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Scope for Design

Aerodynamic Design
Aerodynamic Shape Optimization

Design Process
Applications of Aerodynamic Shape Optimization

Appendix

Appendix A - Biography of Antony Jameson
Appendix B - CFD Applications at Boeing and Airbus
Appendix C - FLO and SYN Codes and Their Usages
Appendix D - Mathematics of Adjoint Based Shape Optimization

CFD Contribution to A380

Antony Jameson CFD and Airplane Design
Courtesy of A. Jameson & Airbus.
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Important Applications ⇒ Learn from Other Fields

Aerodynamics: Shape optimization to improve, cars, ventilators, turbines...
Hydrodynamics: wave drag of boats, pipes, harbours, buildings ...
Hemodynamics: Bypass, stents...
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Fig. 7.11. Blood pressure (in dyne/cm2) and the deformation of an aorta at t = 0.015s,
t = 0.030s, and t = 0.075s.

Fig. 7.12. CE: Simulations on the aorta in Figure 7.11, coarser mesh.

Fig. 7.13. CE: Simulations on the aorta in Figure 7.11, finer mesh.

simulation. The simulations are performed on two different meshes, with, respectively,
10.5810 and 380.690 tetrahedra for a total of 135.000 and 486.749 degrees of freedom.
We take a time step δt = 10−3s.

Figures 7.12 and 7.13 show that the most convenient preconditioner among those
considered is PQN−AS in the tests performed. The increase in the global computa-
tional time when passing from 32 to 64 processors in the coarser case is due partly to
the relatively small mesh size of the problem addressed and partly to the communi-
cation time affecting both the GMRES solution and the preconditioner computation.

8. Conclusions. In this work we focused on two strategies, which differ in the
time discretization adopted, to solve the FSI problem in parallel, and we set a termi-
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[1] A. MAZONI, (EPFL) Reduced Models for Optimal Control, Shape Optimization and Inverse Problems in

Haemodynamics, PhD Thesis, 2012.
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Ideas from Hemodynamics

Cardiac flow are fluid-structure interations with linear elasticity and Navier-Stokes eqs.

The domain of the fluid is mapped from a fixed domain: minA(.) J(u, p)

Ωt = At (Ω0) with At : x0 → xt := At (x0). Let uτ (x , t) = u(At (A−1
τ (x)), t), ∀x ∈ Ωτ

Then, in Ωt at t = τ ,

∂~uτ
∂t

+ (~uτ − ~cτ ) · ∇~uτ +∇p − ν∆~uτ = 0,

∇ · ~uτ = 0, + B.C. with cτ (x) = −∂At (A−1
τ (x))

∂t
|t=τ

The mapping is built from an extension of boundary displacement ~d : x → x + ~d(x).

Use reduce basis methods on A and reduce the number of parameters. (Theory OK)

[1] Lassila T, Rozza G: Parametric free-form shape design with PDE models and reduced basis method.

Comput. Meth. Appl. Mech. Engr. 2010, 199:1583-1592.

Pironneau (LJLL) Optimal Shape Design: The Algorithmic Point of View Aero12 5 / 24



Free-Form Deformations

If ψ maps Ω into the unit cube then the Free-Form Deformation [1][2][3] by µ is
ψ−1(T̂ (ψ(x), µ) with

T̂ (x , µ) =
∑
k,l,m

CK
k CL

l CM
m (1− x1)K−k xk

1 (1− x2)L−lx l
2(1− x3)M−mxm

3 [Pk,l,m + µk,l,m]

It is a 3D spline where the control points Pk,l,m have moved to Pk,l,m + µk,l,m

6 Francesco Ballarin et al.

Fig. 1 Sketch of the Free-Form Deformation map.

3 An existence result for FFD-based shape optimization problems

In this section we analyze the well-posedness of a shape optimization problem
where the set of admissible shape is obtained through FFD of a given reference
domain. We show that, under suitable assumptions on the parameter space, a
FFD map is a perturbation of identity. This allows to easily state a compact-
ness property on the set of admissible shape, necessary to prove the existence
of an optimal shape.

3.1 FFD map as perturbation of identity map

Let us consider, still denoting by ⌦ ⇢ D ⇢ R3 the reference domain, the space
T = {T : D ! R3, (T � I) 2 W 1,1(D; R3), (T�1 � I) 2 W 1,1(R3; R3)} of
di↵eomorphisms in R3 and the set OT (⌦) of shapes obtained by deforming ⌦
through some map T in T , i.e. OT (⌦) = {⌦o : ⌦o = T (⌦) for some T 2 T }.
Here W k,p(S; Rd) denotes the Sobolev space

W k,p(S; Rd) = {u 2 (Lp(S)d : D↵ui 2 Lp(S) 8i 2 {1, . . . , d}, 8|↵|  k},

where 1  p  +1 and the usual multi-index notation is used. In particu-
lar, the space W 1,1(Rd; Rd) can be equipped with the norm k'kW 1,1(S;Rd) =
supx2S(k'k2 + kr'k2) where, depending on context, k.k2 denotes the eu-
clidean norm of a vector or its induced matrix norm. It is possible to show
that a map T ✓, called perturbation of identity map, given by

T ✓ = I + ✓ where ✓ 2 W 1,1(D; R3)

belongs to the space T if the displacement field ✓ is small enough. In fact, the
following Lemma holds (see e.g. [1] for the proof):
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Shape optimization by Free-Form Deformation 23

Enabled displacements Evolution of the cost functional

Comparison of the optimal shape and the Pironneau-Bourot profile

Flow in the reference shape Flow in the optimal shape

Fig. 8 Comparison of the FFD optimal shape and the Pironneau-Bourot profile, employing
six displacements chosen according to empirical considerations, and flow in the reference and
optimal shape.

ence of a Neumann condition at the outflow. Moreover, we remark that the
screening procedure allows to obtain a better optimal shape in terms of cost
functional reduction improvement of the FFD optimal shape, and a lower CPU
time for the whole optimization procedure; this latter takes about 3 hours of
CPU time on 8 parallel 2.4 GHz cores of an Intel Xeon Nehalem cluster.

In both cases, few iterations are required to obtain the optimal shape (see
Figs. 8(b)-9(b)) and a near-optimal shape is already obtained at the first
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[1] T.W. Sederberg & S.R. Parry. Free-Form Deformation of Solid Geometric Models. Computer
Graphics, vol. 20, no. 4, p151-160,1986.
[2] R. Duvigneau, Conception Optimale en Mecanique des Fluides Numérique : Approches
Hiérarchiques, Robustes et Isogéométriques; mémoire HdR, 2013
[3] Rozza et al Shape optimization by Free-Form Deformation JOMP 2014.
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Reduce the Number of Parameters in Free-Form Deformations

Use Morris [1] randomize one-at-a-time sensitivity: keep the dof where ∂J
∂µklm

is large:

E = − 1
N

∑
n=[k,l,m]

∂J
∂µklm

, S2 =
1
N

∑
n=[k,l,m]

(
∂J
∂µklm

+ E
)2

20 Francesco Ballarin et al.

Fig. 4 FFD control volume (in gray), reference domain ⌦ = D \ B and (image into D of
the) FFD control points grid is represented by small spherical markers. We point out that
(19) is fulfilled keeping each control point fixed on @D (blue markers).

We allow control points displacements in the range µ̃i 2 [�1, 1] to avoid
large variations not giving any appreciable cost reduction, as well as possible
violations of the assumptions of Proposition 1. We thus compute the means
Ei and the standard deviations Si related to µ̃i, i = 1, . . . , P , by considering
a (uniform) sample of size N = 200 for each available parameter.

We point out that this sensitivity analysis is really expensive, since the
resolution of the state problem (and, eventually, of the adjoint problem) is
required for each sample (N FE resolution) and a total of N ⇥ P sensitivities
have to be computed. This takes about 20 hours of CPU time on 32 parallel
3.16 GHz cores of an Intel Xeon QuadCore cluster.

Fig. 5 Sensitivity analysis: absolute value of the mean vs standard deviation, for each
component of the gradient of the (parametrized) cost functional j(µ̃).

The scatter plot of |Ei| vs. Si reported in Fig. 5 shows that the most signif-
icant displacements are in the direction of the flow (z direction). Mean values
reported in Fig. 6 show that the sensitivities are symmetric as expected, since
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Select the dof with large deviation from (S,E) + uniform distribution (Ballarin et al [2]).
End result is a procedure that works for any shape, but it is expensive!

[1] M.D. Morris. Factorial sampling plans for preliminary computational experiments.
Technometrics, 33(2):161-174, 1991.
[2] F. Ballarin, A. Manzoni, G. Rozza, S. SalsaShape optimization by Free-Form Deformation:
existence results and numerical solution for Stokes flows. JOMP 2014.
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An Academic Problem: Best Wind Tunnel

Adapt S so that 2D irrotational flow is uniform in D.

Theorem (G. Allaire) The following problem has at least one solution:

min
S∈Sd
{
∫

D
|ψ − ψd |2 + ε|S|2 : −∆ψ = 0, in C\Ṡ, ψ|S = 0 ψ|∂C = ψd}

Sensitivity Analysis by Local Variations

−∆ψα = f in Ωα ψα = 0 on Γα := {x + α(x)~n(x) : x ∈ Γ}

Definition ψ is n-differentiable in the direction α if

ψεα = ψ + εψ′α +
ε2

2
ψ′′α + ..+

εn

n!
ψ(n)
α + o(εn)

By linearity, −∆ψ′α = 0, −∆ψ′′α = 0, ...

n

X G

a
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Optimality Conditions

By Taylor expansion, x ∈ Γ:

0 = ψα(x + αn) = ψα(x) + α
∂ψα

∂n
(x) +

α2

2
∂2ψ

∂n2 (x) + ...

Therefore −∆ψ′α = 0, ψ′α|Γ = −α∂ψ
∂n

, −∆ψ′′α = 0, ψ′′α|Γ = −α∂ψ
′
α

∂n
− α2

2
∂2ψ

∂n2

For the Wind Tunnel Problem with Sα = {x + εαn : x ∈ S}

J(Sεα) =

∫
D
|ψε − ψd |2 =

∫
D
|ψ − ψd |2 + 2ε

∫
D

(ψε − ψd )ψ′α + o(ε)

with ∆ψ′α = 0, ψ′α|S = −α∂ψ
∂n

, ψ′α|Γ−S = 0

However if J is Frechet differentiable there must exists ξ s.t.

J(Sα) = J(S) +

∫
S
ξα + o(‖α‖)

To find ξ we must use the adjoint trick : let p

−∆p = (ψε − ψd )ID, p|Γ = 0

Then 2
∫

D
(ψε − ψd )ψ′α = −2

∫
Ω

ψ′α∆p = −2
∫

Ω

∆ψ′αp −
∫

Γ

(
∂p
∂n
ψ′α −

∂ψ′α
∂n

p)
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Conceptual Algorithm: Gradient Descent in H1

Corollary (O.P. 1972)

J(Sα) = J(S) + 2
∫

S

∂p
∂n

∂ψ

∂n
α + o(‖α‖)

• 1. Compute the flow ψm and the adjoint pm by solving

−∆ψm = 0, ψm|Sm = 0, ψm|Γd = ψd

−∆pm = (ψm − ψd )ID, p|Γd∪Sm = 0

• 2. Update the shape with the “Sobolev” gradient α̃ with α̃ = 0 at both ends and

−∆Sα̃ = −ρ∂pm

∂n
∂ψm

∂n
Sm+1 = {x + α̃n : x ∈ Sm}

• 3. Set m← m + 1 and go to 1.
The −∆S avoids loss of regularity from Sm to Sm+1! (B. Mohammadi - O.P.[2001-2009])

Extension to Navier-Stokes straightforward (zoom at Re=50, from Kawahara et al.)
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Discretization by Variational Methods

FEM does H1
0 (Ω) ≈ V0h. Link inner vertices to boundary vertices

min
S∈Sdh

{
∫

D
|ψ − ψd |2 + ε|S|2 :

∫
Ω

∇ψ · ∇ψ̂ = 0 ∀ψ̂ ∈ V0h, ψ|S = 0 ψ|∂C = ψd}

Re-derive the optimality conditions for the discretize problem manualy or
By using Automatics Differentiation in reverse mode
by using complex finite differences
By discretization of the continuous gradient

Complex FD, θ ∈ (0, 1):Re
f (a + iδa)− f (a)

iδa
= Im

f (a + iδa)

δa
= f ′(a)− f (3)(a + iθδa)

δa2

6
Example with f (a) = sin(a), a = 1. (computed with Maple-14).
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Approximate Discrete Gradient by using Mesh Refinement

E. Polak et al: Gradient method with Armijo rule + mesh refinement & approx.
gradients to solve minz J(z) can be shown to converge (B. Mohammadi - O.P.[2001]):
. while h > hmin, {
. while | gradz NJm| > εhγ , {
. try to find a step size ρ with w = gradz NJ(zm)

. − βρ‖w‖2 < J(zm − ρw)− J(zm) < −αρ‖w‖2

. if success then {zm+1 = zm − ρ gradz NJm; m := m + 1;}

. else N := N + K ;

. }

. h := h/2; N := N(h);

. }
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Applications

Compressible Flows

Euler or Navier-Stokes equations

W =

 ρ
ρu
ρE

 ∂tW +∇ · F (W )−∇ ·G(W ,∇W ) = 0, W (0, x) = 0, + B.C.

Involves an adjoint equation and complex formulae

∂tP + (F ′(W )−G′,1(W ,∇W )T∇P −∇ · (G′,2(W ,∇W )T∇P) = 0

Before & after optimization. Plain vs Sobolev Gradients (A. Jameson)
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Applications

Some Realizations (I) - A. Jameson

Fluid Structure Optimization
Falcon jet: CD decreases from 234 to 216

Discretize the continuous optimality conditions and adjoints: use mesh refinment.
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Applications

Some Realization (II) Airbus with Automatic Differentiation

∂tρ+∇ · (ρu) = 0

∂t (ρu) +∇ · (ρu ⊗ u) +∇(p +
2
3
ρk) = ∇ · ((µ+ µt )S)

∂t (ρE) +∇ · ((ρE + p +
5
3
ρk)u) = ∇ · ((µ+ µt )Su) +∇((χ+ χt )∇T )

∂tρk +∇.(ρuk)−∇((µ+ µt )∇k) = Sk

∂tρε+∇.(ρuε)−∇((µ+ cεµt )∇ε) = Sε.

C++ operator overloading is OK up to 50 unknown else use Tapenade in reverse mode
Compute adjoint and gradients by Automatic Differentiation (Adol-C, Tapenade)

Courtesy of Airbus
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Some Realization (III) INRIA-Dassault-U of Montpellier

Supersonic Business Jets (B. Mohammadi)

• A jet flying at Mach 1.8 over land also⇒ Requires to optimize for the sonic boom.
A Supersonic Aircraft

Aircraft geometry Computational domain

Aircraft size = 36m, mesh size from 2mm to 30cm

Domain size (meters):
x : [−225, 2025] y : [−1200, 1200] z : [−1200, 1200]

22 Continuous Mesh Framework

J(x) = I(p′) + |C0
l − Cl |+ |C0

d − Cd |+ |V 0 − V |+
∫

S
|d − d0|dγ

where I(p′) = a
∫

z=0 |p
′|, where Cl ,Cd are the components of the contribution to the

drag coming from regions where the flow hits the plane ~n.~u∞ < 0
V is the volume and d is the thickness and ∂tW +∇ · F (W ) = 0.
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Some Realization (III) INRIA-Dassault-U of Montpellier

Results

Mach lines before and after optimization
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Some Realization (III) INRIA-Dassault-U of Montpellier

Validation and Extensions

Discrete vs Continuous approach in case of shocks

Robust optimization - Uncertainty Quantification

Extension to Fluid Structure Systems

Extension to multi-criteria Optimization

Parallel Optimization, Parameter Reduction

Stochastic Optimization
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Some Realization (III) INRIA-Dassault-U of Montpellier

Sensitivity of Functionals of Euler Equations with Shocks

Let J =
1
2

∫
S×(0,T )

|B ·W − b|2 with ∂tW +∇ · F (W ) = 0 + B.C.

for some vector B ∈ R4 and a scalar b. The extended calculus of variation on J gives :

δJ =

∫
S×(0,T )

(B ·W − b)B · δW with W =
1
2

(W + + W−)

Turning to δW we know from above that it satisfies

∂tδW +∇ · (F ′(W )δW ) = 0, δW (0) = 0

The adjoint equation :

∂tW ∗ + F ′(W )∇W ∗ = 0 ,W ∗(T ) = 0

⇒
∫
∂Ω×(0,T )

W ∗ · (n · (F ′(W )δW ) = 0. So W ∗ · (n · (F ′(W )) = (BW − b)BT ⇒

δJ = −
∫
∂Ω\S×(0,T )

W ∗ · (n · (F ′(W )δW )

F. ALAUZET & O. P. Continuous & discrete adjoints to Euler eq. Int. J. Num. Methods in Fluids 2012-70:135-157
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Some Realization (III) INRIA-Dassault-U of Montpellier

Optimization of an Airfoil Σ with Euler equations

Proposition: Let W ∗ be defined by (Σ is the wing, S is the ground, R is outflow bdy)

∂T W ∗ + F ′(W )
T
∇W ∗ = 0, W ∗(T ) = 0, W ∗ · n|Σ = 0, W ∗|R = 0, W ∗3 |S = p − p0

Then, asymptotically in time,

δJ = −
∫

Σ

(W ∗1 + ~u · ~W ∗2,3)δ ~W2,3 · ~n = −
∫

Σ

(ρ∗ + ~u · ~(ρu)∗)δ(ρ~u) · ~n

Lemma

Consider Σα = {x + α(x)n(x) : x ∈ Σ}. Then δW · n|Σ = −α(
∂Wn

∂n
− κWt )

where t is the tangent vector, n the normal and κ the inverse of radius curvature.

Algorithm: Thus by choosing

α = −λ(ρ∗ + ~u · ~(ρu)∗)(
∂(ρun)

∂n
− κρut )

for a small enough constant scalar λ, J will decrease because,

δJ = −λ
∫

Σ

(ρ∗ + ~u · ~(ρu)∗)2(
∂(ρun)

∂n
− κρut )

2 + o(λ)
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Some Realization (III) INRIA-Dassault-U of Montpellier

Numerical Tests

Figure: NACA0012 airfoil: the adapted mesh (left), the level lines of the density (middle) and the
level lines of the adjoint density (right).

The theory on the continuous systems tells that the adjoint is continuous across the
shocks but maybe discontinuous elsewhere, including where W has slip-discontinuities.
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Some Realization (III) INRIA-Dassault-U of Montpellier

Numerical Tests: Analytic versus A.D.
Supersonic Business Jet

Numerical Tests: Analytic versus A.D.

Figure: LEFT; comparison between W⇤
3 , the component of the adjoint in duality with ⇢v and

p � p0 on S for the NACA airfoil. RIGHT: density and adjoint density for a scramjet.
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Figure: LEFT; comparison between W∗3 , the component of the adjoint in duality with ρv and
p − p0 on S for the NACA airfoil. RIGHT: density and adjoint density for a scramjet.
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Uncertainty Quantification

The state equations F involve random variables, function of a realization parameter ω.
Given θ > 0 consider:

min
s∈S

E[J(u, s, ω)] + θvar(J(u, s, ω)) | Euler(u, x , s, ω) = 0 ∀ω}

u(s, x , ω) =
n∑
1

ui (s, x)Φi (ω)

where {Φi (x)}n
i , are the Wiener orthogonal Polynomial Chaos given by the

Karuhen-Loeve theorem and ui (s, x) are given by a Galerkin formulation of Euler
equations on the Φi . Using that basis for the SPDE needs computations of nonlocal
high dimension integrals (Monte-Carlo/Sparse Grids).

8.1 Numerical comparison of the introduced robust formulations (test case RAE2822)

variations (cf. figure 8.10).

M = 0.7 M = 0.73 M = 0.76

Figure 8.7: Pressure distribution around the airfoil, M = 0.70, M = 0.73 and M = 0.76 (single-
setpoint optimization).

M = 0.7 M = 0.73 M = 0.76

Figure 8.8: Pressure distribution around the airfoil, M = 0.70, M = 0.73 and M = 0.76 (semi-infinite
formulation).

M = 0.7 M = 0.73 M = 0.76

Figure 8.9: Pressure distribution around the airfoil, M = 0.70, M = 0.73 and M = 0.76 (chance-
constrained formulation).

107

Robust optimization of a wing profile with random Mach input (C. Schillings).
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Perspectives

Other approach to robust optimization: cf. R. Duvigneau
Pareto front by gradient methods: cf. J-A. Desideri
Uncertainty quantifications: still in the mill for calibration in finance
OSD is expensive⇒ dedicated software fasterand better (Jameson, Lohner)
Time dependent problems: no longer impossible.

Time dependent adapted mesh (courtesy of F. Alauzet)

Thank you for your attention
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