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Rotorcraft CFD  

▼ Isolated Sea King  

in forward flight 

▼ Shipborne Sea King  

approaching the deck 

◄ Shipborne Sea King  

before touchdown 
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Propellers and Tilt-Rotors 
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Helicopter Ditching 
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Wind Energy 
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Rotorcraft is Different… 



MUSAF II, 18-20 Sept. 2013, Toulouse, France 

School of Engineering - University of Liverpool  

Tilt Rotors, Active Rotors, Compound Aircraft 
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Flow Phenomena Associated with Helicopter Flow 

• Unsteady aerodynamics 

• Wide range of Mach and Reynolds numbers 

•Complex vortex wake 

• Coupling between flow and structure 

ERF-05/240kp_kw1.5_4.5ch_M0.8_c1.4_pressacous.avi
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Time Marching CFD Method 
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• Control volume method 

• Parallel  - Shared and Distributed memory 

• Multi-block (complex geometry) structured grids 

• Unsteady RANS - Variety of turbulence 
 models including LES/DES 

• Implicit time marching 

• Osher, Roe, AUSM schemes for convective fluxes 

• All Mach schemes 

• MUSCL scheme for accuracy 

• Central differences for viscous fluxes 

• Moving grids, sliding planes 

• Hover formulation, rotor trimming, blade actuation 

• 1-1 face matching 

• Overset grids 

• Aeroelastic method 

 

Solver – Overview of the core HMB features 
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Some of the Flows Analysed with the Helicopter Multi-Block Method 
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• Rotor motion is dictated by 
aerodynamics and blade 
dynamics 

• Helicopter blades usually with 
high aspect ratio, therefore 
can not be considered as rigid 

• Aerodynamic and centrifugal 
loads result in blade 
deformation 

• High fidelity predictions should 
include the structural influence 

 

Blade Filmed During Flight 
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Flight Mechanics Model 
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Fundamentals 
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Dynamic Stall 

a—separation begins 

b—leading-edge vortex forms 

c—full stall 

d—reattachment and return to static state 

• Rapid motion and hysteresis produce increased lift 

• A great deal of work has been done on aerofoils, 

very little on wings 

• Important to any manoeuvering aircraft 
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2D Dynamic Stall - Blind Comparisons 
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z/c = 0.5 > x/c = 0.4,  0.5,  0.6 

z/c = 0.7 > x/c = 0.4,  0.57 

LABM 
Berton E., Allain C., Favier D. and Maresca C. 
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3D validation - LABM (ii) 

Pitching motion, k = 0.048 

AoA=18 + 6 sin(wt) 

x/c = 0.4 

z/c =0.5 

AoA = 18 deg downstroke AoA = 12 deg 
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Experiments by Moir & Coton 

Top view, 30 degrees of pitch 

Leading edge view, 40 degrees of pitch 
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Experiements by Coton & Galbraith 

25deg 35 deg 

Ramping motion 

a+ = 0.027 

-5o –> 40o  

Re=1.45x106 

M=0.16 

EXPERIMENT 

CFD 
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Hovering and Forward Flying Rotors 

http://www.google.co.uk/url?sa=i&rct=j&q=EH101+BERP+IV&source=images&cd=&cad=rja&docid=WgtsOQflvHyMqM&tbnid=S0X2uTPK6aJmlM:&ved=0CAUQjRw&url=http://69.63.138.17/bannertransfer.cfm?do=main.textpost&id=96fc4af8-6f45-413d-b506-4b17c2c84fa6&ei=VEebUbbQFOjt0gWC6IHoCA&bvm=bv.46751780,d.d2k&psig=AFQjCNGXDyQcecPHH-0B9Zd2FHto2Ur5cQ&ust=1369217176214080
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Validation test cases: blade geometries 

7A 

7AD1 

Caradonna-Tung 

Isolated Rotor – Hover  Validation 
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8o collective pitch, M tip =0.44, inviscid, 74-block grid, 1.1M grid points 

Isolated Rotor – Hover - Validation 

Validation test case: Caradonna&Tung rotor in hover (ii) lifting 

0.50R 

0.89R 

0.80R 

0.68R 
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Caradonna & Tung Rotor in Hover 

8o collective pitch, M tip =0.44, i74-block grid, 4.5M grid points 

Radial position Axial position 
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Validation test case: ONERA 7A rotor in hover 

7.5o collective pitch, M tip =0.6612, inviscid, 140-block grid, 0.6M grid points 

Isolated Rotor – Hover Validation 

0.48R 

0.987R 

0.914R 

0.826R 
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0.965R 

CFD – Validation -  UH-60A Model Tail Rotor Tests (Lorber) 

0.945R 0.920R 0.865R 0.775R 
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UH-60A rotor in hover: wake vortex position 

11.47o collective pitch, M tip =0.628, 240-block grid, 4.5M grid points 

Radial position 
Axial position 

Isolated Rotor – Hover - Validation 
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Comparison with Model Rotor Wake Flow Visualisation Tests 

Comparison of CFD and Experiment

Vortex Locations - Trajectory
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Test (1980), 5 degrees pitch

Test (1984), 8 degrees pitch

Test (1980), 10 degrees pitch

Test (1980), 15 degrees pitch

CFD TRB-0100 5 deg CT=.00598

CFD TRB-0100 8 deg CT=.01190

CFD TRB-0100 10 deg CT=.01723

CFD TRB-0100 15 deg CT=.03401

Kocurek and Tangler CT=.00598 (5 deg)

Kocurek and Tangler CT=.01190 (8 deg)

Kocurek and Tangler CT=.01723 (10deg)

Kocurek and Tangler CT=.03401 (15deg)

TRB-0100  Rectangular Blade, Zero Twist, Mtip=0.263

5 deg

10 deg

8 deg

15 deg
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Comparison – Model Tail Rotor 

Vortex Wake Trajectories 
Comparison of CFD and Experiment

Vortex Locations - Vertical Displacement
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TRB-0100  Rectangular Blade, Zero Twist, Mtip=0.263
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locations 
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Structural models – “UH-60A blade” 

Flap 1 Flap 2 Flap 3 Flap 4 Flap 

5 

Flap 6 Chord 1 Chord 2 Torsion 1 Torsion 2 

Experiment 4.80 12.82 25.61 41.97 64.46 95.83 26.09 69.57 45.80 83.85 

NASTRAN 4.36 12.81 25.09 41.17 65.52 95.97 25.55 69.81 44.42 84.05 
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UH-60A Blade 

Reconstructed from Datta et al., 2006 

 

Torsional 

Mode 
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Aeroelastic Computation 

Grey: rigid 

Blue: elastic 
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Comparison with Flight Test Data 
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Complex Geometry Simpler Geometry 

More 

detailed 

data 

Less 

detailed 

data 

Rotor-Fuselage Studies – validation cases for HMB 

Sources: GIT, NASA, U Maryland, JAXA, DNW, ONERA 
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The GOAHEAD Model 

[W. Khier, HPCN Workshop - Braunschweig 14.06.2009.DLR] 



CFD Lab - Department of Engineering - University of Liverpool 

GOAHEAD 

• F6 EC Project 
 

• Exploited by few EC partners 
 

• Fuselage based on he NH90 aircraft 

• Main rotor based on the Puma aircraft 

• Tail rotor from the BO105 aircraft 

 

• Experiments by DNW 

 

• Many partners with different methods 

 

• Perhaps the most complete database of 
measurements ever conducted for 
helicopter 

 

• Realistic configuration 

 



MUSAF II, 18-20 Sept. 2013, Toulouse, France 

School of Engineering - University of Liverpool  



MUSAF II, 18-20 Sept. 2013, Toulouse, France 

School of Engineering - University of Liverpool  

Video Clip from GOAHEAD 
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Sliding Plane Approach 

• Sliding-plane method can be regarded as an extension to the regular multi-

block approach 

• Halo cells are formed on both sides of interface 

• Two steps are involved: 

 identification of neighbours 

 interpolation of neighbour cell centre values to form halo value 
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Sliding planes – fuselage grid Sliding planes – MR and TR grids 
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‘isolated’ fuselage mesh 
 

• Re-use of fuselage grid of full  

geometry 

• Main rotor grid replaced with 

mesh for rotor head 

• Tail rotor grid replaced with 

‘empty’ grid 

All grids generated using ICEMCFD 
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Multi-block mesh for full geometry 
 Total        - 3786 blocks, 27.8 M cells 

 Fuselage - 2298 blocks, 15.6 M cells 

 MR          - 1112 blocks,   9.8 M cells 

 TR           - 376 blocks,     2.4 M cells 
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TC 3 : Economic Cruise – Full Geometry 
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GOAHEAD full helicopter test case – economic cruise 

μ = 0.33 

k-ω model 

0.25˚ steps (main rotor) 
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‘Unsteady’ pressure – instantaneous minus mean taken over 1 

full TR revolution ‘blind’ results  
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Economic Cruise Case 
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Economic Cruise 
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Post Test – Economic Cruise 
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Experiments and CFD for complete configuration 
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Experiments and CFD for complete configuration 
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Experiments and CFD for complete configuration 
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Experiments and CFD for complete configuration 
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Some Comparisons – Economic Cruise 
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Cp.M2 vs x/c - Isolated Rotor – Navier-Stokes Simulation in Cruise Conditions 

HMB, Post-Test Cruise Condition, TC3 

82.5%R 70%R 
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Dynamic Stall Case 
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GOAHEAD TC3 – Economic Cruise 

CFD 

Experiments 

PIV planes below tail boom - Stream-wise velocity 
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HPC and CFD Methods 



MUSAF II, 18-20 Sept. 2013, Toulouse, France 

School of Engineering - University of Liverpool  

Current Capability 
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CPU time required for complete analysis 

not a single calculation! 
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Overview of the HMB Implicit CFD Scheme 
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As time step gets very 

large, the implicit method  

recovers the convergence 

rate of Newton’s method 

An approximate Jacobian matrix solved using iterative method 
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Parallel PC Cluster exclusive to CFD Lab 
–1997 jupiter 1 16, 200MhZ nodes 

–2000 jupiter 2 32, 700 MHz nodes 

–2003 jupiter 3 130, 2.5 GHz nodes 

–2006 jupiter 4   196, 3.0 GHz nodes 

–2008 jupiter 5 512, 3.2 GHz nodes 

–2013 jupiter 6,  2048 3.1 GHz cores 

Parallel Computer – Low Cost Clusters 
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Hector Phase 2B  

• Current capability at Liverpool as a result of AAC2 

Helicopter Multi-Block solver using (a) 105 million point mesh with 24576 blocks 

and (b) 1100 million point mesh with 196608 blocks 

(a) (b) 
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Harmonic Balance / Time Spectral Method 
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Harmonic Balance / Time Spectral Method 

Truncate the series to Nh Modes and use uniform sampling  
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Pitching-Translational motions (dM/dt) 

• This combines the 

pitching and translation 

of the blade  

– The sections are forced 

into harmonic pitching 

motion 

– The centre of rotation 

carries out a harmonic 

translational motion 

)sin(tip tU
R

r
UU w
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Rotor Blade Section 
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Harmonic Balance vs Time Marching 

• Harmonic balance results using 5 modes for the 

inviscid dMdt case. The implicit flow solver was 

used. 
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dM/dt, 5 modes, turbulent 
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7-modes - turbulent dM/dt 
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Harmonic Balance vs Time-Marching - Turbulent 

• Harmonic balance results using 7 modes 
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ONERA 2-blade Non-lifting Rotor Pressure Disks 

Time Marching 
Harmonic Balance  

7 Modes 



MUSAF II, 18-20 Sept. 2013, Toulouse, France 

School of Engineering - University of Liverpool  

ONERA 2-blade Non-lifting Rotor 

111 

Y=48 deg. Y=72 deg. 

Solid lines correspond to the harmonic balance solution 

Colour contours correspond to the time-marching 
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ONERA 2-blade Non-lifting Rotor 

Y=120 deg. Y=240 deg. 

Solid lines correspond to the harmonic balance solution 

Colour contours correspond to the time-marching 
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Lifting Rotor Pressure Disks Time Marching vs 7 Modes 

Time Marching Harmonic Balance 
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Lifting Rotor Surface Pressure Comparison 

Y=72 deg. Y=252 deg. 

Colour Time-Marching 

Black lines Inviscid 7 Modes HB 

Red lines Turbulent 2 Modes HB 
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Optimisation and Design 
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Neural Networks 
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Optimiser – Genetic Algorithm 

Database: parameters and performance 

Roulette wheel 

Combine loads using objective function 

Swap parameters 

Metamodel used to find loads 

OFV > threshold to enter next generation 

Convert to binary and  

switch one bit to 1 or 0 

Population 

Assessment 

Selection 

Crossover 

Competition 

Survival 

Mutation 

Pareto front 
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Case 5 - UH60-A Forward Flight 

Optimise anhedral 

Optimise 

sweep 

Optimise UH60-A Rotor sweep and anhedral 

Objective: Improve pitching moment, reduce stall on retreating side and shock on  

advancing side 

Database: 5 values of sweep (0, 10, 20 30 and 40 deg)  

                4 values of anhedral (0, 5, 10 and 15 deg) 
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Case 5 - UH60 Forward Flight - Grid 

SINGLE  

BLADE  

DOMAIN 
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M∞²Cm: 

(Mean part removed) 

Case 5 - UH60 Forward Flight Validation 
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Variation of Tip Anhedral 

Anhedral  = 0 deg Anhedral  = 5 deg Anhedral  = 15 deg 

Sweep 

maintained 

at 20 

degrees 

Original rotor in red border 

M2Cn 

M2Cm 
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Variation of Tip Sweep 

Sweep = 20 deg Sweep  = 30 deg Sweep = 40 deg 

Anhedral 

maintained at 0 

degrees 

Original rotor has red border 

NOTE: For all cases, the maximum variation in CT and CQ < 5% 

M2Cn 

M2Cm 
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Case 5 - UH60 Forward Flight – Effects of anhedral and sweep 

Ψ° 

153.047.0 
pitch

m

pitch

m CCOFV
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Case 5 - UH60 Forward Flight - Optimum 

Sweep Anhedral Avg Cm ∆Cm Cm-vib CQ OFV Remark 

20 0 1.000 1.000 1.000 1.000 0.000 Original 

20 15 0.748 0.815 1.124 0.906 0.183 Optimum 1 

16.7 13.7 0.759 0.824 1.052 0.933 0.209 Optimum 2 

NOTE: 

All training values 

are scaled values 

with the original 

rotor: Sweep 20, 

anhedral 0. 
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Case 5 - UH60 Forward Flight – Pareto comparison 

NOTE: 

All training 

values are 

scaled values 

with the 

original rotor: 

Sweep 20, 

anhedral 0. 
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Acoustics 
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HART-II Rotor in Forward Flight 

Isosurfaces 

of l2 

criterion 

• 

Sound field computed  for full-size rotor 
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Find the real recording! 

Simulated flight of a Lynx-size aircraft  
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Summary & Outlook 
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CFD for Helicopter Configurations – Summary 

• Realistic predictions are possible with current methods and computers. 

– Experiments are now available for validation of the methods. 

• High fidelity predictions require attention to many effects (conditions, shape, 
blade dynamics, trimming, turbulence modelling) 

– Still in the RANS/URANS framework 

– Transition to turbulence 

– DES, simulation of turbulence 

•  There are also other questions to ask: 

– Do we learn enough from these CFD calculations and how fast can we 
compute? 

– How can CFD be used in industrial practice? 

– HPC and Frequency Domain methods present an opportunity! 

• Need for a low cost facility for rotor testing 

– To support research with data and rapid assessment of ideas 
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Thank you very much for attending! 

Happy to take on any questions you may have. 

Active Learning Lab – University of Liverpool 
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CFD Laboratory 
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