encountered for laboratory-scale jets

... and to complement and clarify experimental results

e.g. regarding effects difficult to distinguish, which can mutually amplify or oppose one another

- effects of Reynolds number  $(\text{Re}_D/\text{Re}_{\theta})$  and exit turbulence levels
- effects of temperature and Reynolds number
- They are mature enough to
  - provide a better understanding of noise generation mechanisms
  - be applied to more complex configurations

### • Shear-layer visualizations at different $\operatorname{Re}_D$

 ${
m Re}_D = 870,000$ 



from Castelain et al., ECL

the nozzle-exit parameters vary with  $\operatorname{Re}_D$ , including

- the boundary-layer momentum thickness  $\delta_{\theta}/r_0$  (~ 0.1 1%) and its corresponding Reynolds number  $\text{Re}_{\theta} = u_j \delta_{\theta}/\nu$
- the peak turbulence level  $u'_e/u_j~(\sim 0-10\%)$
- the shape factor  $H = \delta^* / \delta_{\theta}$  of the mean velocity profile (H  $\simeq 2.5$ : Blasius laminar profile - H  $\simeq 1.4$  turbulent profile)

### • Initial flow state at the nozzle exit



peak exit rms velocity  $u'_e/u_j$  for jets with  $\operatorname{Re}_D$  between 50,000 and 300,000

from Zaman, AIAA J. (1985)

 $- ext{ for } \operatorname{Re}_D \lesssim 100,000 : u'_e/u_j < 1\% ext{ and } \operatorname{H} \simeq 2.5$  $o ext{ the jets are initially fully laminar}$ 

 $- ext{ for } 100,000 \lesssim ext{Re}_D \lesssim 500,000: 1\% \leq u'_e/u_j \leq 10\% \ o ext{ the jets are initially transitional}$ 

 $- ext{ for } \operatorname{Re}_D \gtrsim 500,000 : u'_e/u_j \simeq 10\% ext{ and } \operatorname{H} \simeq 1.4$  $o ext{ the jets are initially fully turbulent}$ 

## Effects of jet initial conditions

• Nozzle-exit flow profiles for the jets with  $\text{Re}_D = 10^5$  and  $u'_e/u_j \nearrow$ 



 $\rightarrow$  as desired, laminar velocity profiles (H  $\simeq 2.3$ ), momentum thickness  $\delta_{\theta} \simeq 0.018 r_0$ , and rms velocity peaks  $u'_e/u_j = 3, 6, 9, 12\%$ 

 $\delta_{\theta}$  yielding momentum Reynolds numbers  $\operatorname{Re}_{\theta} \simeq 900$ 

## Effects of jet initial conditions

• Nozzle-exit flow profiles for the jets with  $u'_e/u_j = 9\%$  and  $\operatorname{Re}_D \nearrow$ 



 $\rightarrow$  as desired, laminar velocity profiles (H  $\simeq 2.3$ ), momentum thickness  $\delta_{\theta} \simeq 0.018 r_0$ , and rms velocity peaks  $u'_e/u_j \simeq 9\%$ 

 $\delta_{\theta}$  providing momentum Reynolds numbers  $\text{Re}_{\theta} = 251, 477, 925$  and 1830

• Centerline mean axial velocity

 $u_e^\prime/u_j=3\% 
earrow 12\%$ 

 ${
m Re}_D=2.5 imes 10^4 
earrow 2 imes 10^5$ 



o,  $\diamond$ ,  $\Box$  measurements for Mach 0.9 jets at  $\text{Re}_D \geq 5 \times 10^5$ 

- $\rightarrow$  with rising  $u'_e/u_j$  or  $\operatorname{Re}_D$ , the jet spreads farther downstream
- ... fair agreement with high  $\operatorname{Re}_D$  data

• Centerline axial turbulence intensities

 $u_e^\prime/u_j=3\% 
earrow 12\%$ 

 ${
m Re}_D=2.5 imes 10^4 
earrow 2 imes 10^5$ 



o,  $\diamond$ ,  $\Box$  measurements for Mach 0.9 jets at  $\text{Re}_D \geq 5 \times 10^5$ 

 $\rightarrow$  as  $u'_e/u_j$  or  $\operatorname{Re}_D$  increase, rms velocity peaks are reached farther downstream but do not differ much

## Effects of jet initial conditions



#### pressure fields

for the jets with  $u'_e/u_j =$  9% and  $\operatorname{Re}_D \nearrow$ 

 $\rightarrow$  strong waves emitted between  $z = 2r_0$ and  $z = 5r_0$  at lower  $\operatorname{Re}_D$ , attenuated at higher  $\operatorname{Re}_D$ 

#### • Nozzle-exit profiles

mean axial velocity  $\langle u_z \rangle / u_i$ rms axial velocity  $[u'_{z}]_{rms}/u_{j}$ 1.1 0.10.09 0.8 <u'\_zu'\_z><sup>1/2</sup>/u<sub>i</sub> <u >/u 0.06 0.6 0.4 0.03 0.2 0 0.8 0.85 0.9 0.95 0.85 0.9 0.95 0.8 r/r r/r<sub>0</sub> ---- isoT, ----  $T_j = 1.5T_a$ , -----  $T_j = 2.25T_a$  for the same D (and  $\operatorname{Re}_D \searrow$ )  $--- T_j = 1.5T_a$  for the same  $\text{Re}_D$  as the isoT case  $\circ$  exp. data for a  $\text{Re}_D = 10^5$  tripped jet

 $\rightarrow$  as desired, (laminar) Blasius velocity profiles (shape factor  $H \simeq 2.3$ ), momentum thickness  $\delta_{\theta} \simeq 0.019 r_0$ , and rms velocity peak  $u'_e/u_j \simeq 9\%$ 

...  $\delta_{\theta}$  providing  $\text{Re}_{\theta} = 943$ , 485, 254 and 941

 $\bullet$  Vorticity norm in the shear layers up to  $z=3r_0$ 



 $\rightarrow$  stronger large-scale structures in the hot jets with equal diameter and decreasing  $\text{Re}_D$ 

 $\rightarrow$  similar vorticity fields for a constant  $\operatorname{Re}_D$ 

Effects of jet temperature

• Centerline mean axial velocity  $u_c/u_j$ 



----- isoT, -----  $T_j = 1.5T_a$ , -----  $T_j = 2.25T_a$  for the same D (and  $\operatorname{Re}_D \searrow$ ) -----  $T_j = 1.5T_a$  for the same  $\operatorname{Re}_D$  as the isoT case

exp. data at M = 0.9 and Re $_D \geq 4 \times 10^5$ :  $\triangledown$ ,  $\diamond$ ,  $\square$   $T_j \simeq T_a$ ,  $\land$   $T_j = 1.76T_a$ 

 $\rightarrow$  in all cases, the potential core shortens and the velocity decay is faster with heating, in good agreement with exp. data

... temperature effects are predominant

### • Centerline turbulence intensities

41

rms axial velocity  $[u'_z]_{rms}/u_j$ 



----- isoT, -----  $T_j = 1.5T_a$ , -----  $T_j = 2.25T_a$  for the same D (and  $\operatorname{Re}_D \searrow$ ) -----  $T_j = 1.5T_a$  for the same  $\operatorname{Re}_D$  as the isoT case

exp. data at M = 0.9 and Re<sub>D</sub>  $\geq 4 \times 10^5$ :  $\diamond$ ,  $\Box T_j \simeq T_a$ 

 $\rightarrow$  with rising temperature, the peak turbulence intensities increase, in agreement with exp. findings of Bridges (2006)

## LES of jet noise carried out since 2000

- Simulations without nozzle
  - of subsonic jets at Mach M = 0.9:
  - feasibility (JEAN)
  - influence of forcing

- TCFD, 2003, 16(4)- C&F, 2006, 35(10)
  - AIAA J, 2005, 43(5)
- influence of subgrid-scale model (Smagorinsky vs filtering)

AIAA J, 2005, 43(2) - PoF, 2006, 18(6) - IJHHF, 2006, 27

– analysis of two noise components for Reynolds  $\text{Re}_D \leq 10,000$ 

TCFD, 2006, 20(10) - JFM, 2007, 583

• Simulations with pipe nozzle

preliminary simulations :

- single-stream subsonic jet
- supersonic screeching jet
- dual-stream jet (CoJeN)

IJA, 2008, 7(1)

- PoF, 2007, 19(7)
- PoF, 2009, 21(3)

## LES of jet noise carried out since 2000

recent simulations with pipe nozzle :

- $-jet at M = 3.3 and Re_D = 100,000$  AIAA J, 2011, 49(10)
- initially laminar jets at M = 0.9 and  $Re_D = 100,000$

JFM, 2011, 23(3)

- initially turbulent jets at M = 0.9 and  $Re_D \simeq 100,000$ 
  - $\rightarrow$  grid convergence and investigation of exit turbulence
  - PoF, 2011, 23(3) PoF, 2011, 23(9)  $\rightarrow$  effets of initial turbulence JFM, 2012, 701  $\rightarrow$  effets of Reynolds number PoF, 2012, 24(10)  $\rightarrow$  effets of exit-boundary-layer thickness PoF, 2013, 25(05)

#### ongoing work :

-heated jets at M = 0.9 and  $Re_D \simeq 100,000$  AIAA-2013-2140

papers available at http://acoustique.ec-lyon.fr/caapubli\_fr.php

## About grid resolution in jet LES

### • Highest resolutions in recent LES of subsonic single jets

#### $\rightarrow$ jet conditions

|                            | ${ m Re}_D$      | $\operatorname{Re}_{	heta}$ | $\delta_{BL}/r_0$ | BL trip | $u_e^\prime/u_j$ | initial state       |
|----------------------------|------------------|-----------------------------|-------------------|---------|------------------|---------------------|
| Bogey & Bailly (JFM, 2010) | $10^5$           | 1200                        | 0.2               | no      | < 1%             | fully laminar       |
| Bogey et al. (PoF, 2011)   | $10^5$           | 900                         | 0.15              | yes     | $\sim 9\%$       | nominally turbulent |
| Shur et al. (JSV, 2011)    | $1.1	imes10^{6}$ | 550                         | 0.016             | DES     | na               | na                  |

#### $\rightarrow$ grid resolutions wrt $\delta_{BL}$

|             | $n_r 	imes n_	heta 	imes n_z$ | $\delta/\Delta r_{min}$ | $\delta/(r_0\Delta	heta)$ | $\delta/\Delta z_e$ | remarks                                                                    |
|-------------|-------------------------------|-------------------------|---------------------------|---------------------|----------------------------------------------------------------------------|
| Bogey       | 173	imes256	imes505           | 7                       | 8.1                       | 3.5                 | similar results                                                            |
| (2010)      |                               |                         |                           |                     | when $\Delta r \ \& \ \Delta z/2$                                          |
| Bogey       | 256 	imes 1024 	imes 962      | 41                      | <b>24</b>                 | 21                  | very close mixing layer solutions                                          |
| (2011)      |                               |                         |                           |                     | when $\delta/\Delta r,\delta/(r_0\Delta 	heta)$ & $\delta/\Delta z	imes 2$ |
| Shur (2011) | 158 	imes 240 	imes 601       | 4.4                     | 0.6                       | 1.6                 |                                                                            |

in Bogey (2011) : integral length scales shown to be well discretized and affected by molecular viscosity rather than by the sgs model

\_\_\_\_\_