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e Background Problem Statement
- scale disparities in turbine aero-thermal problems

e Unsteady Conjugate Heat Transfer (in time)
- fluid-solid interfacing (for periodic unsteadiness & LES)

e ‘Block-spectral’ Method (in space)
- resolving micro scales (film cooling, surface roughness)
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High Pressure Turbine - ‘Core of the Heart’ \l A {

High Pressure, High Speed
- Pressure ratio ~ 40+

- HP Turbine shaft ~ 10,000 RPM
- Transonic flow (Mach No >1)

High Temperature
- high gas temperature (1800 K+),
(for high efficiency & work output)

- Blade metal melts at 1200 «K!

‘ Rolls-Royce
¢ Trent 800

Multi-scales (in time & space)
Fluid — fast convection
Solid — slow conduction (tg / tg ~ 103)

Main flow path — blade chord C
Cooling holes ~102C
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Timescale Disparity in Aero-Heat Transfer Interaction
(wall condition for the energy equation if non-adiabatic ?)

- For high-speed flow with high heat transfer:
large T & p variations in near-wall/wakes
(i.e. work load/losses)

HP turbine with bustor exit =>» erroneous flow-only (adiabatic) solution

hot streaks (Khanal et al 2012) (regardless of flow model fidelities!)

- Fluid-solid ‘Conjugate Heat Transfer’ (CHT)
- STEADY: working with domain dependent stepping

- UNSTEADY: limited by conflicting requirements

e Maximum Time Step dictated by
resolving fast unsteadiness (fluid);

e Minimum Time Scale dictated by
covering slow conduction (solid).

LES (He 2013)
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Hybrid Time/Frequency-domain Approach: « OXFORD
(to realign’ mismatched time scales)

Fluid: solved in time-domain;

Solid: solved in frequency domain:
T=Ty+Z A,cos(mt) + B, sin(mt)
(Tos As By are all time-independent ("steady”)

e Unsteady solid domain solved in a Steady manner

Implemented in a density based solver (He 2000) RS
3-D Unsteady Navier-Stokes in multi-block meshed domain; -~<¢-~~f;;f’5/-~,---J—-
Hex cell-centred upwind (AUSM) finite volume; re i~ |

4-stage Runge-Kutta time-marching;
Local time stepping & multi-grid;
Implicit dual timing for unsteady flow;

(solid domain: fluid energy equation with zero velocity)




Verification of Conduction and Convection
Solution Capabilities of CFD solver
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Semi-Analytical Unsteady Interface Method

(He and Oldfield, 2009)
e Basic assumption: locally 1D semi-infinite solid domain T
(valid for high frequencies with small fluid Wsolid
‘penetration depth’ in solid) |
Tf | Ts
e Analytical link in harmonics AX «:ﬂ'
between heat flux (q,,) and temperature (T,, ): =%
¢ : AN
Ow =TFrq Tw  (TFy, - “transfer function” ) TRC

e Harmonic Balancing (heat flux / temperature continuity):
(QF )n — (qS )n (n=0,1,2, ...... Np,)

e Discrete for fluid side (FD) & Analytical for solid side:
(Twn =TL(T¢)n, (TFrgdn] (=012, ...\
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Impact of Unsteady Surface Temperature ‘& OXFORD
on Heat-flux Prediction (single harmonic)

Heat Flux Time Trace (HTC=3000 W/m**2/K, f = 10 Hz)
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At 10 Hz , ~33% over-prediction in unsteady heat flux
At 100 Hz, ~18% over-prediction

At 1000 Hz, ~6% over-prediction
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Conjugate Heat Transfer with LES

Basic Hypothesis: Turbulence at a spatial point ‘deterministically’
manifested by the corresponding Fourier spectrum

.rwm \\
o, hh-

Tu Intensity: analogue of ‘Deterministic Stress’ for N, harmonics

— 1 Nj
(uu) :E 2 [AR) (GR)r +(GR)i (GR)i]
n=1

Tu Length-scale: Shape of the spectrum

e FT on the fly = input to the semi-analytical interface condition
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Inflow Turbulence Fluctuations &~ OXFORD
(Synthetically Randomised Vortices)

Validation for Inflow Turbulence
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LES Conjugate Heat Transfer ¥ OXFORD

(Aerothermal Characteristics, Internal Cooled Nozzle, 30 Fourier modes)

Heat Flux (Quasi-steady vs Unsteady Wall BC)
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Shear Stress (Influence of Heat Transfer on Aerodynamics!
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Spatial Length-scale Disparity in Film-Cooling etc

Macro:
Blade Chord (passage P & Vel field)

Micro:
Film cooling hole (< 1%C),
(mixing of coolant with mainstream)

Compounding Challenge:

Large number of cooling holes
(~10°%)

=» Direct solutions with all holes
resolved are prohibitively costly!

(Oldfield, 2007)
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Scale-dependent Solvability

Macro & Micro scales exist in many problems:

- Film/effusion cooling: Cooling hole vs Blade
- Surface treatment/roughness: Dimple vs Blade

Scale-Dependent Solvability Behaviour

- Locally: micro scales of high gradient (needing high resolution)

- Globally: smooth variation among ‘similar’ meso-structures
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‘Block-Spectral’ Model (He 2010) S

00000

e Resolve micro scales (RANS /LES); ceoccco
e Avoid solving large domain with very fine mesh. ~ “co "
[OX@)
@)

e Set up spectral block-block variations (pointwise)
a) Direct Solution b) Block Spectral Solution

e Simultaneous ‘mapping’ to the full domain; (all locksto b solved) | @ Jooiode soved)
(7 blocks to be mapped )
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Pointwise Spectrum for Block Boundary Points

Main (macro) stream only ‘sees’ small
(micro) blocks through boundary faces

—(] |eiJ
—  |®i,]
For each boundary point (i, j), — e 0,
variable changes from block to block o &,
(1-D variation wrt block index). 7 o,
1

| N
For Ny blocks: Ui,j(e) — (Ui,j)O + Z?Fi’jG(O)
1

For a given basis function G(é), only need to solve enough
blocks to determine the coefficients F;

14
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Pointwise Fourier Spectrum
(periodic, or “mirroring’/padding for non-periodic)

e Fourier Shape of variation with Nz harmonics — (o)
for each mesh point (i,)) for Block L : ®ij

Ui = (U3 o+ XI(A,), cos(00,)+B,),sinn0 )] — |

oi]
- 2N+1 blocks to be solved to fix the spectrum 6,

i

e Double Fourier Series Shape (M x N):

(U),; = MhZ’I:\I;Lm,n[Am,n cos(ma, ) cos(nfB;) + By, , sin(ma, ) cos(nf;)

m=0,n=0

+C, n cOs(Mma, ) sin(nP;) + D, , sin(ma, ) sin(nfB;)]

- (2M+1)(2N+1) blocks to be solved

15



Sample 2D Film-cooling Test Cases

Hot (To1)

Cold (0.5 To1)
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— FT (10 holes)
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Direct (39 holes)

Spectral (4 holes)
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3D Effusion Coolmg | =) OXFORD
(mass & heat transfer via large number of micro holes) .

Direct Solution Block-Spectral
(solving 992 holes) (solving 8 holes)

TTTTTT

Surface temperature under a distorted infow
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~
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Surface Pressure and heat flux (1600 dimples) 2 UNIVERSITY OF
(with inlet PO distortion)
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Duct Acoustic Liner for Noise Reduction
(Block spectral model of solving 1/30 micro-cavities)
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Two Methods for Multi-scale Problems:

e Time scale disparity (fluid-solid heat transfer)

- Harmonic transfer function method:
= unified and consistent interfacing condition/framework
for periodic & turbulence unsteady simulations.

e Spatial scale disparity (cooling, micro structures)

- Block-spectral method:
= macro & micro scales resolved by the same model/numerics

Some Refs:
L. He, “Block-spectral Mapping for Multi-scale Solution”,
J. of Computational Physics, Vol.250 (2013).

L. He, “Fourier Spectral Method for Multi-scale Aerothermal Analysis”,
International J. of Computational Fluid Dynamics, Vol.27, No2 (2013).




