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¢ O. Pironneau Optimal Shape Design for Elliptic Systems. Springer 1983.

e G. Allaire: Shape Optimization by Homogenization Springer 2001.

e B. Mohammadi & O.P. Applied Optimal Shape Design, Oxford U. Press 2000-2009.
e J. Haslinger, R.A. Makinen Intro. to Shape Optimization. SIAM series 2003.

e C. Schillings (UTrier) Optimal Aerodynamic Design under Uncertainties, 2010.
e Andrea Mazoni, Reduced Models for Optimal Control, Shape Optimization and
Inverse Problems in Haemodynamics, PhD Thesis, EPFL, 2012.
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Important Applications = Learn from Other Fields

@ Aerodynamics: Shape optimization to improve, cars, ventilators, turbines...

@ Hydrodynamics: wave drag of boats, pipes, harbours, buildings ...
@ Hemodynamics: Bypass, stents...

\\}J \\/ “ Modified hull
' ALl

Cooler (B. Mohammadi & al) Cardiac bypass (Deparis & al) & al. Boat Hull (R. Lohner &al)
@ Inverse problems in finance (calibration)
@ Inverse problems in meteorology (data assimilation)
@ Weight/Compliance (Topological) Optimization

[1] A. MAZONI, (EPFL) Reduced Models for Optimal Control, Shape Optimization and Inverse Problems in _Ijll
Haemodynamics, PhD Thesis, 2012.
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Ideas from Hemodynamics

Cardiac flow are fluid-structure interations with linear elasticity and Navier-Stokes egs.

The domain of the fluid is mapped from a fixed domain: min s J(u, p)

Q= A(Qo) with A;: X0 — xi == Ai(x0). Let ur(x,t) = u(A(AS (X)), 1), Vx € Q,

Then,inQiatt=r,

‘)d“t + (T — &) - Vi, + Vp— vAl, =0,
. 1
ViU, =0, +B.C.with ¢ (x) = f%;(x))hzr

The mapping is built from an extension of boundary displacement d:x—x+ a(x).

Use reduce basis methods on A and reduce the number of parameters. (Theory OK)

[1] Lassila T, Rozza G: Parametric free-form shape design with PDE models and reduced basis method.
Comput. Meth. Appl. Mech. Engr. 2010, 199:1583-1592. L
JI
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Free-Form Deformations

If 1» maps Q into the unit cube then the Free-Form Deformation [1][2][3] by w is
& (T($(x), 1) with

T(x,p) =" CECren(l —x) T xi{(1 — x2)" xa(1

— x3)"" "X [Prctm + it m]
k,l,m

Itis a 3D spline where the control points Py » have moved to Pk ;m + pik,i,m

Do)

Trrp(+ u)

1
- 1 0
Piym . B .
Kt T Rlow in the reference shape Flow in the optimal shape

[1] TW. Sederberg & S.R. Parry. Free-Form Deformation of Solid Geometric Models. Computer
Graphics, vol. 20, no. 4, p151-160,1986.

[2] R. Duvigneau, Conception Optimale en Mecanique des Fluides Numérique : Approches
Hiérarchiques, Robustes et Isogéométriques; mémoire HAR, 2013 L
[3] Rozza et al Shape optimization by Free-Form Deformation JOMP 2014.
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Reduce the Number of Parameters in Free-Form Deformations

Use Morris [1] randomize one-at-a-time sensitivity: keep the dof where 5~ |s large:
1 aJ o 1 aJ 2
E=—— —) S == - + E)
N 72 d,u,k/m ' N 72 (d,uk/m
n=[k,l,m] n=[k,l,m]

0.014
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0.012 2z-direction sensitivities
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Standard deviation
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. hvy N
0.002 .-t:»"ﬂ <, . .o
b by A28 4 .
o -
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|Mean|

Select the dof with large deviation from (S,E) + uniform distribution (Ballarin et al [2]).
End result is a procedure that works for any shape, but it is expensive!

[1] M.D. Morris. Factorial sampling plans for preliminary computational experiments.
Technometrics, 33(2):161-174, 1991.
[2] F. Ballarin, A. Manzoni, G. Rozza, S. SalsaShape optimization by Free-Form Deformation: Jil

existence results and numerical solution for Stokes flows. JOMP 2014.
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An Academic Problem: Best Wind Tunnel

Adapt S so that 2D irrotational flow is uniform in D.

N

s IR

—

Theorem (G. Allaire) The following problem has at least one solution:

min {/ [ —val? + €SP 1 —Ap=0,inC\S, vls=0 ¥]sc = ha}
sesq ' Jp

Sensitivity Analysis by Local Variations
—AY* =f inQ* T =00nT" ;= {x+a(x)i(x) : xeTl}

Definition « is n-differentiable in the direction « if

n
2 n
Y =+ e, + %Lg + .+ %1/1((:) + o( A
' il
By linearity, —Av, =0, —Ay) =0, ... (_X&/ .
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Optimality Conditions

By Taylor expansion, x € I':

o L oy o 0%
0=9¢%(x+an) =v*(x)+« an (X)+?W(X)+... .
Therefore —Awy, =0, ¥halr = _aaw —AY! =0, ) = _adwa _at 0%

For the Wind Tunnel Problem with S¢ = {3)'(7+ ean: x € S}
A8 = [ 1 = wol? = [ = vl + 2 [ (@~ vyt + o)
with A, =0, yils=—a20 4jr s=0
However if J is Frechet differentiable there must exists ¢ s.t.
J(S) = U(S) + [ ca-+oflal)
To find £ we must use the adjoint trick : let p

—Ap = (¢ —a)lp, plr=0

€ o ’ _ / op ., Oy
Then2 [ (v~ vyl =2 [ wiap =2 [ avip— [(Pui—-%tp)
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Conceptual Algorithm: Gradient Descent in H'

Corollary (O.P. 1972)

IS =US)+2 | o5

o+ o(|alf)
e 1. Compute the flow ¢ and the adjoint p™ by solving

—AY" =0, P"sn =0, ¥"|r, =Yg

—Ap" = (¥" —g)lp, Plryusm =0
e 2. Update the shape with the “Sobolev” gradient & with & = 0 at both ends and
90" 0"

P"on “on

e3.Setm«+ m+1andgoto 1.
The —As avoids loss of regularity from S™ to S™'I (B. Mohammadi - O.P.[2001-2009])

—Ash = S™ ={x+an: xe 8"}

Extension to Navier-Stokes straightforward (zoom at Re=50, from Kawahara et al.)
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Discretization by Variational Methods

FEM does HJ(Q) ~ Von. Link inner vertices to boundary vertices

min {/ [ — vgl? + €| S - /vw V) =0V € Von, Wls =0 tloc = a}
seSan Jp Q
@ Re-derive the optimality conditions for the discretize problem manualy or

@ By using Automatics Differentiation in reverse mode

@ by using complex finite differences

@ By discretization of the continuous gradient

- o . 2
ellativoa) =@ _,fa+10a) _ g 104 ig5a)°L
ida éa
Example with f(a) = sin(a), a = 1. (computed with Maple-14).
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Approximate Discrete Gradient by using Mesh Refinement

E. Polak et al: Gradient method with Armijo rule + mesh refinement & approx.
gradients to solve min; J(z) can be shown to converge (B. Mohammadi - O.P.[2001]):

. while h > Amin, {
while | grad,,J™| > eh”, {
try to find a step size p with w = grad,,,J(z™)
= Bpllwl® < J(Z" — pw) = J(2") < —apl|w|*

if success then {z™'=z"—pgrad,,J™; m:=m+1;}
else N:=N+K;

h:=h/2; N:=N(h);

B 5 8 8 8 ¢ &
a
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Compressible Flows

Euler or Navier-Stokes equations

p
W= pu oW +vV.-FW)-Vv-GW, VW) =0, W(0,x)=0, +B.C.
pE

Involves an adjoint equation and complex formulae

WP+ (F(W) — GH(W, VW) VP -V - (G(W, VW) VP) =0

s 8

i

i

Before & after optimization. Plain vs Sobolev Gradients (A. Jameson)
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Some Realizations (I) - A. Jameson

AIRPLANZ AIRPLANE

DENSITY flom 06250t0  1.1000 DENSITY fom D.6250ts 14000

Fluid Structure Optimization
Falcon jet: Cp decreases from 234 to 216
Discretize the continuous optimality conditions and adjoints: use mesh refinment.
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Some Realization (1) Airbus with Automatic Differentiation

O+ V- (pu)=0
o)+ V- (pu@ U)+ V(p+ Spk) = V- (1 + m)S)
OUPE) +V - ((E+ P+ 2pk)u) = V- (1 + #)Su) + V((x + x)V T)

Opk + V.(puk) = V((p + ) VK) =
Otpe + V.(pue) — V(( + Cc-put)Ve) = S..

C++ operator overloading is OK up to 50 unknown else use Tapenade in reverse mode
Compute adjoint and gradients by Automatic Differentiation (Adol-C, Tapenade)

C 044 G055 C 058
g — o — - m— W
=
2 wa e

. il
Courtesy of Airbus
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Supersonic Business Jets (B. Mohammadi)

e A jet flying at Mach 1.8 over land also = Requires to optimize for the sonic boom.

J(x) = I(p') +|CP — G| +|CG — Cq| + |V° — V| +/ |d — db|dy
S

where I(p") = a [,_, |P|, where Cj, Cq are the components of the contribution to the
drag coming from regions where the flow hits the plane 7.l < 0 il
V is the volume and d is the thickness and ;W + V - F(W) = 0.
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Results

=} F
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Validation and Extensions

Discrete vs Continuous approach in case of shocks
Robust optimization - Uncertainty Quantification
Extension to Fluid Structure Systems

Extension to multi-criteria Optimization

Parallel Optimization, Parameter Reduction
Stochastic Optimization

®© ©6 6 6 o o

JiL
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Sensitivity of Functionals of Euler Equations with Shocks

LetJ:l/ |B- W — b|? with W + V - F(W) =0 + B.C.
2 Sx(0,T)

for some vector B € R* and a scalar b. The extended calculus of variation on J gives :

5 = (B-W —b)B-5W with W =
Sx(0,7)

(WH+w)

N —

Turning to 6 W we know from above that it satisfies

oW + v - (F(W)SW) = 0, sW(0) =0

The adjoint equation :

aW* + F(W)VW* =0, W (T) =
= W* - (n- (F(W)sW) =0.S0 W* - (n- (F/(W)) = (BW — b)BT =
Joax(0,T)

5J = — W* - (n- (F(W)sW)
29\ Sx(0,T)

F. ALAUZET & O. P. Continuous & discrete adjoints to Euler eq. Int. J. Num. Methods in Fluids 2012-70:135-157
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Optimization of an Airfoil ¥ with Euler equations
Proposition: Let W* be defined by (X is the wing, S is the ground, R is outflow bdy)
oW + FI(WY VW* =0, W (T)=0, W*-n|z =0, W|r=0, Wils=P—Po
Then, asymptotically in time,
o0 = — /Z'(Wr 4T Wya)Whg - i = —/):(p* + T (pU)*)o(pd) - 7

Lemma

Consider X, = {x + a(x)n(x) : x € £}. Then W - n|x = —a(dam,:" — kW)

where t is the tangent vector, n the normal and « the inverse of radius curvature.
Algorithm: Thus by choosing

on
for a small enough constant scalar A, J will decrease because,

a=-Np"+ U-(pu))( — Kply)

0 = - /(p* +0- (pa)*)z(% — kpur)® + o(\)
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Some Realization (IIl) INRIA-Dassault-U of Montpellier

Numerical Tests

//
AR
AN
N
NG

Figure: NACAO0012 airfoil: the adapted mesh (left), the level lines of the density (middle) and the
level lines of the adjoint density (right).

The theory on the continuous systems tells that the adjoint is continuous across the
shocks but maybe discontinuous elsewhere, including where W has slip-discontinuities.

JiL
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Some Realization (IIl) INRIA-Dassault-U of Montpellier

Numerical Tests: Analytic versus A.D.

aidautd o+
adjdat'u 116

Figure: LEFT; comparison between W, the component of the adjoint in duality with pv and
p — po on S for the NACA airfoil. RIGHT: density and adjoint density for a scramjet.

JiL
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Uncertainty Quantification

The state equations F involve random variables, function of a realization parameter w.
Given 6 > 0 consider:

mirS1 E[J(u, s,w)] + Ovar(J(u, s,w)) | Euler(u, x,s,w) = 0 Vw}
se

n

u(s, x,w) = > ui(s, x)®;(w)

1
where {®;(x)}7, are the Wiener orthogonal Polynomial Chaos given by the
Karuhen-Loeve theorem and u;(s, x) are given by a Galerkin formulation of Euler
equations on the ®;. Using that basis for the SPDE needs computations of nonlocal
high dimension integrals (Monte-Carlo/Sparse Grids).

M=0.7 M=0.73

R

WY WY

Robust optimization of a wing profile with random Mach input (C, Schillings).
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Perspectives

@ Other approach to robust optimization: cf. R. Duvigneau

@ Pareto front by gradient methods: cf. J-A. Desideri

@ Uncertainty quantifications: still in the mill for calibration in finance

@ OSD is expensive = dedicated software fasterand better (Jameson, Lohner)
@ Time dependent problems: no longer impossible.

Time dependent adapted mesh (courtesy of F. Alauzet)

Thank you for your attention
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