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Background

e Motivations

investigation of real jets (full scale, complex nozzle geometry, heated, two

streams, chevrons, installation effects ...)
— providing reliable predictions and better understanding

— giving insight for flow control and noise reduction

Reynolds numbers Rep = u;D /v ~ 107 difficult to reach in experiments
and simulations — studies at lower Rep (DNS ~ 103, LES /exp. ~ 10°)

and most are for unheated jets

High-bypass-ratio nozzle (CFM56 type) QTD2 - Boeing - NASA Castelain et al.
(Loheac et al., SNECMA, 2004) ATAA Paper 2006-2720 ATAA J., 2008, 45(5)



Effects of initial conditions

e Shear-layer visualizations at 2 Rep from Castelain et al., ECL
Rep = 870, 000

Rep = 33, 000 Rep = 120, 000

as the Reynolds number increases
— coherent structures are weaker / fine-scale turbulence is stronger

— the laminar-turbulent transition moves upstream,

from the mixing layer to the nozzle boundary layer

— the nozzle-exit flow parameters (boundary-layer momentum thickness
d9/7ro and shape factor H, Reynolds number Rey = u;dg/v, peak tur-

bulence level u/ /u;) vary

C. Bogey - September 2013




Effects of initial conditions

o Effects of 1initial conditions on low and sound fields

cf experiments by Hussain & Zedan (1978), Gutmark & Ho (1983), Zaman (1985),
Raman et al. (1989), Bridges & Hussain (1987), ...

10
e.g. sound spectra at 90 deg.
0 for untripped /tripped jets with
> 107} | —— laminar exit conditions
]
= —— turbulent exit conditions
e |
1010_1 & 10" from Zaman, ATAA J. (1985)

StD
several exit parameters vary and may be unknown in experiments

— what should be prescribed in simulations?
— what is the influence of each parameter?

there is an ongoing discussion on that issue (cf Viswanathan and Clark (2004),
Zaman (2012), Karon & Ahuja (2012) and Bogey et al. (2010 ...))



Eiffects of temperature

e Effects of temperature on flow and sound fields

Overall intensity (dB)

cf experiments by Witze (1974), Lau (1981), Lepicovsky (1999), Fisher et al. (1974),
Tanna (1977), Bridges(05), ...

— overall noise increase for M = u;/¢c, < 0.7, and reduction for M > 0.7

— noise reduction depending on the emission angle ¢
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Eiffects of temperature

e Effects of temperature on noise components

— decrease of sound levels for all freq. in the sideline direction

— growth of low-freq. components in the downstream direction,

attributed to entropy sources (cf Morfey et al. (1973 ...))

... questioned by Viswanathan (2004) (contamination? Rep effects?)

— is this low-freq. amplification obtained in simulations?

at ¢ = 45°
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Present jet simulations

e Numerical methods
— space derivatives : low-dispersion 11-point finite differences
— time integration : low-dispersion low-dissipation 6-stage Runge-Kutta
— 11-point selective filtering to relax subgrid energy

— radiation boundary conditions & outflow sponge zone

Ref. : J. Comput. Phys., 2004, 194(1) - Acta Acustica, 2002, 88(4) - J. Comput. Phys., 2007, 224
Phys. Fluids, 2006, (18)6 - J. Fluid Mech., 2009, 627

e LES based on relaxation filtering

the flow variables are filtered explicitly after each time step to avoid

pile-up of energy at smallest scales

— grid cut-off wave number (at 2 PPW) and filtering cut-off wave number
(at ~ 5 PPW) well separated

— energy drained by the filtering at smallest scales

— largest scales unaffected and damped by molecular viscosity



LES based on relaxation filtering

e In LES, largest scales must be
vs non-dimensional wave number

well calculated, and mainly dissipated by 10

viscosity (not by numeric/SGS models) to 1¢° |

capture Reynolds number effects ra
a priori dissipation functions 10° |
v 0
— for viscosity : vk® = — (kA)? 10 ¢
A?Z "
: od ., 10 ' ' ' '
— for filtering : N D% (kA)  with D3 filter 32 T16 T8 T4 T2 T
KA
transfer fct —— viscosity —— filtering

M = 0.9 and Rep =
1700, 2500 and 5000

vorticity and pressure

Ref.: Bogey & Bailly, Phys. Flu-
ids, 2006, 18 - T'CFD, 2006, 20(1)




Present jet simulations

e LES parameters

— grid containing n, X ng X n, = 256 X 1024 X 962 = 252 million points
with Ar/ry = 0.35%, rA0/ry = 0.6%, Az/ry = 0.7% at the nozzle lip

— 164,000 time steps

the baseline LES of an isoT jet at Rep = 10° shown to be accurate
see Bogey et al., PoF, 2011, 23(3)

— the LES of the other jets with Rep < 10° very likely reliable

e Far-field wave propagation

—to 60ry from the nozzle exit

— by solving the isentropic linearized Euler eq.

— from LES fields on a surface at »r = 6.5rg

—n, XNg XN, =835 X 256 X 1155 = 247 x 10°




Jet inflow specification
e Boundary-layer tripping in a 27rg-long pipe

— Blasius laminar profile at the pipe inlet

1.3
— addition at z = —ry of random vortical
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Jet inflow specification

e Spectra of velocity u’z at r = rg and z = 0.47rg

vs axial and azimuthal wave numbers normalized by exit BL thickness d

vs k.0 (using Taylor hyp.) vs ked /19
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—— baseline LES of an isoT jet at Rep = 10° with v/ /u; = 9%
——— LES with twice the resolution o DNS (turb. pipe flow, Eggels et al. (1994))

— qualitative agreement with spectra in turbulent pipe flow and TBL

(Tomkins & Adrian (PIV, 2005)) see Bogey et al., PoF, 2011, 23(9)
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Eiffects of jet initial conditions

e Objective

identify and distinguish between the effects of initial turbulence level and

Reynolds number on laboratory-scale subsonic jets (Rep ~ 10°)

e LES of isothermal round jets at Mach M = 0.9

exiting from a pipe with similar Blasius BL velocity profiles
of thickness §y = 0.15r; (momentum thickness d9 = 0.0187)

and various peak turbulence intensities u/ /u;

— 4 jets with Rep = 10° and v/ /u; = 3%, 6%, 9% or 12%
(09 = 0.0187 yielding Rey ~ 900)
see in J. Fluid Mech., 2012, 701

— 4 jets with v/ /u; = 9% and Rep
(and Rey = 251, 486, 943 or 1856)

2.5 x 10%, 5 x 10%, 105 or 2 x 10°

see in PoF, 2012, 24(10)



Eiffects of jet initial conditions

e Vorticity norm in the shear layers up to z = 3.757r

— jets with Rep = 10° and

u! Ju; = 3% ul Ju; = 6% ul Ju; = 9% u! fu; = 12%
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— large-scale structures observed at u)/u; = 3% and Rep = 2.5 x 10*

but stronger fine-scale turbulence with increasing u//u; or Rep



Eiffects of jet initial conditions

e Momentum thickness

u! /uj = 3% 7 12% Rep = 2.5 x 10* 2 x 10°

0.3

0.25¢
0.2}
o

<5 0.15}
o
0.1f

— for higher u) /u; or Rep, the shear layers develop more slowly
with lower spreading rates



Eiffects of jet initial conditions

e Peak axial turbulence intensities

u! /uj = 3% 7 12% Rep = 2.5 x 10* 2 x 10°
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— lower rms velocities for higher u/ /u; or Rep

— overshoot at u,/u; = 3% and Rep = 2.5 x 10*

but nearly monotonical trend at u//u; = 12% and Rep = 2 x 10°



Eiffects of jet initial conditions

e Fluctuating pressure
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Influence of the jet initial conditions

e Sound levels at 60 radii from the nozzle exit

u! /uj = 3% 7 12% Rep = 2.5 x 10* 2 x 10°
122.5 - - - - - - - 122.5
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>, +, x measurements at Rep > 5 X 10°

— as u, /u; or Rep increase, OASPL decrease and become closer to those

for high-Rep not very likely to generate vortex-pairing noise



Eiffects of jet initial conditions

e Sound spectra at 60 deg.

u! /uj = 3% 7 12% Rep = 2.5 x 10* 2 x 10°
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> measurements at Rep > 5 X 10° e Sty = 0.007 (half of ML dominant freq.)

— as u, /u; or Rep increase, the extra hump wrt high-Rep measurements

is weaker, as large-scale structures no longer dominate the shear layers
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Eiffects of jet temperature

e Objective

to identify and distinguish btw temperature and Reynolds number effects

on heated laboratory-scale subsonic jets see ATAA-2013-2140

Q : is the downstream low-freq. noise amplification due to Rep?

e LES of round jets at Mach M = 0.9

exiting from a pipe with similar Blasius BL velocity profiles
of thickness §y = 0.15r; (momentum thickness d9 = 0.0187)

and peak turbulence intensities u/ /u;
— one isoT jet at Rep = 10°

— two hot jets at T; = 1.57,, and at T; = 2.257, with the same diameter
as the isoT jet, yielding Rep = 5 X 10* and Rep = 2.5 X 10* due to the
variations of viscosity with T}

— one hot jet at T; = 1.5T, with the same Rep = 10° as the isoT jet



Eiffects of jet temperature

e Shear-layer development

69/ r
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— isoT, — T; = 1.5T,, — T, = 2.25T, for the same D (and Rep*\)

—— T = 1.5T, for the same Rep as the isoT case

with heating, the shear layers develop more rapidly with higher tur-

bulence intensities for the jets at identical DD, but shows much less change

for

a constant Rep

. strong Reynolds nb effects



Eiffects of jet temperature

T=T -Re_ =1e5 T=15T -Re_=5e4
| a D i a D

e Vorticity norm
in the jets and
pressure outside

with heating :

— emission of addi-

tionnal sound waves

in the mixing layers

for a constant D

— lower noise in the
upstream direction
at a fixed Rep




Eiffects of jet temperature

e Sound levels at d = 607y vs emission angle ¢

OASPL comp. with exp. data
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— isoT, — T; = 1.5T,, — T; = 2.25T, for the same D (and Rep*\)

—— T = 1.5T, for the same Rep as the isoT case

exp. data for M = 0.9 jets with D = 5.1cm from Tanna and Bridges :
-——isoT/ ---T; =2.3T, at d = 72D, ——- cold/ ——- T; = 1.43T, at d = 40D

— with heating, more noise for the same D, less noise for equal Rep

. in the latter, resemblance to exp. data for high Rep



Eiffects of jet temperature

e Difference in sound spectra wrt the isoT case vs Stp = fD/u;

at ¢ = 30°

ASPL (dB/St)
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— T; = 1.5T,, — T; = 2.25T, for the same D (and Rep>\,)

—— T = 1.5T, for the same Rep as the isoT case

— emergence of a low-freq. component independently of Rep

and reduction of high-freq. noise, in agreement with exp. of Tanna (1977)

... low-freq. amplification due to entropy noise sources?



Eiffects of jet temperature

e Difference in sound spectra wrt the isoT case vs Stp = fD/u;

at ¢ = 60°
»
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St
D
— T; = 1.5T,, — T; = 2.25T, for the same D (and Rep>\,)

—— T = 1.5T, for the same Rep as the isoT case

1/8, 1/4 and 1/2 of the freq. initially dominating in the mixing layers

— extra noise components as Rep decreases

... generation of vortex-pairing noise?



Eiffects of jet temperature

e Difference in sound spectra wrt the isoT case vs Stp = fD/u;

at ¢ = 90°

ASPL (dB/St)
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— T; = 1.5T,, — T; = 2.25T, for the same D (and Rep>\,)

—— T = 1.5T, for the same Rep as the isoT case

exp. data for M = 0.9 jets with D = 5.1cm: V btw cold and T; = 1.43T, (Bridges)

— for the jet at Rep = 10°, noise reduction for nearly all freq.
in line with exp. of Tanna (1977) and Bridges (2005)



Concluding remarks

e Large-Eddy Simulations of jets

even still expensive, they can now allow us to carefully investigate prob-

lems encountered for laboratory-scale jets
. and to complement and clarify experimental results

e.g. regarding effects difficult to distinguish, which can mutually amplify

or oppose one another

— effects of Reynolds number (Rep/Rep) and exit turbulence levels

— effects of temperature and Reynolds number

e They are mature enough to

— provide a better understanding of noise generation mechanisms

— be applied to more complex configurations



Subsonic turbulent jets

e Shear-layer visualizations at different Rep
Rep = 870, 000

Rep = 33, 000 Rep = 120, 000

from Castelain et al., ECL

the nozzle-exit parameters vary with Rep, including

— the boundary-layer momentum thickness d¢/79 (~ 0.1 — 1%)

and its corresponding Reynolds number Rey = u;dy/v
—the peak turbulence level v/ /u; (~ 0 — 10%)

— the shape factor H = §*/dy of the mean velocity profile
(H ~ 2.5 : Blasius laminar profile - H ~ 1.4 turbulent profile)

C. Bogey - September 2013




Nozzle-exit conditions in subsonic jets

e Initial flow state at the nozzle exit
0.12

0.1}
0.08} ] peak exit rms velocity u/ /u; for jets

0.06} - with Rep between 50,000 and 300,000

0.04;1

0.02; 1 from Zaman, ATAA J. (1985)

0 1 1 1 1
50 100 150 200 250 300

Re, x 1073

—for Rep < 100,000 : u)/u; < 1% and H ~ 2.5

— the jets are initially fully laminar

— for 100,000 < Rep < 500,000 : 1% < v’ /u; < 10%

— the jets are initially transitional

—for Rep 2 500,000 : u,/u; ~ 10% and H ~ 1.4
— the jets are initially fully turbulent



Eiffects of jet initial conditions

e Nozzle-exit flow profiles for the jets with Rep = 10° and v/ /u;

° ° ° ° ,
mean axial velocity <wu,> /u; rms axial velocity [ul],ms/u;
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o Zaman’s data for a Rep = 10° tripped jet

— as desired, laminar velocity profiles (H ~ 2.3), momentum thickness
d9 ~ 0.0187¢, and rms velocity peaks u//u; = 3,6,9,12%

d¢ yielding momentum Reynolds numbers Rey ~ 900



Eiffects of jet initial conditions

o Nozzle-exit flow profiles for the jets with v/ /u; = 9% and Rep

mean axial velocity <wu,> /u; rms axial velocity [ul],ms/u;
1.1 - - - 0.12
1 4
0.8} ] — 0.09;
5™ S
A 08 ‘ " 0.06}
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o Zaman’s data for a Rep = 10° tripped jet

— as desired, laminar velocity profiles (H ~ 2.3), momentum thickness

d9 ~ 0.0187¢, and rms velocity peaks u//u; ~ 9%

d¢ providing momentum Reynolds numbers Rey = 251, 477, 925 and 1830



Eiffects of jet initial conditions

e Centerline mean axial velocity

u! /uj = 3% 7 12% Rep = 2.5 x 10* 2 x 10°
1.05 - - - - 1.05
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o, ¢, 0 measurements for Mach 0.9 jets at Rep > 5 x 10°

— with rising u//u; or Rep, the jet spreads farther downstream

... fair agreement with high Rep data



Eiffects of jet initial conditions

o Centerline axial turbulence intensities

u! /uj = 3% 7 12% Rep = 2.5 x 10* 2 x 10°
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o, ¢, 0 measurements for Mach 0.9 jets at Rep > 5 x 10°

— as u, /u; or Rep increase, rms velocity peaks are reached farther down-

stream but do not differ much



Eiffects of jet initial conditions

JetRe25e3

JetRe100e3
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(Bogey et al.)
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pressure fields
for the jets with u/u; =
9% and Rep

— strong waves
emitted between z = 27

and z = 5ry at lower Rep,

attenuated at higher Rep



Eiffects of jet temperature

e Nozzle-exit profiles

° ° ° ° ,
mean axial velocity <u,> /u; rms axial velocity [u]yms/u;
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—— T = 1.5T, for the same Rep as the isoT case

o exp. data for a Rep = 10° tripped jet

— as desired, (laminar) Blasius velocity profiles (shape factor H ~ 2.3),

momentum thickness dg ~ 0.0197, and rms velocity peak u//u; ~ 9%

... 09 providing Rey = 943, 485, 254 and 941



Eiffects of jet temperature

e Vorticity norm in the shear layers up to z = 37
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— stronger large-scale structures in the hot jets with equal diameter

and decreasing Rep

— similar vorticity fields for a constant Rep



Eiffects of jet temperature

o Centerline mean axial velocity uc/u;

variations with z/rg with (z — z.)/7rg
1.05 - - - - 1.05 -
1 R0a0000- 1< i -
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— isoT, — T; = 1.5T,, — T; = 2.25T, for the same D (and Rep*\,)

—— T = 1.5T, for the same Rep as the isoT case

exp. data at M = 0.9 and Rep > 4 x 10°: v, o, 0T; ~ T, o T; = 1.76T,

— in all cases, the potential core shortens and the velocity decay is faster

with heating, in good agreement with exp. data

... temperature effects are predominant



Eiffects of jet temperature

e Centerline turbulence intensities

rms axial velocity ['U/,z]rms /u;

0.16

— 0.12}

N 0.08f

N

<ur ur >1/2/u

0.041

— isoT, — T; = 1.51,, — T; = 2.25T, for the same D (and Rep*\,)

—— T = 1.5T, for the same Rep as the isoT case

exp. data at M = 0.9 and Rep >4 x 10°: 0,0 T; ~ T,

— with rising temperature, the peak turbulence intensities increase,

in agreement with exp. findings of Bridges (2006)



LES of jet noise carried out since 2000

e Simulations without nozzle
of subsonic jets at Mach M = 0.9 :

— feasibility (JEAN) TCFD, 2003, 16(4)- C&F, 2006, 35(10)
— influence of forcing AIAA J, 2005, 43(5)

— influence of subgrid-scale model (Smagorinsky vs filtering)
AIAA J, 2005, 43(2) - PoF, 2006, 18(6) - IJHHF, 2006, 27

— analysis of two noise components for Reynolds Rep < 10, 000
TCFD, 2006, 20(10) - JFM, 2007, 583

e Simulations with pipe nozzle
preliminary simulations :

— single-stream subsonic jet IJA, 2008, 7(1)
— supersonic screeching jet PoF, 2007, 19(7)
— dual-stream jet (CoJeN) PoF, 2009, 21(3)



LES of jet noise carried out since 2000

recent simulations with pipe nozzle :

—Jjet at M = 3.3 and Rep = 100, 000 AIAA J, 2011, 49(10)
— initially laminar jets at M = 0.9 and Rep = 100, 000

JFM, 2011, 23(3)
— initially turbulent jets at M = 0.9 and Rep ~ 100, 000

— grid convergence and investigation of exit turbulence
PoF, 2011, 23(3) - PoF, 2011, 23(9)

— effets of initial turbulence JEM, 2012, 701
— effets of Reynolds number PoF, 2012, 24(10)
— effets of exit-boundary-layer thickness PoF, 2013, 25(05)

ongoing work :

— heated jets at M = 0.9 and Rep ~ 100, 000 ATAA-2013-2140

papers available at http://acoustique.ec-lyon.fr/caapubli fr.php



About grid resolution in jet LES

e Highest resolutions in recent LES of subsonic single jets

— jet conditions

Rep Reg 6pr/ro BL trip ul/u; initial state

Bogey & Bailly (JFM, 2010) 10° 1200 0.2 no < 1% fully laminar

Bogey et al. (PoF, 2011) 10° 900 0.15 yes ~ 9% nominally turbulent

Shur et al. (JSV, 2011) 1.1 x 10° 550 0.016 DES na na

— grid resolutions wrt dgr,

n, X ng X N, 0/ Arpin 0/(roAB) §/Az, remarks

Bogey 173 X 256 X 505 7 8.1 3.5 similar results

(2010) when Ar & Az/2

Bogey 256 x 1024 x 962 41 24 21 very close mixing layer solutions

(2011) when 6/Ar, 6/(roA0) & 6/Az X 2
Shur (2011) | 158 x 240 x 601 4.4 0.6 1.6

in Bogey (2011) : integral length scales shown to be well discretized and affected by molecular viscosity

rather than by the sgs model



