LES and experimental studies of cold and reacting flow in a swirled partially premixed burner with and without fuel modulation

Sengissen A. X.a, Van Kampen J. F.b, Huls R. A.b, Stoffels G. G. M.b, Kok J. B. W.b and Poinsot T. J.a,c,*

aCERFACS, 42 Avenue G. Coriolis, 31057 Toulouse cedex, France
bUniv. of Twente, Faculty of Engineering, 7500 AE Enschede, The Netherlands
cIMFT, Avenue C. Soula, 31400 Toulouse, France

Abstract

In devices where air and fuel are injected separately, combustion processes are influenced by oscillations of the air flow rate but may also be sensitive to fluctuations of the fuel flow rate entering the chamber. This paper describes a joint experimental and numerical study of the mechanisms controlling the response of a swirled, complex geometry combustor burning natural gas and air. The flow is first characterized without combustion and LDV results are compared to Large Eddy Simulation (LES) data. The non-pulsated reacting regime is then studied and characterized in terms of heat release field. Finally the fuel flow rate is pulsated at several amplitudes and the response of the chamber is analyzed using phase-locked averaging and acoustic analysis. Results show that LES and acoustic analysis predict the flame dynamics in this complex configuration with accuracy when heat losses (radiation and convection) are accounted for.

Preprint submitted to Elsevier Science 13 September 2006
1 Introduction

The ability to predict the stability of a given burner is the center of many present research programs. These efforts can be theoretical, experimental [1–10] or numerical [11–15]. A common specification of modern gas turbines is to operate in very lean regimes to satisfy emission regulations. The resulting flames can be sensitive to combustion oscillations, but the exact phenomena leading to instability are still a matter of discussion. A central question for modeling approaches is to know what induces an unsteady reaction rate (necessary to sustain the oscillations) when an acoustic wave enters the combustion chamber. This unsteady combustion process may be due to (at least) two effects (Fig. 1):

(1) The formation of vortices in the combustion chamber (Fig. 1-a): These vortices are usually triggered by strong acoustic waves propagating in the air passages. These structures capture large pockets of fresh gases which burn only later in a violent process leading to small scale turbulence and high reaction rates [16,17].

(2) The modification of fuel and oxidizer flow rates when the acoustic wave propagates into the fuel and air feeding lines (Fig. 1-b). This can lead to local changes of the equivalence ratio and therefore to a modification of the burning rate when these pockets enter the chamber. If the burner

* Corresponding author. Tel: +33-5-61-19-3131; fax: +33-5-61-19-3030. Email address: sengis@cerfacs.fr (Sengissen A. X.).
operates in a very lean mode, this effect may be important since variations of inlet equivalence ratio may trigger localized extinction and strong combustion oscillations [18].

In premixed combustors, the second mechanism has been identified as a key element controlling combustor stability [6,18] but its effects on non-premixed devices remains unclear. According to Lieuwen [6], the mechanism is the following: even away from Lean or Rich Blow Off (LBO or RBO), equivalence ratio fluctuations produce heat-release oscillations which trigger combustion instabilities through acoustic feedback. A direct proof of the importance of fuel injection on stability is that the location of fuel injectors often alters the stability of the system. The crucial role of fuel modulation can also be readily identified by considering active control examples in which a small modulation of the fuel lines feeding a combustor can be sufficient to control the combustor [19–22].

Even though the general idea of the mechanism proposed by Lieuwen [6] is fairly clear, the details of the coupling phenomenon are still unknown. For instance, real instability mechanisms often mix mechanisms 1 and 2. A possible method to gain more insights into this instability mechanism is to pulsate the fuel flow rate in a non-premixed combustor. Multiple studies have examined the behaviour of combustors submitted to a pulsation of the air stream to measure their transfer function [16,23,24]. Less data is available for fuel pulsation in imperfectly premixed devices [25]. Similarly, most numerical studies of flame responses have been performed on simple academic geometries. Clearly, being able to predict flame responses in real devices is a key issue to understand combustion stability with complex geometries and a challenge for numerical methods.
The aim of this paper is to analyze the response of a swirled partially-premixed combustor to a pulsation of the fuel flow rate. This combustor has a complex geometry, including swirlers, fuel injection by multiple jets, plenum, acoustic decoupler, chimney which are all meshed and computed. This constitutes one of the first attempts to numerically predict stability in a 'stand alone' mode where boundary conditions can not be tuned: the LES domain begins before the plenum where the only condition is an imposed air flow rate and ends after the chimney where pressure is imposed. This numerical effort is accompanied by two dedicated experimental studies on the same configuration (one with water for cold flow and another one for reacting flow). This 125 kW burner is installed at the University of Twente (The Netherlands) and described in Section 2. The work is performed using Large Eddy Simulation (section 3) [7,12], a 3D Helmholtz solver to study acoustic modes (section 4) [26,27] and several experimental methods (section 5) [28,29].

The objective of this study is not to match the level of precision reached in state-of-the-art studies in the field of experimental methods for turbulent flames [30,31], LES development [32–35] or thermoacoustic modeling [36,37] but to use all these techniques simultaneously to study a realistic-geometry turbulent swirled burner submitted to acoustic perturbations. This is a mandatory step to address problems found in real combustors and to determine whether all critical phenomena appearing in complex burners are truly represented in simple academic situations. The following sections present validations of the LES and acoustic tools in terms of velocity fields for cold flow (Section 6), flame structure and position, noise spectra (Section 7), flame response to fuel forcing (evidenced qualitatively by flame positions under forcing but also quantitatively by the evolution of total heat release during one forc-
ing cycle or by the response of the combustor to varying forcing amplitudes, Section 8). The overall message is that a 'stand-alone' LES method combined with proper acoustic tools is able to predict the steady and forced behaviour of a complex partially-premixed combustor with reasonable accuracy.

2 Investigated configuration

2.1 Geometry

The test rig is a 125 kW lab-scale burner developed by the University of Twente (The Netherlands) and Siemens PG in the European Community project DESIRE (Design and Demonstration of Highly Reliable Low Nox Combustion Systems for Gas Turbines).

Figure 2 presents the whole geometry and summarises the flow path. Figure 3 shows closer views of the various flow passages. Compressed, dried and preheated air arrives in the air supply chamber and flows into the plenum through the acoustic decoupling system pipes (Fig. 3-b). Downstream of the swirler (Fig. 3-a), the air mixes with natural gas which is injected at a normal angle into the air cross flow through four small holes mimicking fuel injection in turbines. The mixture then reaches the combustion chamber where the flame is stabilized and burnt gases leave the chamber through the outlet flange (Fig. 3-c). A channel ventilated with cooling air surrounds the combustion chamber in order to maintain wall temperatures in the range between $T = 900K$ and $T = 1200K$.

The LES computational domain (Fig. 2) includes all parts from the air supply
chamber to the outlet flange. This is necessary to have the right acoustic impedance for the combustion chamber, to predict the chamber acoustic modes and to minimize the uncertainties on boundary conditions. The cooling of the combustion chamber by convection and radiation is taken into account using a law-of-the-wall formulation for convection at solid walls and a grey gas model for radiation (section 7.2).

2.2 Operating and boundary conditions

The reference operating point is the same for cold, reacting and pulsated flows (Table 1).

• The air supply feeds the chamber with 72.4 g/s of air, preheated at 573 K. This leads to a Reynolds number of 22000 (based on the bulk velocity at the burner mouth and its diameter) and a swirl number [38] of 0.7 (at the same location).

• The natural gas is injected at ambient temperature (298K) at a flow rate of 3.06 g/s. Note that the natural gas is replaced in the LES by methane (76.7% in mass) and nitrogen (23.3% in mass), so that the global equivalence ratio of the setup is 0.55.

• The mean absolute pressure of the test rig is 1.5 bar. It is imposed at the downstream end of the outlet flange (Fig. 2) using characteristic boundary conditions [39–41]
3 Large Eddy Simulations

The LES solver (www.cerfacs.fr/cfd/CFDWeb.html) simulates the fully compressible multi-species (variable heat capacities) Navier-Stokes equations on hybrid grids. Subgrid stresses are described using the Smagorinsky [42] model. When wall functions are used, this model gives results comparable to the dynamic model [43]. A two-step chemical scheme is fitted for lean regimes on the GRI-Mech V3 reference [44]. The fit procedure ensures that the two-step and the GRI mechanisms produce the same flame speeds and maximum temperatures for laminar premixed one-dimensional flames [15] for equivalence ratios ranging between $\phi = 0.4$ and $\phi = 1.2$. The flame / turbulence interaction is modelled by the Dynamic Thickened Flame (DTF) model [45] and allows to handle both mixing (which is important in partially premixed flames) and combustion. The numerical scheme uses second or third-order spatial and third-order explicit time accuracy [46].

The boundary condition treatment is based on a multi-species extension [41] of the NSCBC method [39], for which the acoustic impedance can be controlled [40]. The walls are handled using a logarithmic law-of-the-wall formulation for velocity and temperature: the thermal treatment can be either adiabatic or "realistic", in which case a wall heat resistance is imposed (see section 7.2). Typical runs are performed on grids between 900,000 and 2.7 millions tetrahedra on several massively parallel architectures (SGI origin 3800, Compaq alpha server, Cray XD1) with a very efficient speedup.
4 Acoustic analysis

The Helmholtz solver is a useful tool for acoustic analysis in 3 dimensional configurations [27,47–49]. It provides the eigen frequencies of the configuration and the spatial structure of the corresponding eigenmodes. The Helmholtz solver needs a description of the geometry, the sound speed at every point and the impedances at the boundaries. Here, the average sound speed field is provided by the average LES results. The impedances imposed at the inlet and outlet correspond to a velocity and a pressure node respectively.

5 Experimental diagnostics

5.1 Cold flow diagnostics

The LES velocity profiles are compared with measured profiles from a water tunnel experiment. The water tunnel is a geometrical copy of identical scale as the combustion test rig. The fluid is water instead of air. By choosing the water velocity to equate the Reynolds numbers in the water tunnel and the isothermal flow simulations, both flows are similar.

The water tunnel is made out of perspex, allowing forward scattering Laser Doppler Velocimetry (LDV) to measure the velocity profiles downstream of the burner exit. The error of the system is less than 0.1% of its full measurement scale, whereas the resolution depends on the size of the measurement volume. A 400 mm focal-length lens with a measurement volume of $6.5 \times 0.22 \times 0.22$ mm3 is used [50]. The measured velocity at a discrete point is the average
velocity in the measurement volume. For all measured velocities, the axis of
the measurement volume is aligned with the direction in which the velocity
gradients are lowest, thereby increasing the resolution.

Data acquisition is done by a DIFA spectral analyser installed on a PC. The
transient velocity signals from the photomultipliers are sampled at 800 Hz for
40.96 seconds. Subsequently, the mean value and the variance of the 32,768
samples are determined. The power spectral density (PSD) of the measured
signal shows that the sampling frequency is high enough to catch most of the
phenomena in the flow, i.e. the PSD at 400 Hz is more than two orders of
magnitude lower than the velocity amplitudes at lower frequencies.

To compare simulation results (using air as a medium) with water tunnel
results the mean velocities and the variances are non-dimensionalized by the
bulk velocity at the burner mouth U_B and by $(U_B)^2$, respectively [50].

5.2 Hot flow diagnostics

The combustion process in the test rig can be observed optically through
quartz glass windows mounted in the liner and pressure vessel on 3 sides of
the combustion section (Fig. 4). The view port size is $120 \times 150 \text{ mm}^2$, which
is large enough to see the whole flame zone.

The radical CH^* is measured by chemiluminescence with a high speed camera
(Redlake) supplied with an intensifier (LaVision). A 430 nm band pass filter
(bandwidth of 10 nm) is used to filter the CH^* radiation at the CH electronic
band. The camera is gated for 100 μs and a movie of at least 100 images is
recorded at 50 Hz. The images of the movie are corrected for background and

9
non-linear camera response and averaged.

A drawback of chemiluminescence is that no local flame behaviour can be studied since it is a line of sight technique, which means that the measured CH^* concentration is the integral of all CH^* in the line of sight of the camera. To compare with computations, LES fields have also been integrated along the line of sight.

Moreover, in terms of thermo-acoustic measurements, the integrated CH^* chemiluminescence measurements can be viewed as a direct measure for the volume-integrated heat release rate [28,51,52].

5.3 Acoustic diagnostics

To obtain the acoustic response of the system due to combustion, pressure measurements are made using Kulite pressure sensors. To decrease the thermal load on these sensors, they are placed in a sidetube (Fig. 4) ended by an anechoic tube. Furthermore, to allow high pressure measurements, the back-side of the sensor is connected to the pressurised rig using a long thin tube, which damps out all dynamic pressure signal on the back side, only providing a static back pressure. The pressure sensor signal is amplified and subsequently acquired using a Siglab data acquisition system at a sample frequency of 2.56 kHz.
6 Cold flow

LES and LDV data are first compared using one-dimensional velocity profiles on the central plane at several locations downstream of the burner exit (Plane_A : 5mm, Plane_B : 15mm, Plane_C : 25mm, Plane_D : 45mm and Plane_E : 65mm). The mesh contains 900,000 tetrahedral cells. The scale for all profiles in Fig. 5 is the same. Figure 5 shows good agreement between experimental data and LES results in both shape and amplitude of the mean velocity components and their RMS fluctuations. The opening angle of the swirled jet, the intensity of central recirculation zone and the re-attachment of the top/bottom recirculation zones are predicted correctly. No parameters (except the mesh) can be tuned to obtain these results: the flow through the swirler is resolved and no inlet profiles can be used for tuning in this setup.

7 Non-pulsated reacting flow

All reacting cases were computed on a 2.7 million cells mesh especially refined in the region where the flame is expected to be and close to the fuel injectors to resolve properly the fuel jets.

7.1 Adiabatic cases

The steady-state reacting flow and the cold flow dynamics are very similar. The only noticeable difference is the larger opening angle of the swirled jet. Figure 6-(a) exhibits the instantaneous three-dimensional flame structure, materialized by an isosurface of temperature at 1200K. Even though the flame is compact,
it is strongly wrinkled by the turbulence.

The mixing is characterized on Fig. 6-(b) by the observed distribution function of local equivalence ratio ϕ (evaluated from the mixture fraction [53]), measured along the flame front. It confirms that mixing takes place before combustion, since very few points burn at equivalence ratio below 0.4 or above 0.7. The absence of stoechiometric reacting points also demonstrates that the flame never burns in a pure diffusion regime.

Fig. 7 displays the CH^* field obtained experimentally and compares it to the heat release provided by LES, integrated along the line of sight. Both LES and experimental data show a very compact flame, with a length ($\simeq 80$ mm) shorter than twice the diameter of the burner outlet.

7.2 Non adiabatic cases

Heat losses can play a significant role in combustion chambers since both the reaction rate and the acoustics of the chamber are strongly linked to temperature. Adiabatic walls are a good assumption when the thermal barrier coating is efficient, e.g. when a ceramic heat shield is employed on the chamber walls [15]. In the present test rig, the thin metallic liner surrounded by the cooling channel invalidates that assumption, so that heat losses must be modelled.

In the experiment, the total heat loss to the cooling air can be calculated directly using the measured mass flow and temperatures at inlet and outlet. The total heat loss from the combustion chamber Q_{Total} is the sum of the heat loss to the cooling air Q_1 and to the surroundings Q_2 (via the pressure vessel).
Based on the adiabatic flame temperature and the measured temperature at the combustion chamber outlet, the total heat loss from the combustion gasses is rated at approximately 28% of the burner total power, e.g. 35 kW.

The heat transferred to the surroundings Q_2 is subsequently determined from the difference between the total heat loss and the heat taken by the cooling air:

$$Q_2 = Q_{Total} - Q_1$$ \hspace{1cm} (1)

In the LES, heat losses are computed by taking into account two phenomena (Fig. 8):

- Turbulent convection to the chamber walls. Heat transfer to the chamber walls is modelled using a law-of-the-wall function [54]. A simple conjugate approach is used for conduction though the walls and convection through air in the cooling channel. A global heat resistance R_w is used for these two mechanisms such that the local heat flux Q_w on any point on the walls is:

$$Q_w = \frac{T_c - T_w}{R_w} \quad \text{with} \quad R_w = \frac{d_c}{\lambda_c \, Nu} + \frac{d_w}{\lambda_w}$$ \hspace{1cm} (2)

where T_w, d_w and λ_w are respectively the temperature, thickness and conductivity of the wall, and T_c, d_c and λ_c are the temperature, the width and conductivity of the cooling channel air. The Nusselt number Nu is given by a heat transfer correlation in the cooling channel:

$$Nu = 0.023 \, Re^{1/5} \, Pr^{1/3}$$ \hspace{1cm} (3)

where Re is the Reynolds number of the cooling flow ($Re = 5700$). In all simulated cases, R_w is assumed to remain constant along the chamber wall and T_c to rise linearly along the combustion chamber axis from 300 K to
Radiation to the walls. Assuming that gases are optically thin, radiation can be modelled as a volumetric sink term calculated with a Stefan-Boltzmann law [55]:

\[Q_r = \min(4\sigma(T^4 - T_s^4)p \sum_{k=1}^{n}(Y_k a_{p,k}), 0) \tag{4} \]

where \(T_s \) is the temperature of the surroundings (here \(T_s \) was set to 1500 K, a value close to wall temperatures), \(\sigma \) the Stefan-Boltzmann constant, and \(Y_k \) and \(a_{p,k} \) are the mass fraction and Planck mean absorption coefficient for species \(k \). These coefficients are obtained using the RADCAL programme [56] and curve-fits provided by Gore et al [57]. Such a simple procedure cannot be expected to compete with advanced radiation models [58,59] but its precision is sufficient for the present application.

Table 2 summarizes the measured heat fluxes in the experiment and the values resulting from the LES case HL_STEADY.

As presented in section 7.1, Fig. 9 compares the field of heat release from LES case HL_STEADY with chemiluminescence \(CH^* \). Effects of heat losses on the flame shape seem somehow limited. Its length and opening angle are very slightly increased, but the main effect of heat loss wall treatment is the modification of the acoustics of the chamber and will be introduced in the next sections.
7.3 Acoustic analysis

The acoustic eigenmodes of the setup can be computed using the 3D Helmholtz code [26,27,47,48] presented in section 4. The field required for this analysis is the local mean speed of sound and is provided by a time-averaged solution of the reactive LES (cases AD_STEADY and HL_STEADY). Table 3 shows the lowest eigenfrequencies found numerically and compares them to the values measured in the experiment. All modes (Table. 3) identified by the Helmholtz solver do not necessarily occur in the LES or the experiment. The two strongest modes found experimentally are at 433 and 820 Hz. These modes match very well the two modes found in the LES (when heat losses are included, i.e. case HL_STEADY) : 428 and 810 Hz. They are also very well recovered by the Helmholtz solver at 443 and 844 Hz. This confirms that these two modes are acoustically controlled and that they can be predicted accurately only when heat losses are accounted for.

Modes can be classified in three categories (Table 3): the "P" modes correspond to eigenfrequencies of the Plenum and the "C" modes to eigenfrequencies of the Chamber. Eigenfrequencies coupling the plenum and the chamber, thereby involving the full Setup are marked "S". For modes "P" and "C", this partial decoupling is possible because the inlet section of the chamber acts essentially like a velocity node. These results shows that the two strongest modes (433 and 820 Hz) are acoustic modes of the chamber itself but this is not a general result : many unstable combustors oscillate at modes involving the whole system or even only the plenum [60].

Figure 11 also shows that beyond the expected effect of heat losses on the
prediction of self-excited mode frequency, the impact on the eigenmode amplitude observed in LES is strong. Whereas the 480 Hz peak (Fig. 11, case AD,STEADY) is hardly distinguishable from the background noise (due to log scale), the corresponding 428 Hz peak (Fig. 11, case HL,STEADY) is much higher and closer to the measured level. In other words, by changing the mode frequency, the heat losses trigger a different flame response in the LES [61] and yield higher and more realistic pressure fluctuations levels.

8 Pulsated reacting flow

8.1 Forcing method and phenomenology

Partially premixed combustors can be forced either through the air or the methane lines. Because of the acoustic decoupling system (Fig. 3-b), the air flow rate is difficult to force in the present device and only the fuel line is pulsated in the experiment.

In the LES, forcing the reacting flow is achieved by pulsating the fuel mass flow rate (Fig. 3-a) at 300 Hz for several amplitudes: 5, 10, 15, 30, 50, and 80 percent of the unforced mean mass flow rate. For all amplitudes, the fuel pipes flows remain subsonic but the maximum Mach number can reach $M \approx 0.9$ in these pipes for case HL,FORCE80 (Table 1). The air flow rate remains constant and is only affected by the flow modulations induced by acoustic wave propagation. Section 8.4 will show that these modulations are not negligible.

In the experiment, fuel pulsation can have different forms. Some authors use a siren-like pulsator, i.e. with a rotating part [23,62,63]. An advantage of such
actuators is its high maximum frequency of oscillation. The disadvantage is that the form of the excitation is fixed by the siren geometry.

Another option is to use a control valve [19,25]. This type of actuator has a somewhat lower maximum frequency of oscillation but it can generate any excitation signal. Since the maximum frequency of excitation is still high enough for the experiments performed here, a D633-7320 MOOG control valve is used in this study. The maximum level of excitation by the MOOG valve depends on the frequency and the operating point. At the reference operating point presented in section 2.2 and at 300 Hz, the maximum forcing level is 12% of the mean fuel mass flow at the rim of the fuel pipes.

An overview of the different elements that play a role in the unsteady measurements is shown in Fig. 12. The MOOG valve is fed by a sinusoidal excitation signal leading to a displacement of the MOOG’s piston. To obtain the fuel mass flow perturbation at the fuel nozzles, the transfer function has been determined in a separate experiment. Hence, the fuel mass flow perturbation can be determined from the measured piston displacement. The fuel mass flow perturbation will cause a heat release perturbation, which can be detected by the optical measurements via the field of CH^* radical.

8.2 Acoustic analysis

Figure 13 displays a typical pressure spectrum during forced operation at an excitation level of 15% at 300 Hz (cases AD_FORCE15 and HL_FORCE15). The self-excited mode at 433 Hz is still present and even increased by the forcing. As presented in section 7.3, taking into account wall heat losses improves
the prediction of both frequency and amplitude of the 433 Hz eigenmode. Moreover, the forcing frequency (300 Hz) is also noticeable on these spectra. The response of the flame to this forcing is studied in sections 8.3 to 8.6.

8.3 Phase-locked averaged analysis

LES results can be phase-averaged (here on 7 cycles) to isolate the flame response at 300 Hz. Figure 14 displays the shape and intensity of the flame at eight phases of the cycle for case \texttt{HL FORCE15}. They also show the evolution of rich pockets along this cycle, materialised by an isosurface of equivalence ratio at $\phi = 0.6$ (slightly richer than the mean $\overline{\phi} = 0.55$). After a time lag of approximately 4ms, these pockets reach the reacting zone. The flame does not move significantly when it is reached by these pockets but the local heat release oscillates and triggers the pressure fluctuations feeding the 433 Hz acoustic mode (as described in section 8.2).

8.4 Self-amplification of excitation

A controversial question in experiments where the fuel is pulsated is the following: is the air flow rate remaining constant during fuel flow rate pulsation? If it is, then only the direct mechanism in Fig. 1-b has to be accounted for (equivalence ratio modulation due to fuel modulation). If the air flow rate does not remain constant, then both the direct and the indirect mechanism in Fig. 1-b are important.

This can be checked in the LES by evaluating the fuel and air mass flow rates at the mouth of the burner. The variation of the equivalence ratio at the
chamber inlet can be split in two parts (Eq. 5), the contribution of instantaneous fuel flow rate to equivalence ratio fluctuations ϕ_F' and the contribution of instantaneous air flow rate to equivalence ratio fluctuations ϕ_A':

$$\phi' = \frac{-m_F'}{\phi m_F} - \frac{m_A'}{\phi m_A}$$

(5)

Fuel contribution ϕ_F', Air contribution ϕ_A'

Figure 15 presents the two contributions ϕ_F' and ϕ_A' measured in the LES for two pulsation amplitudes: 15% and 30%. After a time delay of two cycles, the acoustic waves produced by the flame and partially reflected at the end of the chamber perturb the air flow rate. In other words, the $X\%$ pulsation of the fuel line is seen by the flame as a $1.2 \cdot X\%$ equivalence ratio excitation. In the present situation, the air flow is also affected by the fuel flow modulation and amplifies its impact on the fluctuations of equivalence ratio at the burner inlet. This conclusion is not general (it depends on the air line impedance) but shows that this effect should be taken into account for modelling.

8.5 Linearity of the flame response

Recent experimental results in studies of forced flames [64,65] show that beyond a certain pulsation amplitude, a saturation effect is observed. LES can be a good tool to evaluate the response of the flame up to high amplitude excitations where measurements can be either dangerous or even not feasible due to the limitations of the MOOG valve. For this reason as well, LES case AD_FORCE15 will be compared to experimental results forced at 12%.

Figure 16 first compares the level of reaction rate fluctuations (Q'/Q_{Ref}) observed in the LES (case AD_FORCE15) with the fluctuations of CH^* radical
(\(CH^*/CH^*_{\text{Ref}}\)) along the cycle. The mean values \(Q_{\text{Ref}}\) and \(CH^*_{\text{Ref}}\) correspond to mean reaction rate (in the LES) and to mean \(CH^*\) emission (in the experiment) for an unforced situation. Heat release \(Q\) and \(CH^*\) emission are probably not linearly related for such a partially premixed flame so that comparing \(Q'/Q_{\text{Ref}}\) and \(CH^*/CH^*_{\text{Ref}}\) is a challenging test. However, results show that both amplitude and phase are in quite good agreement, despite the limited number of cycles used in the LES phase-averaging procedure. Figure 17 presents the reaction rate fluctuation level for several pulsation amplitudes (Fig. 17-a), up to 80\%, and its evolution along the cycle (Fig. 17-b). The integrated \(CH^*\) fluctuations are also displayed on Fig. 17-a for low pulsation amplitudes. No saturation effect is noticed here: the flame behaves linearly from 0 to 80\% forcing.

The difference between the present results and [64,65] may be due to the way the equivalence ratio is pulsed: in Balachandran et al. [64,65], the fuel flow rate is constant (fuel line choked) and they pulsate the air flow. Therefore, both mechanisms (1) and (2) are involved (see section 1). Coherent structures (e.g., ring vortices) may wrinkle the flame and capture pockets of fresh gases [16]. In this study, since the momentum of the fuel jets is very small compared to the momentum of the air flow, only the second mechanism described in section 1 (Fig. 1-b) dominates.

8.6 Unsteady heat losses

In heavy duty gas turbines, the thermal load on the walls is an important issue: on one hand, the air used to cool down either the metallic liner or the tile-holders of ceramic heat-shield must be minimum to optimise the efficiency.
On the other hand, even a temporary overheating may damage the structure and fluctuating heat load plays a crucial role in its long term fatigue. Therefore, the mean thermal balance is not sufficient to predict this. Unsteady heat fluxes to walls must be investigated.

Figure 18 presents the temporal evolution of global heat losses in the LES for both forced (HL_FORCE15) and unforced (HL_STEADY) cases. The level of fluctuations of convective heat flux \(Q_w \) (Fig. 18-a) as well as the radiative heat flux \(Q_r \) (Fig. 18-b) are significantly increased by forcing. In all cases, approximately one fourth of the total losses is due to radiation. Forcing the \(CH_4 \) lines leads to a fluctuation of the heat load on the wall (case HL_FORCE15). Both convective and radiative fluxes oscillate by 10 and 4\% respectively. In addition to the noise level inside the combustion chamber, this can constitute a fundamental input data for a structure code.

9 Conclusion

This paper describes a joint effort where compressible Large Eddy Simulation on unstructured grids and experimental tests on two rigs (one with water for cold cases and one with \(CH_4 \) and air for reacting conditions) were used to characterize the mean flow, the self-excited modes and the forced response to fuel flow rate oscillation of a complex-geometry swirled combustor. The objectives were to understand the physics of self-excited and forced modes in such combustors but also to evaluate the capacities of LES to predict unsteady combustion in complex geometry burners.

- From a numerical point of view, results confirm recent studies [15,30,32,54]
showing that LES can predict the mean flow (mean velocities and RMS values) in these swirled configurations accurately. In addition, in the framework of combustion instabilities, results show that LES can give access to the first self-excited modes with combustion. To achieve this, LES must be compressible and must be performed in a `stand-alone` mode to avoid ambiguity on boundary conditions in terms of mean flow and of impedances. An additional new result is the confirmation that heat losses must be accounted for in the LES because they control not only the sound speed (and therefore the frequency) but also the phase between heat release and pressure and therefore the amplitude of the modes. Radiation accounts for approximately one fourth of heat losses in the present combustor. The analysis of LES and experimental results is also easier if a Helmholtz solver is used to predict all acoustic modes of the system.

- From a physical point of view, LES results suggest that the present combustor features partially premixed flames even though air and methane are injected separately: mixing upstream of the flame zone is strong enough to avoid any diffusion flames. The self-excited modes appearing with combustion are two acoustic modes of the combustion chamber itself. Under forced conditions, the flame reacts strongly and linearly to perturbations of the methane flow rate. No large-scale vortices are observed: the flame simply reacts to variations of equivalence ratio induced by fuel forcing. The flame response (total reaction rate versus phase angle) obtained by LES matches the experimental results obtained with CH^* chemiluminescence. Finally, LES reveals that pulsating the fuel flow in such a device also induces a fluctuation of the air flow rate which should be accounted for in instability models.
Acknowledgements

Most numerical simulations have been conducted on the computers of CINES, French national computing center, consuming about 40,000 hours on a SGI origin 3800.

This work was carried out in the framework of the EC project DESIRE coordinated by Siemens PG.

References

Tables

<table>
<thead>
<tr>
<th>CASE</th>
<th>AD-COLD</th>
<th>AD-STEADY</th>
<th>AD_FORCE05</th>
<th>AD_FORCE10</th>
<th>AD_FORCE15</th>
<th>AD_FORCE30</th>
<th>AD_FORCE40</th>
<th>AD_FORCE50</th>
<th>AD_FORCE80</th>
<th>AD_FORCE15</th>
<th>HL_FORCE15</th>
<th>HL-STEADY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall law</td>
<td></td>
</tr>
<tr>
<td>\bar{m}_A</td>
<td></td>
</tr>
<tr>
<td>\bar{m}_F</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>$F , (Hz)$</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>\dot{m}_F'/\bar{m}_F</td>
<td>N/A</td>
<td>N/A</td>
<td>05%</td>
<td>10%</td>
<td>15%</td>
<td>30%</td>
<td>50%</td>
<td>80%</td>
<td>15%</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1
Cases simulated and corresponding operating parameters.

<table>
<thead>
<tr>
<th>Fluxes</th>
<th>Experiment</th>
<th>LES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling channel</td>
<td>$Q_1 = 27, \text{kW}$</td>
<td>$Q_r = 10, \text{kW}$</td>
</tr>
<tr>
<td></td>
<td>$Q_2 = 8, \text{kW}$</td>
<td>$Q_w = 25, \text{kW}$</td>
</tr>
<tr>
<td>Q_{Total}</td>
<td>35kW</td>
<td>35kW</td>
</tr>
<tr>
<td>T_{Outlet}</td>
<td>$\approx 1300, \text{K}$</td>
<td>$\approx 1300, \text{K}$</td>
</tr>
</tbody>
</table>

Table 2
Evaluation of the heat losses measured in the experiment and modelled in the LES.
<table>
<thead>
<tr>
<th>Case</th>
<th>Eigenfrequencies (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helmholtz solver</td>
<td></td>
</tr>
<tr>
<td>Adiabatic</td>
<td>72 131 272 298 487 705 926 1093</td>
</tr>
<tr>
<td>Heat loss</td>
<td>64 128 250 294 443 642 844 1045</td>
</tr>
<tr>
<td>Experiment</td>
<td></td>
</tr>
<tr>
<td>Measured</td>
<td>62 171 270 433 625 820 1022</td>
</tr>
<tr>
<td>LES</td>
<td></td>
</tr>
<tr>
<td>Adiabatic</td>
<td>X X X X 480 X 920 X</td>
</tr>
<tr>
<td>Heat loss</td>
<td>X X X X 428 X 810 X</td>
</tr>
<tr>
<td>Mode</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>1/4 3/4 5/4 7/4 5/4 7/4 9/4 1/2</td>
</tr>
<tr>
<td>related to</td>
<td>S S S S C(^{(a)}) C(^{(b)}) C(^{(c)}) P</td>
</tr>
</tbody>
</table>

Table 3

Eigenfrequencies computed by the Helmholtz code, measured in the experiment and in the LES. 1/4, 3/4, ... designate quarterwave, three quarterwave, ... modes related either to the "full Setup" S, the "Plenum" P or the "Chamber" C. Superscripts \(^{(a)}, (b)\) & \(^{(c)}\) indicate that this mode is represented on Fig. 10-(a), (b) & (c) respectively.
List of Figures

1 Flame response to a) velocity perturbations and b) equivalence ratio perturbations. 33

2 Full LES computational domain and flow path to the combustion chamber. 34

3 Details of the computational domain: a) swirler vanes, b) acoustic decoupling system and c) outlet flange. 35

4 Overview of the main components in the flame zone of the DESIRE setup. 36

5 Comparison of statistical profiles: a) axial, b) radial and c) swirling mean velocity; a’) axial, b’) radial and c’) swirling RMS velocity; Symbols: Experiment; Solid line: LES; dashed line: zero line (case AD_COLD). 37

6 a) Instantaneous view of the flame (isosurface of temperature at 1200K) and of the methane jets (isosurface of fuel mass fraction at 0.1); b) Equivalence ratio distribution function of the same instantaneous solution (PDF of case AD_STEADY) measured along flame front. 38

7 Comparison of measured \(CH^*\) intensity (Bottom: Experimental result) with heat release (Top: LES result of case AD_STEADY) integrated over line of sight. 39
Overview of the main heat loss phenomena measured in the experiment (Top) and modelled in LES (Bottom).

Comparison of measured CH^* intensity (Bottom : Experimental result) with heat release (Top : LES result of case HL_STEADY) integrated over line of sight.

Structure of the first eigenmodes of the combustion chamber given by Helmholtz solver : 487 Hz a), 705 Hz b), 926 Hz c). Acoustic pressure $|P'|$ in the central plane.

Pressure spectra measured in the experiment (thin line) and computed with LES pressure signal (thick line) for cases AD_STEADY and HL_STEADY.

Schematic layout of the method used in the unsteady measurements.

Pressure spectra measured in the experiment (thin line) and computed with LES pressure signal (thick line) for cases AD_FORCE15 and HL_FORCE15.

Phase locked heat release in the central plane and isosurface of equivalence ratio $\phi = 0.6$ for case HL_FORCE15.

Contribution of the fuel (thin line) and the air (thick line) fluctuations to equivalence ratio oscillations at the mouth of the burner for case AD_FORCE15 a) and case AD_FORCE30 b).
Comparison of normalized global reaction rate fluctuations along the cycle (LES case AD_FORCE15 : solid line) with normalised chemiluminescence fluctuations (Experiment : circles).

Dependence of normalized global reaction rate fluctuations upon the forcing amplitude a) and its evolution along the cycle b).

Temporal evolution of a) global convective Q_w and b) radiative Q_r heat losses for cases HL_STEADY (thin line) and HL_FORCE15 (thick line).
Fig. 1. Flame response to a) velocity perturbations and b) equivalence ratio perturbations.
Fig. 2. Full LES computational domain and flow path to the combustion chamber.
Fig. 3. Details of the computational domain: a) swirler vanes, b) acoustic decoupling system and c) outlet flange.
Fig. 4. Overview of the main components in the flame zone of the DESIRE setup.
Fig. 5. Comparison of statistical profiles: a) axial, b) radial and c) swirling mean velocity; a’) axial, b’) radial and c’) swirling RMS velocity; Symbols: Experiment; Solid line: LES; dashed line: zero line (case AD_COLD).
Fig. 6. a) Instantaneous view of the flame (isosurface of temperature at 1200K) and of the methane jets (isosurface of fuel mass fraction at 0.1); b) Equivalence ratio distribution function of the same instantaneous solution (PDF of case AD_STEADY) measured along flame front.
Fig. 7. Comparison of measured CH^* intensity (Bottom : Experimental result) with heat release (Top : LES result of case AD_STEADY) integrated over line of sight.
Fig. 8. Overview of the main heat loss phenomena measured in the experiment (Top) and modelled in LES (Bottom).
Fig. 9. Comparison of measured CH^* intensity (Bottom: Experimental result) with heat release (Top: LES result of case HL_{STeady}) integrated over line of sight.
Fig. 10. Structure of the first eigenmodes of the combustion chamber given by Helmholtz solver: 487 Hz a), 705 Hz b), 926 Hz c). Acoustic pressure $|P'|$ in the central plane.
Fig. 11. Pressure spectra measured in the experiment (thin line) and computed with LES pressure signal (thick line) for cases AD_STEADY and HL_STEADY.
In the unsteady measurements, the fuel mass flow supply is perturbed by the MOOG valve.

In lean combustion ($\lambda \approx 2$) of the diffusion flame, a number of dominant modes are observed. These modes are determined as the acoustic modes of a tube with an end (with a flame) and perturbation of the MOOG valve.

Due to the presence of the flame, a limited number of frequencies can be excited, determined by the acoustic modes of the tube with an end. A mode can be excited if the frequency is in the range of the acoustic modes.

This is illustrated in the figure below, which shows the schematic layout of the method used in the unsteady measurements.

Fig. 12. Schematic layout of the method used in the unsteady measurements.
Fig. 13. Pressure spectra measured in the experiment (thin line) and computed with LES pressure signal (thick line) for cases AD_FORCE15 and HL_FORCE15.
Fig. 14. Phase locked heat release in the central plane and isosurface of equivalence ratio $\phi = 0.6$ for case HL_FORCE15.
Fig. 15. Contribution of the fuel (thin line) and the air (thick line) fluctuations to equivalence ratio oscillations at the mouth of the burner for case AD_FORCE15 a) and case AD_FORCE30 b).
Fig. 16. Comparison of normalized global reaction rate fluctuations along the cycle (LES case AD_FORCE15 : solid line) with normalised chemiluminescence fluctuations (Experiment : circles).
Fig. 17. Dependence of normalized global reaction rate fluctuations upon the forcing amplitude a) and its evolution along the cycle b).
Fig. 18. Temporal evolution of a) global convective Q_w and b) radiative Q_r heat losses for cases HL_STEADY (thin line) and HL_FORCE15 (thick line).