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 Background Problem Statement 

        - scale disparities in turbine aero-thermal  problems 

 Unsteady Conjugate Heat Transfer  (in time) 

        - fluid-solid interfacing (for periodic unsteadiness  & LES) 

   ‘Block-spectral’ Method  (in space)  

        - resolving micro scales (film cooling, surface roughness)        

             

OUTLINE 



High Pressure Turbine - ‘Core of the Heart’  

 High Pressure, High Speed 

        - Pressure ratio ~ 40+  

        - HP Turbine shaft  ~ 10,000 RPM 

        - Transonic flow (Mach No >1) 

 

 High Temperature 
         - high gas temperature (1800K+),  

           (for high efficiency & work output) 

         - Blade metal melts at 1200K! 

 

 Multi-scales (in time & space) 
          Fluid – fast convection 

          Solid – slow conduction (tS / tF ~ 103) 

 

          Main flow path – blade chord C      

          Cooling holes  ~ 10-2 C 

 

 

compressor 

High Pressure  

(H.P.) turbine 
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Timescale Disparity in Aero-Heat Transfer Interaction 
(wall condition for the energy equation if non-adiabatic ?)   

- For high-speed flow with high heat transfer: 
        large T  &   variations in near-wall/wakes        
        (i.e. work load/losses) 

         erroneous flow-only (adiabatic) solution 

             (regardless of flow model fidelities!) 

- Fluid-solid ‘Conjugate Heat Transfer’ (CHT) 

   - STEADY:  working with domain dependent stepping 

   - UNSTEADY:  limited by conflicting requirements  

 Maximum Time Step dictated by  
  resolving fast unsteadiness (fluid); 

 Minimum Time Scale dictated by               
covering slow conduction (solid). 
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 (to ‘realign’  mismatched time scales) 

 Fluid:  solved in time-domain; 
 

 Solid:  solved in frequency domain: 

  Ts=T0s+ Σ Ascos(wt) + Bs sin(wt)  

             (T0s   As     , Bs   are all time-independent (“steady”)  

 

 
 Unsteady solid domain solved in a Steady manner 

Hybrid Time/Frequency-domain Approach: 

Implemented in a density based solver (He 2000) 
3-D Unsteady Navier-Stokes in multi-block meshed domain; 

Hex cell-centred upwind (AUSM) finite volume; 

4-stage Runge-Kutta time-marching; 

Local time stepping & multi-grid; 

Implicit dual timing for unsteady flow; 

(solid domain: fluid energy equation with zero velocity) 
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Verification of Conduction and Convection 

Solution Capabilities of CFD solver 
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Semi-Analytical Unsteady Interface Method 
(He and Oldfield, 2009) 

 Basic assumption: locally 1D semi-infinite solid domain 
             (valid for high frequencies with small 
               ‘penetration depth’ in solid)  

 Analytical link in harmonics  

        between heat flux (qw) and temperature (Tw ):  
            

            (TFTq – “transfer function” ) 
 

 

                  

  Harmonic Balancing (heat flux / temperature continuity):   

          (n = 0,1,2, ……Nh) 
 

  Discrete for fluid side (FD) & Analytical for solid side: 

     (n = 0,1,2, ……Nh) 
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Impact of Unsteady Surface Temperature  

on Heat-flux Prediction (single harmonic)  

At 10 Hz ,  ~33%  over-prediction in unsteady heat flux   

At 100 Hz,  ~18% over-prediction 

At 1000 Hz,  ~6% over-prediction 

Heat Flux Time Trace (HTC=3000 W/m**2/K, f = 10 Hz) 
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Conjugate Heat Transfer with LES 
   

Basic Hypothesis:  Turbulence at a spatial point ‘deterministically’  

                                     manifested by the corresponding Fourier spectrum  

Tu Intensity: analogue of  ‘Deterministic Stress’  for Nh harmonics 

 

 

Tu Length-scale:  Shape of the spectrum  
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 FT on the fly  input to the semi-analytical interface condition 
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Inflow Turbulence Fluctuations 

(Synthetically Randomised Vortices)  

Short scale 

Long scale 

Validation for Inflow Turbulence 

Development in Duct (Tu=3.5%) 
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LES Conjugate Heat Transfer 
(Aerothermal Characteristics, Internal Cooled Nozzle, 30 Fourier modes) 

 
Heat Flux (Quasi-steady vs Unsteady Wall BC) 
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Spatial Length-scale Disparity in Film-Cooling etc 
 

 Macro:   
     Blade Chord (passage P & Vel field) 
 

 Micro:    
       Film cooling hole  (< 1%C),   

      (mixing of coolant with mainstream) 
 

 Compounding Challenge: 
       Large number of cooling holes   

      ( ~102+ ) 

 

  Direct solutions with all holes 
resolved are prohibitively costly! 
 

 

 

(Oldfield, 2007) 



 Macro & Micro scales exist in many problems:     

   - Film/effusion cooling:                Cooling hole vs Blade  

    - Surface treatment/roughness:  Dimple vs Blade 

 

 Scale-dependent  Solvability 

Scale-Dependent Solvability Behaviour 

  - Locally:  micro scales of high gradient (needing high resolution) 

   - Globally: smooth variation among ‘similar’ meso-structures 

 

‘Block-Spectral’ Model (He 2010)  

 Resolve micro scales  (RANS /LES); 
    Avoid solving large domain with very fine mesh. 
 

 Set up spectral  block-block  variations (pointwise)  
 Simultaneous ‘mapping’ to the full domain;  
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Pointwise Spectrum for Block Boundary Points  

 Main (macro) stream only ‘sees’ small 

(micro) blocks through boundary faces 

 

 For each boundary point (i, j), 

    variable changes from block to block  

(1-D variation wrt block index).  

      

     For NB blocks:   
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-   Fourier Shape of variation with NF harmonics  

- for each mesh point (i,j) for Block L : 
 

    

 

 

 

  

i,j  

  - 2NF+1 blocks to be solved to fix the spectrum 

 

 

 Double Fourier Series Shape (M x N): 

 

 

 

  - (2M+1)(2N+1) blocks to be solved 
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Sample 2D Film-cooling Test Cases 

Direct (39 holes) Spectral (4 holes) 
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Direct Solution  

(solving 992 holes) 

Block-Spectral   

(solving 8 holes) 

T01 

0.5T01 

3D Effusion Cooling  
(mass & heat transfer via large number of micro holes)  

Surface temperature under a distorted infow 



Surface Pressure and heat flux (1600 dimples) 

(with inlet P0 distortion)  

  Direct Solution  Block Spectral  

(Solve 9 dimples) 

Non-D Heat Flux (1600 dimples)
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(Solve 1600 dimples) 



Duct Acoustic Liner for Noise Reduction  
(Block spectral model of solving 1/30 micro-cavities) 



 Summary 

 Two Methods for Multi-scale Problems: 

    Time scale disparity (fluid-solid heat transfer)  

       - Harmonic transfer function method: 

          unified and consistent interfacing condition/framework  

              for periodic & turbulence unsteady simulations. 

    Spatial scale disparity (cooling, micro structures) 

        - Block-spectral method: 

           macro & micro scales resolved by the same model/numerics 

  
Some Refs: 
  L. He, “Block-spectral Mapping for Multi-scale Solution”,   

              J. of Computational Physics, Vol.250 (2013).  

  L. He, “Fourier Spectral Method for Multi-scale Aerothermal Analysis”,  

             International J. of Computational Fluid Dynamics, Vol.27, No2 (2013). 


