

MUSAF II Colloquium, Toulouse, France

Aeroelasticity of Turbomachines

Damian Vogt, formerly KTH (now University of Stuttgart)

Torsten Fransson, KTH

2013-09-18

Content of Today's Talk

- "Crash course" in turbomachinery flutter
- How well are we presently doing in predicting flutter?
- How can we validate our flutter prediction tools?

Motivation

- The accurate and reliable prediction of flutter is of paramount interest to turbomachinery manufacturers
 - Increased accuracy and reliability of predictions allow pushing limits further such as to make turbomachines "greener"
- There is a clear context between the greening potential of new turbomachine generations and aeroelastic phenomena
 - More efficient engines come along with less components, more aggressive operating conditions and consequently greater aerodynamic loading
 - In case of stationary turbomachines, greening is much related to operational flexibility
 - Both aspects can lead to aeroelastic phenomena

A "Crash Course" in Turbomachinery Flutter

Universität Stuttgart

General Aspects of Flutter

 Flutter is a self-excited and self-sustained vibration phenomenon

- The vibration starts by itself if the fluid-structure coupled system becomes unstable
- Unless we provide proper damping, vibration amplitudes rapidly escalate

Vibration scenarios

- Positively damped
 - Preferred

No flutter

Vibration scenarios

- Self-excited (negatively damped)
 - Must be avoided

Flutter

Vibration scenarios

- Self-excited, attaining Limit Cycle Oscillations (LCO)
 - Can be tolerated

What Happens if Blades Vibrate?

What Happens if Blades Vibrate?

Structure and fluid

$$m\ddot{x} + c\dot{x} + kx = F(t)$$

Structural part

Aerodynamic part

x: deformation coordinate

→ modal coordinate

F(t): aerodynamic force

What about F(t)?

- F(t) is due to flow and the motion of the blade
- F(t) has an arbitrary direction
 - But it is only the component in direction of the mode that matters
- F(t) is most probably not in phase with the motion

Aerodynamic Force F(t)

- It is the out-of-phase component that gives us the aerodynamic damping
 - Of importance: the mode, the magnitude and the phase of the unsteady aerodynamics

Blade Row Aeroelasticity

Figure shows pressure perturbation

Single blade oscillating

→ Aerodynamic influence

Blade Row Aeroelasticity

Traveling Wave Mode Stability

 In a blade row, in which all blades oscillate, the influence of the individual blades is superimposed

$$\hat{c}_{p}{}_{A,twm}^{m,\sigma}(x,y) = \sum_{n=-\frac{N}{2}}^{n=+\frac{N}{2}} \hat{c}_{p}{}_{A,ic}^{n,m}(x,y) \cdot e^{-i\sigma \cdot n}$$

Aeroelastic Stability Curve

 σ = -90deg ND 6 BT

Least stable mode

Aerolasticity "Crash Course" Essentials

- Predicting flutter is about ...
 - Predicting the aerodynamic damping for different vibration modes (mode direction, nodal diameter pattern)
 - Putting the aerodynamic damping against the structural damping at these modes
 - Evaluating the resulting type of vibration

How well are we presently doing in predicting flutter?

Blind-Test Prediction Accuracy

- The results shown below have been obtained in the EU FP7 collaborative Research Project FUTURE (Flutterfree Turbomachinery Blades)
- They have been obtained as blind-test predictions
 - In other words, test data were first available at a much later stage
- Test case
 - Transonic compressor, blisk type, 1 ½ stage
 - Well-defined geometry and boundary conditions have been provided to several partners

Flutter Prediction Accuracy Test Case

 Predict the minimum aerodynamic damping of the transonic compressor test case at various operating points on a speedline

Comparison of Predicted Aero Damping

Ref: FUTURE Project

Analysis Aero Damping Predictions

How can we validate our flutter prediction tools?

Validation of Flutter Prediction Tools

 The validation must be performed on relevant test cases, on which high quality experimental data are available

- Ideally, the validation is carried out at various levels of complexity
 - Rotating rig tests: near-engine environment, total damping measurements, expensive and complex
 - Stationary cascade test: well-controlled conditions but real conditions are only assimilated, aero damping measurements, detailed, simpler and more affordable

The FUTURE Project

- The FUTURE project was a collaborative research project that has been carried out within the EU FP7 framework during 2008-2013
 - 25 partners from industry, academia and research institutes
 - Lead by KTH (Prof. T. Fransson and Doc. D. Vogt)
 - Total budget 10.6M€
- The goal of the project was to set-up new and relevant test cases in turbomachinery aeroelasticity and to validate state-of-the-art flutter prediction tools against these
 - Derivation of best practice guidelines for flutter analyses and testing

FUTURE Project Consortium

VOLVO AERO

SIEMENS

Industria de Turbo Propulsores.S.A.

Research Institutes

Lead (Fransson, Vogt) Academia

FUTURE Project Concept

- Two main streaks of new validation test cases
 - Transonic compressor
 - High subsonic aero Low-Pressure Turbine (LPT)
- Interconnected experiments
 - Non-rotating cascade tests, controlled blade oscillation
 - Rotating tests, multi-blade row, free and forced oscillation
 - Mechanical characterizations of components (blisk, bladed disks)
- Numerical analyses performed by several partners

FUTURE Transonic Compressor Tests

Transonic compressor rig at TUD Darmstadt, Germany

FUTURE Compressor Excitation System

Rotating excitation pattern (ND)

Air jet exciter ring

FUTURE Results and Findings

 Results and findings from the FUTURE project have among others been (and will be) published at the following events:

- ISUAAAT 2009, 2012
- IFASD 2011
- Aero Days 2011
- ETC 2011, 2013
- AIAA Symposium 2013
- ASME TE 2014

Summary

- A brief introduction into aeroelasticity of turbomachines with the focus on flutter has been given
 - In order to predict flutter, the aerodynamic and the structural damping needs to be assessed for a variety of modes
- By means of a blind test case, it has been demonstrated that the accuracy of predicting aerodynamic damping in turbomachines is not within single digits %
 - Validation of flutter prediction codes on new and relevant test cases is therefore of great importance
 - Acquiring relevant test data is extremely challenging
- Having accurate and reliable flutter prediction tools opens up for exploring the greening potential of next generations of turbomachines

Thank you for your attention