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Bakground

Motivations

investigation of real jets (full scale, complex nozzle geometry, heated, two

streams, chevrons, installation effects ...)

– providing reliable predictions and better understanding

– giving insight for flow control and noise reduction

Reynolds numbers ReD = ujD/ν ∼ 107 difficult to reach in experiments

and simulations → studies at lower ReD (DNS ∼ 103, LES/exp. ∼ 105)

and most are for unheated jets

High-bypass-ratio nozzle (CFM56 type)

(Loheac et al., SNECMA, 2004)

QTD2 - Boeing - NASA

AIAA Paper 2006-2720

Castelain et al.

AIAA J., 2008, 45(5)3 C. Bogey - September 2013



E�ets of initial onditions

Shear-layer visualizations at 6= ReD from Castelain et al., ECL

ReD = 33, 000 ReD = 120, 000

ReD = 870, 000

as the Reynolds number increases

– coherent structures are weaker / fine-scale turbulence is stronger

– the laminar-turbulent transition moves upstream,

from the mixing layer to the nozzle boundary layer

– the nozzle-exit flow parameters (boundary-layer momentum thickness

δθ/r0 and shape factor H, Reynolds number Reθ = ujδθ/ν, peak tur-

bulence level u′
e/uj) vary4 C. Bogey - September 2013



E�ets of initial onditions

Effects of initial conditions on flow and sound fields

cf experiments by Hussain & Zedan (1978), Gutmark & Ho (1983), Zaman (1985),

Raman et al. (1989), Bridges & Hussain (1987), ...
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e.g. sound spectra at 90 deg.

for untripped/tripped jets with

laminar exit conditions

turbulent exit conditions

from Zaman, AIAA J. (1985)

several exit parameters vary and may be unknown in experiments

→ what should be prescribed in simulations?

→ what is the influence of each parameter?

there is an ongoing discussion on that issue (cf Viswanathan and Clark (2004),

Zaman (2012), Karon & Ahuja (2012) and Bogey et al. (2010 ...))5 C. Bogey - September 2013



E�ets of temperature

Effects of temperature on flow and sound fields

cf experiments by Witze (1974), Lau (1981), Lepicovsky (1999), Fisher et al. (1974),

Tanna (1977), Bridges(05), ...

– overall noise increase for M = uj/ca < 0.7, and reduction for M > 0.7

– noise reduction depending on the emission angle φ

noise intensity vs M
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E�ets of temperature

Effects of temperature on noise components

– decrease of sound levels for all freq. in the sideline direction

– growth of low-freq. components in the downstream direction,

attributed to entropy sources (cf Morfey et al. (1973 ...))

... questioned by Viswanathan (2004) (contamination? ReD effects?)

→ is this low-freq. amplification obtained in simulations?

at φ = 45◦
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Present jet simulations

Numerical methods

– space derivatives : low-dispersion 11-point finite differences

– time integration : low-dispersion low-dissipation 6-stage Runge-Kutta

– 11-point selective filtering to relax subgrid energy

– radiation boundary conditions & outflow sponge zone

Ref. : J. Comput. Phys., 2004, 194(1) - Ata Austia, 2002, 88(4) - J. Comput. Phys., 2007, 224Phys. Fluids, 2006, (18)6 - J. Fluid Meh., 2009, 627
LES based on relaxation filtering

the flow variables are filtered explicitly after each time step to avoid

pile-up of energy at smallest scales

– grid cut-off wave number (at 2 PPW) and filtering cut-off wave number

(at ∼ 5 PPW) well separated

– energy drained by the filtering at smallest scales

– largest scales unaffected and damped by molecular viscosity9 C. Bogey - September 2013



LES based on relaxation �ltering

In LES, largest scales must be

well calculated, and mainly dissipated by

viscosity (not by numeric/SGS models) to

capture Reynolds number effectsa priori dissipation functions

– for viscosity : νk2 =
ν

∆2
(k∆)2

– for filtering :
σd

∆t
D∗

f(k∆) with D∗
f filter

transfer fct

vs non-dimensional wave number
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Ref.: Bogey & Bailly, Phys. Flu-ids, 2006, 18 - TCFD, 2006, 20(1)10 C. Bogey - September 2013



Present jet simulations

LES parameters

– grid containing nr × nθ × nz = 256 × 1024 × 962 = 252 million points

with ∆r/r0 = 0.35%, r∆θ/r0 = 0.6%, ∆z/r0 = 0.7% at the nozzle lip

– 164,000 time steps

the baseline LES of an isoT jet at ReD = 105 shown to be accurate

see Bogey et al., PoF, 2011, 23(3)
→ the LES of the other jets with ReD ≤ 105 very likely reliable

Far-field wave propagation

– to 60r0 from the nozzle exit

– by solving the isentropic linearized Euler eq.

– from LES fields on a surface at r = 6.5r0

– nr × nθ × nz = 835× 256× 1155 = 247× 10611 C. Bogey - September 2013



Jet inow spei�ation

Boundary-layer tripping in a 2r0-long pipe

– Blasius laminar profile at the pipe inlet

– addition at z = −r0 of random vortical

disturbances of magnitude chosen to

provide the intended value of u′
e/uj

– laminar mean profile at exit (H ≃ 2.3)

at

z = −2r0

at

z = 0

mean velocity vs r/r0 peak rms velocity vs z/r0
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Jet inow spei�ation

Spectra of velocity u′
z at r = r0 and z = 0.4r0vs axial and azimuthal wave numbers normalized by exit BL thickness δvs kzδ (using Taylor hyp.) vs kθδ/r0
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LES with twice the resolution ◦ DNS (turb. pipe flow, Eggels et al. (1994))

→ qualitative agreement with spectra in turbulent pipe flow and TBL

(Tomkins & Adrian (PIV, 2005)) see Bogey et al., PoF, 2011, 23(9)13 C. Bogey - September 2013
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E�ets of jet initial onditions

Objective

identify and distinguish between the effects of initial turbulence level and

Reynolds number on laboratory-scale subsonic jets (ReD ≃ 105)

LES of isothermal round jets at Mach M = 0.9

exiting from a pipe with similar Blasius BL velocity profiles

of thickness δ0 = 0.15r0 (momentum thickness δθ = 0.018r0)

and various peak turbulence intensities u′
e/uj

→ 4 jets with ReD = 105 and u′
e/uj = 3%, 6%, 9% or 12%

(δθ = 0.018r0 yielding Reθ ≃ 900)

see in J. Fluid Meh., 2012, 701
→ 4 jets with u′

e/uj = 9% and ReD = 2.5 × 104, 5 × 104, 105 or 2 × 105

(and Reθ = 251, 486, 943 or 1856)

see in PoF, 2012, 24(10)15 C. Bogey - September 2013



E�ets of jet initial onditions

Vorticity norm in the shear layers up to z = 3.75r0

→ jets with ReD = 105 and

u′
e/uj = 3% u′

e/uj = 6% u′
e/uj = 9% u′

e/uj = 12%

→ jets with u′
e/uj = 9% and

ReD = 2.5 × 104 ReD = 5 × 104 ReD = 105 ReD = 2 × 105

→ large-scale structures observed at u′
e/uj = 3% and ReD = 2.5 × 104

but stronger fine-scale turbulence with increasing u′
e/uj or ReD16 C. Bogey - September 2013



E�ets of jet initial onditions

Momentum thickness

u′
e/uj = 3% ր 12% ReD = 2.5 × 104 ր 2 × 105
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→ for higher u′
e/uj or ReD, the shear layers develop more slowly

with lower spreading rates
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E�ets of jet initial onditions

Peak axial turbulence intensities

u′
e/uj = 3% ր 12% ReD = 2.5 × 104 ր 2 × 105
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→ lower rms velocities for higher u′

e/uj or ReD

→ overshoot at u′
e/uj = 3% and ReD = 2.5 × 104

but nearly monotonical trend at u′
e/uj = 12% and ReD = 2 × 105

18 C. Bogey - September 2013



E�ets of jet initial onditions

Fluctuating pressure

u′
e/uj = 3% u′

e/uj = 6% u′
e/uj = 9% u′

e/uj = 12%

ReD = 2.5 × 104 ReD = 5 × 104 ReD = 105 ReD = 2 × 105

19 C. Bogey - September 2013



Inuene of the jet initial onditions

Sound levels at 60 radii from the nozzle exit

u′
e/uj = 3% ր 12% ReD = 2.5 × 104 ր 2 × 105
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⊲, +, × measurements at ReD ≥ 5 × 105

→ as u′
e/uj or ReD increase, OASPL decrease and become closer to those

for high-ReD not very likely to generate vortex-pairing noise
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E�ets of jet initial onditions

Sound spectra at 60 deg.

u′
e/uj = 3% ր 12% ReD = 2.5 × 104 ր 2 × 105
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⊲ measurements at ReD ≥ 5 × 105 Stθ = 0.007 (half of ML dominant freq.)

→ as u′
e/uj or ReD increase, the extra hump wrt high-ReD measurements

is weaker, as large-scale structures no longer dominate the shear layers21 C. Bogey - September 2013
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E�ets of jet temperature

Objective

to identify and distinguish btw temperature and Reynolds number effects

on heated laboratory-scale subsonic jets see AIAA-2013-2140

Q : is the downstream low-freq. noise amplification due to ReD?

LES of round jets at Mach M = 0.9

exiting from a pipe with similar Blasius BL velocity profiles

of thickness δ0 = 0.15r0 (momentum thickness δθ = 0.018r0)

and peak turbulence intensities u′
e/uj

→ one isoT jet at ReD = 105

→ two hot jets at Tj = 1.5Ta and at Tj = 2.25Ta with the same diameter

as the isoT jet, yielding ReD = 5 × 104 and ReD = 2.5 × 104 due to the

variations of viscosity with Tj

→ one hot jet at Tj = 1.5Ta with the same ReD = 105 as the isoT jet23 C. Bogey - September 2013



E�ets of jet temperature

Shear-layer development

momentum thickness δθ/r0 rms axial velocity [u′
z]rms/uj
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isoT, Tj = 1.5Ta, Tj = 2.25Ta for the same D (and ReDց)

Tj = 1.5Ta for the same ReD as the isoT case

→ with heating, the shear layers develop more rapidly with higher tur-

bulence intensities for the jets at identical D, but shows much less change

for a constant ReD

... strong Reynolds nb effects24 C. Bogey - September 2013



E�ets of jet temperature

Vorticity norm
in the jets and
pressure outside

with heating :

→ emission of addi-

tionnal sound waves

in the mixing layers

for a constant D

→ lower noise in the

upstream direction

at a fixed ReD

25 C. Bogey - September 2013



E�ets of jet temperature

Sound levels at d = 60r0 vs emission angle φ

OASPL comp. with exp. data
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isoT, Tj = 1.5Ta, Tj = 2.25Ta for the same D (and ReDց)

Tj = 1.5Ta for the same ReD as the isoT case

exp. data for M = 0.9 jets with D = 5.1cm from Tanna and Bridges :

isoT/ Tj = 2.3Ta at d = 72D, cold/ Tj = 1.43Ta at d = 40D

→ with heating, more noise for the same D, less noise for equal ReD

... in the latter, resemblance to exp. data for high ReD26 C. Bogey - September 2013



E�ets of jet temperature

Difference in sound spectra wrt the isoT case vs StD = fD/uj

at φ = 30◦

0.125 0.25 0.5 1 2 4
−6

−4

−2

0

2

4

6

St
D

∆S
P

L 
(d

B
/S

t)

Tj = 1.5Ta, Tj = 2.25Ta for the same D (and ReDց)

Tj = 1.5Ta for the same ReD as the isoT case

→ emergence of a low-freq. component independently of ReD

and reduction of high-freq. noise, in agreement with exp. of Tanna (1977)

... low-freq. amplification due to entropy noise sources?27 C. Bogey - September 2013



E�ets of jet temperature

Difference in sound spectra wrt the isoT case vs StD = fD/uj

at φ = 60◦
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Tj = 1.5Ta, Tj = 2.25Ta for the same D (and ReDց)

Tj = 1.5Ta for the same ReD as the isoT case

1/8, 1/4 and 1/2 of the freq. initially dominating in the mixing layers

→ extra noise components as ReD decreases

... generation of vortex-pairing noise?28 C. Bogey - September 2013



E�ets of jet temperature

Difference in sound spectra wrt the isoT case vs StD = fD/uj

at φ = 90◦
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exp. data for M = 0.9 jets with D = 5.1cm: O btw cold and Tj = 1.43Ta (Bridges)

→ for the jet at ReD = 105, noise reduction for nearly all freq.

in line with exp. of Tanna (1977) and Bridges (2005)29 C. Bogey - September 2013



Conluding remarks

Large-Eddy Simulations of jets

even still expensive, they can now allow us to carefully investigate prob-

lems encountered for laboratory-scale jets

... and to complement and clarify experimental results

e.g. regarding effects difficult to distinguish, which can mutually amplify

or oppose one another

– effects of Reynolds number (ReD/Reθ) and exit turbulence levels

– effects of temperature and Reynolds number

They are mature enough to

– provide a better understanding of noise generation mechanisms

– be applied to more complex configurations30 C. Bogey - September 2013



Subsoni turbulent jets

Shear-layer visualizations at different ReD

ReD = 33, 000 ReD = 120, 000

ReD = 870, 000

from Castelain et al., ECL

the nozzle-exit parameters vary with ReD, including

– the boundary-layer momentum thickness δθ/r0 (∼ 0.1 − 1%)

and its corresponding Reynolds number Reθ = ujδθ/ν

– the peak turbulence level u′
e/uj (∼ 0 − 10%)

– the shape factor H = δ∗/δθ of the mean velocity profile

(H ≃ 2.5 : Blasius laminar profile - H ≃ 1.4 turbulent profile)31 C. Bogey - September 2013



Nozzle-exit onditions in subsoni jets

Initial flow state at the nozzle exit

50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

Re
D
 × 10−3

peak exit rms velocity u′
e/uj for jets

with ReD between 50, 000 and 300, 000

from Zaman, AIAA J. (1985)

– for ReD . 100, 000 : u′
e/uj < 1% and H ≃ 2.5

→ the jets are initially fully laminar

– for 100, 000 . ReD . 500, 000 : 1% ≤ u′
e/uj ≤ 10%

→ the jets are initially transitional

– for ReD & 500, 000 : u′
e/uj ≃ 10% and H ≃ 1.4

→ the jets are initially fully turbulent32 C. Bogey - September 2013



E�ets of jet initial onditions

Nozzle-exit flow profiles for the jets with ReD = 105 and u′
e/uj ր

mean axial velocity <uz>/uj rms axial velocity [u′
z]rms/uj
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◦ Zaman’s data for a ReD = 105 tripped jet

→ as desired, laminar velocity profiles (H ≃ 2.3), momentum thickness

δθ ≃ 0.018r0, and rms velocity peaks u′
e/uj = 3, 6, 9, 12%

δθ yielding momentum Reynolds numbers Reθ ≃ 90033 C. Bogey - September 2013



E�ets of jet initial onditions

Nozzle-exit flow profiles for the jets with u′
e/uj = 9% and ReD ր

mean axial velocity <uz>/uj rms axial velocity [u′
z]rms/uj
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◦ Zaman’s data for a ReD = 105 tripped jet

→ as desired, laminar velocity profiles (H ≃ 2.3), momentum thickness

δθ ≃ 0.018r0, and rms velocity peaks u′
e/uj ≃ 9%

δθ providing momentum Reynolds numbers Reθ = 251, 477, 925 and 183034 C. Bogey - September 2013



E�ets of jet initial onditions

Centerline mean axial velocity

u′
e/uj = 3% ր 12% ReD = 2.5 × 104 ր 2 × 105
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o, ⋄, � measurements for Mach 0.9 jets at ReD ≥ 5 × 105

→ with rising u′
e/uj or ReD, the jet spreads farther downstream

... fair agreement with high ReD data35 C. Bogey - September 2013



E�ets of jet initial onditions

Centerline axial turbulence intensities

u′
e/uj = 3% ր 12% ReD = 2.5 × 104 ր 2 × 105
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o, ⋄, � measurements for Mach 0.9 jets at ReD ≥ 5 × 105

→ as u′
e/uj or ReD increase, rms velocity peaks are reached farther down-

stream but do not differ much

36 C. Bogey - September 2013



E�ets of jet initial onditions

pressure fields

for the jets with u′
e/uj =

9% and ReD ր

→ strong waves

emitted between z = 2r0

and z = 5r0 at lower ReD,

attenuated at higher ReD

37 C. Bogey - September 2013



E�ets of jet temperature

Nozzle-exit profiles

mean axial velocity <uz>/uj rms axial velocity [u′
z]rms/uj
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isoT, Tj = 1.5Ta, Tj = 2.25Ta for the same D (and ReDց)

Tj = 1.5Ta for the same ReD as the isoT case

◦ exp. data for a ReD = 105 tripped jet

→ as desired, (laminar) Blasius velocity profiles (shape factor H ≃ 2.3),

momentum thickness δθ ≃ 0.019r0, and rms velocity peak u′
e/uj ≃ 9%

... δθ providing Reθ = 943, 485, 254 and 94138 C. Bogey - September 2013



E�ets of jet temperature

Vorticity norm in the shear layers up to z = 3r0

→ stronger large-scale structures in the hot jets with equal diameter

and decreasing ReD

→ similar vorticity fields for a constant ReD39 C. Bogey - September 2013



E�ets of jet temperature

Centerline mean axial velocity uc/uj

variations with z/r0 with (z − zc)/r0
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isoT, Tj = 1.5Ta, Tj = 2.25Ta for the same D (and ReDց)

Tj = 1.5Ta for the same ReD as the isoT case

exp. data at M = 0.9 and ReD ≥ 4 × 105: O, ⋄, Tj ≃ Ta, △ Tj = 1.76Ta

→ in all cases, the potential core shortens and the velocity decay is faster

with heating, in good agreement with exp. data

... temperature effects are predominant40 C. Bogey - September 2013



E�ets of jet temperature

Centerline turbulence intensities

rms axial velocity [u′
z]rms/uj
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isoT, Tj = 1.5Ta, Tj = 2.25Ta for the same D (and ReDց)

Tj = 1.5Ta for the same ReD as the isoT case

exp. data at M = 0.9 and ReD ≥ 4 × 105: ⋄, Tj ≃ Ta

→ with rising temperature, the peak turbulence intensities increase,

in agreement with exp. findings of Bridges (2006)41 C. Bogey - September 2013



LES of jet noise arried out sine 2000

Simulations without nozzle

of subsonic jets at Mach M = 0.9 :

– feasibility (JEAN) TCFD, 2003, 16(4)- C&F, 2006, 35(10)
– influence of forcing AIAA J, 2005, 43(5)
– influence of subgrid-scale model (Smagorinsky vs filtering)AIAA J, 2005, 43(2) - PoF, 2006, 18(6) - IJHHF, 2006, 27
– analysis of two noise components for Reynolds ReD ≤ 10, 000TCFD, 2006, 20(10) - JFM, 2007, 583

Simulations with pipe nozzle

preliminary simulations :

– single-stream subsonic jet IJA, 2008, 7(1)
– supersonic screeching jet PoF, 2007, 19(7)
– dual-stream jet (CoJeN) PoF, 2009, 21(3)42 C. Bogey - September 2013



LES of jet noise arried out sine 2000

recent simulations with pipe nozzle :

– jet at M = 3.3 and ReD = 100, 000 AIAA J, 2011, 49(10)
– initially laminar jets at M = 0.9 and ReD = 100, 000 JFM, 2011, 23(3)

– initially turbulent jets at M = 0.9 and ReD ≃ 100, 000

→ grid convergence and investigation of exit turbulencePoF, 2011, 23(3) - PoF, 2011, 23(9)
→ effets of initial turbulence JFM, 2012, 701

→ effets of Reynolds number PoF, 2012, 24(10)
→ effets of exit-boundary-layer thickness PoF, 2013, 25(05)

ongoing work :

– heated jets at M = 0.9 and ReD ≃ 100, 000 AIAA-2013-2140papers available at http://aoustique.e-lyon.fr/aapubli fr.php43 C. Bogey - September 2013



About grid resolution in jet LES

Highest resolutions in recent LES of subsonic single jets

→ jet conditions

ReD Reθ δBL/r0 BL trip u′
e/uj initial state

Bogey & Bailly (JFM, 2010) 105 1200 0.2 no < 1% fully laminar

Bogey et al. (PoF, 2011) 105 900 0.15 yes ∼ 9% nominally turbulent

Shur et al. (JSV, 2011) 1.1 × 106 550 0.016 DES na na

→ grid resolutions wrt δBL

nr × nθ × nz δ/∆rmin δ/(r0∆θ) δ/∆ze remarks

Bogey 173 × 256 × 505 7 8.1 3.5 similar results

(2010) when ∆r & ∆z/2

Bogey 256 × 1024× 962 41 24 21 very close mixing layer solutions

(2011) when δ/∆r, δ/(r0∆θ) & δ/∆z × 2

Shur (2011) 158 × 240 × 601 4.4 0.6 1.6

in Bogey (2011) : integral length scales shown to be well discretized and affected by molecular viscosity

rather than by the sgs model44 C. Bogey - September 2013


