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Understanding and predicting acoustic instabilities in gas turbine combustion chambers

requires the knowledge of the acoustic behaviour of all the elements feeding the combustion

chamber (characterized by their impedance). Inlets and outlets of chambers are often repre-

sented as one-dimensional ducts and existing methods to evaluate impedances of choked and

unchoked nozzles are described: (1) analytical formulae,1–3 (2) numerical methods using the

linearized Euler equations and a finite-difference solver in Fourier space and (3) full space-

time solver where the response of the nozzle is studied by forcing its inlet (or outlet) and

measuring its response in the time domain. These three methods are compared in reference

cases (a straight duct and a subsonic distributor). Practical implications for gas turbines

are then discussed: in such cases, if the diffusers and distributors connected to the cham-

ber are not choked, it is shown that solving the acoustic problem becomes very difficult as

compressors and turbines impedances are usually not known. This paper finally shows how

these impedances control the acoustic oscillations of a combustion chamber by presenting

an example of acoustic eigenmode calculations in a realistic gas turbine, using a Helmholtz

solver and various impedances for the inlet and outlet of the combustor.

Nomenclature

ṁ Mass flow rate (kg/m−3)

A Acoustic wave amplitude (Pa)

T Transmission coefficient
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~n Unit normal vector

~x Position vector

A Section (m2)

c Sound speed (m/s)

cp Mass specific heat capacity for constant pressure (J/kg/K)

cv Mass specific heat capacity for constant volume (J/kg/K)

f Frequency (Hz)

g1 Real-valued function

g2 Real-valued function

h Space step (m)

K Real constant

k Wave number (rad/m)

L Nozzle length (m)

N Number of discretisation nodes

p Pressure (Pa)

pt Total pressure (Pa)

R Reflection coefficient

r Molar perfect gas constant (J/mol/K)

s Entropy (J/kg/K)

T Temperature (K)

t Time (s)

W Molar mass (kg/mol)

Wac Total acoustic energy flux

Y Reduced acoustic admittance

Z Reduced acoustic impedance

Subscripts

1 Upstream value

2 Downstream value

x x-axis value

y y-axis value

Special notations

(·)′ Fluctuating values

[A], [C] N × N real matrices

[B] N × N complex matrix

[D] 2 × 2 invertible matrix
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(̄·) Mean values

δ− First order upwind differences

∆0 Second order central differences

{p′} Acoustic pressure amplitude N vector

Superscripts

(j) Discretisation index

+ Downstream travelling wave

− Upstream travelling wave

ǫ Parameter

I Incident wave

R Reflected wave

Greek letters

δ Adimensionalized volume mass fluctuation

γ Polytropic gas constant

λ Wave length (m)

ν Adimensionalized velocity fluctuation

Ω Computational domain

ω Angular frequency (rad/s)

Ω′
T Heat release amplitude(rad/s)

φ Real-valued function

ρ Volume mass (kg/m3)

ϕ Adimensionalized pressure fluctuation

1 Introduction

Combustion instabilities (CI) are an important research theme for the gas turbine industry.4

The central role played by acoustics in many combustion instability scenarios has been the

subject of long controversies but is now more and more widely recognized. Two classes of

methods can be used today to study oscillations in combustors.5–9

Large Eddy Simulation (LES) is becoming a standard tool to study the stability of many

modern combustion devices such as aero or industrial gas turbines, rocket engines or indus-

trial furnaces. When LES is performed using compressible Navier-Stokes equation solvers, it

directly provides both the time-resolved flow and the acoustic field. Multiple recent papers

have demonstrated that LES accurately predicts mean flow fields in turbulent combus-

tors.10–13 Other studies14–16 show that LES of compressible flows also correctly predicts
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the acoustic fluctuations in turbulent combustors and therefore can be used to study CI.

However, a major drawback of LES remains its cost and especially when describing com-

pressible flows (small time steps). Moreover, extracting an acoustic mode from a turbulent

flow is a hard task, which increases the difficulty to point out the phenomena which control

the appearance of CI.

Since LES remains expensive, developing alternative approaches is an interesting path:

studying the linear stability of combustors is the most obvious method. This is usually

achieved by Helmholtz codes, which solve the linearized wave equation to predict the fre-

quencies and the growth rates of the acoustic modes of the combustor.5,7, 8, 17, 18 These codes

run much faster than LES and work in the frequency domain while LES works in the time

domain. They rely on crude modeling assumptions for the base flow (which is often sup-

posed to be the mean flow) and for the effect of the flame on the acoustic field (using a

flame transfer function). They are well suited to parametric studies, for example to optimize

damping devices or combustion chamber shapes which minimize oscillations.

Both compressible LES and Helmholtz solvers naturally include acoustics and will give

acoustic fields correctly provided crucial and often forgotten information is available: the

acoustic impedances of all inlets, outlets and walls1. In real engines, the combustion chamber

is fed by a diffuser and flows into a distributor (Fig.1). A central question to evaluate

impedances is to know which elements of the engine really determine the impedance of the

diffuser and of the distributor. The latter are usually choked so that most authors consider

that the throat is a proper place to specify acoustic boundary condition. However, in certain

cases, distributors are not choked (during start-up for example where instabilities are often

observed) and in most cases, diffusers are not choked. For those situations, the evaluation

of impedances can become a critical issue. The objectives of this paper are:

• to review analytic methods to evaluate impedances of one-dimensional ducts and ex-

tend the approach of Marble and Candel,2

• to present a tool able to predict the impedance of combustor inlets and outlets by

approximating them as nozzle flows,

• to give simple academic examples of impedance calculations,

• to discuss the conditions that allow an evaluation of the impedances of a real gas

turbine, taking into account only the geometry of the diffuser and distributor as well

1Rigid walls obviously correspond to simple zero velocity conditions which are simple to implement but
gas turbine chambers often use multiperforated walls to cool the combustion chamber and these walls have
complex impedances.19 Multiperforated walls are not considered here.
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as the mean flow.

• to present an example of the importance of inlet and outlet impedances in the compu-

tation of modes in a real gas turbine chamber.

Reduced acoustic impedances measure the ratio between the fluctuations of acoustic

pressure and velocity at a given frequency :

Z(ω) =
p′

ρ̄c̄~u′ · ~n
, (1)

Impedance is a complex-valued function of ω. In fluids at rest, its real part is closely

linked to the acoustic energy flux p′~u′ (a zero real part means the acoustic flux is zero since

pressure and velocity have opposite phases).9 It is well known in some particular cases :

Z = 1 for an infinitely long duct, Z = 0 for an outlet at constant pressure and Z → ∞ on a

rigid wall. In the last relation, impedance is often replaced by its inverse called admittance

and defined as : Y = 1/Z.

There are three main methods to evaluate impedances (figure 2). First, in simple cases

and at low frequencies, analytical formulations may be available2,3 and are described in

Section 2. Secondly, for cases where the geometry of the considered component (diffuser

or distributor) becomes complex and the frequency is not low, the one-dimensional Euler

equations can be linearized around the mean state. Impedances at one end of the duct can

be obtained as a function of the geometry only if the flow is choked, or as a function of the

geometry and the impedance at the other side of the component if the flow remains subsonic.

Such methods (called here FD method because a finite difference solver is required to solve

the linearized equations in Fourier space) are presented in Section 3.3. Thirdly, a space-time

solver (Euler equations for compressible flows) can also be used to force the component with

harmonic waves and measure its response in terms of impedances in the time domain. This

method is expensive, it is described rapidly in Section 5 and used here as a reference tech-

nique to evaluate the precision of the FD method. Finally, section 7 illustrates the role of

impedances (or admittances): the principles of Helmholtz solvers are briefly described and

the influence of the boundary conditions is highlighted in the case of a gas turbine chamber

including all parts (casing, swiler, combustion chamber, dilution holes, choked outlet nozzle).
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2 Analytical formulations for impedances of compact

nozzles

For low frequencies, several analytical formulations for reflexion coefficients or impedances

have been developed for simplified cases. Despite strong hypothesis, they remain accurate,

even when nonlinear effects occur.20 The acoustic waves are here considered as plane waves

since their wavelengths are large in comparison with the characteristic lengths of the ducts.

The general form of acoustic pressure and velocity in constant section ducts can be written:2,9

p′

γp̄
= A+ exp(ik+x − iωt) + A− exp(−ik−x − iωt) (2)

u′

c̄
= A+ exp(ik+x − iωt) −A− exp(−ik−x − iωt) (3)

where k+ = ω/(c̄ + ū) and k− = ω/(c̄ − ū). Determining the acoustic boundary conditions

requires the determination of an impedance as defined by Eq.(1) or a reflection coefficient R

given by:

R =
AR

AI
(4)

The relation between R and Z depends on the orientation of ~n. For ~n pointing towards

positive abscissae, it is written:

R =
Z − 1

Z + 1
(5)

The simplest approximation has been described by Rienstra,21 who showed that the reflec-

tion coefficient of an open outlet is −1 (or zero impedance) for zero Strouhal number flows.

This simplification can be used for academic experimental setups, but in the context of gas

turbines, its application remains limited as combustion chambers rarely flow into open at-

mosphere but into high pressure stators followed by turbines.

A first approach to determine reflection coefficients or impedances of these passages is to

consider them as compact nozzles (figure 3), as proposed by Marble and Candel.2,3 When

the characteristic scale of the fluctuations is large compared to the duct length (i.e λ ≫ L),

the duct can be seen as a discontinuity in the wave propagation. Thus, it is not necessary to

solve the flow in the duct and its influence can be replaced by matching conditions (built in

the same way as jump conditions through a shock wave).2 For example, in the distributor

following the combustion chamber of aircrafts, a typical length scale is 10 cm (the length
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of the distributors vanes). For burnt gases at 1200 K with a sound speed of 700 m/s, a

reasonable compactness condition (λ ≈ 10L) leads to a critical frequency fc of the order of

700 Hz : the distributor nozzle can then be considered as compact for all frequencies up to

700 Hz. Marble and Candel2 have used conservation laws in subsonic and choked compact

nozzles to derive reflection coefficients. The conservation of mass flow (ṁ = ρuA) between

inlet (side 1) and outlet (side 2) can be written:

ṁ1 = ṁ2. (6)

If there is neither heat losses nor normal shock, the total temperature, defined by Tt =

T
(

1 + γ−1
2

M2
)

, with M = u/c, is also conserved between side 1 and side 2, leads to:

Tt,1 = Tt,2. (7)

The two conservation equations Eq.(6) and (7) imply that:

ṁ′
1

¯̇m1
=

ṁ′
2

¯̇m2
and

T ′
t,1

T̄t,1
=

T ′
t,2

T̄t,2
, (8)

with:
ṁ′

¯̇m
=

1

M̄

u′

c̄
+

ρ′

ρ̄
, (9)

and :
T ′

t

T̄t

=
1

1 + γ−1
2

M̄2

[

γ

(

p′

γp̄

)

−
ρ′

ρ̄
+ (γ − 1)M̄

u′

c̄

]

. (10)

2.1 Choked distributor

If the distributor is choked, and if the frequency of perturbations is low, the flow rate can be

assumed to match its choked value at all times. The mass flow rate is then directly linked

to the thermodynamic state upstream of the nozzle:

ṁ =
pt,1

√

γrTt,1

A∗γ
(

γ + 1

2

)−
γ+1

2(γ−1)

(11)

with pt,1 = p1

(

1 + γ−1
2

M2
1

)
γ

γ−1 is the total pressure upstream of the nozzle (Fig. 3). The

logarithmic derivative of ṁ1 can be calculated from Eq.(11), using the fractional variation
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of total pressure at side 1 :

p′t,1
p̄t,1

=
1

1 + γ−1
2

M̄2
1

[

γ
(

1 −
1

2
M̄2

1

)

(

p′1
γp̄1

)

+ γM̄1
u′

1

c̄1
+

1

2
γM̄2

1

ρ′
1

ρ̄1

]

, (12)

and Eq.(10) written at side 1. This leads to2:

ṁ′
1

¯̇m1
=

p′t,1
p̄t,1

−
1

2

T ′
t,1

Tt,1
=

1

1 + γ−1
2

M̄2
1

[

γ

2
(1 − M̄2

1 )

(

p′1
γp̄1

)

+
γ + 1

2
M̄1

u′
1

c̄1
+

1

2
(1 + γM̄2

1 )
ρ′

1

ρ̄1

]

.

(13)

Then, combining Eq.(9) written at side 1 and (13) entails:

u′
1

ū1
=

1

2

T ′
1

T̄1
or

u′
1

c̄1
−

γ

2
M̄1

(

p′1
γp̄1

)

+
1

2
M̄1

ρ′
1

ρ̄1
= 0, (14)

which is equivalent to write that the fluctuating Mach number is zero :

M ′
1 = M̄1

(

u′
1

ū1
−

1

2

T ′
1

T̄1

)

= 0.

Supposing that there is no incoming entropy wave s′1 = 0, so that :
ρ′1
ρ1

=
p′1
γp̄1

, Eq.(14) leads

to an expression for the acoustic inlet impedance :

Z1 =
2

M̄1(γ − 1)
hence R1 =

A−
1

A+
1

=
1 − 1

2
(γ − 1)M̄1

1 + 1
2
(γ − 1)M̄1

(15)

A−
1 does not depend on the downstream flow as no wave can come from downstream of the

throat. Eq.(15) also shows that a choked nozzle behaves nearly like a rigid wall (R = 1) for

low upstream Mach number (M1 → 0), which is a commonly used boundary condition for

choked nozzles.

2.2 Choked diffuser

The case of a choked diffuser is particuliar. Diffusers generally disembogue in a chamber

casing or a plenum, where the flow is subsonic: if the diffuser is choked, there is also a shock

between its throat and its outlet. Stow et al22 present an analysis of the acoustic response

of a choked diffuser with a normal shock in the expansion part of the duct. Assuming there

is no disturbance coming from upstream (A+
1 = 0), they showed that:

2This relation can also be written at side 2 but this has no interest here.

8 of 48



R2 =
1 − γM̄2 + (γ − 1)M̄2

2

1 + γM̄2 + (γ − 1)M̄2
2

. (16)

A generalization for transmission coefficients has also been derived by Moase et al.,23 assum-

ing there can be perturbation upstream of the shock and A+
1 is known.

2.3 Unchoked distributor / diffuser

In the case of a subsonic flow in the nozzle, information can propagate in both directions.

Thus, information on the other side of the duct is needed to determine reflection coefficients.

Conservation of mass flow rate and total temperature (Eq.(8) with Eq.(9) and (10)) are used

to write a system of two equations with 6 unknowns : u′
1, u

′
2, ρ

′
1, ρ

′
2, p

′
1 and p′2. Supposing

again that there is no entropy wave (s′1 = s′2 = 0) to eliminate ρ′
1 and ρ′

2 gives the following

system of two equations with 4 unknowns:

1

M̄1

u′
1

c̄1

+
p′1
γp̄1

=
1

M̄2

u′
2

c̄2

+
p′2
γp̄2

(17)

1

1 + γ−1
2

M̄2
1

[

p′1
γp̄1

+ M1
u′

1

c̄1

]

=
1

1 + γ−1
2

M̄2
2

[

p′2
γp̄2

+ M2
u′

2

c̄2

]

(18)

Writing pressure and velocity perturbations as waves (Eq.(2) and (3)) in Eq.(17) and (18)

gives :
1

M̄1
(A+

1 −A−
1 ) + A+

1 + A−
1 =

1

M̄2
(A+

2 −A−
2 ) + A+

2 + A−
2 (19)

1

1 + γ−1
2 M̄2

1

[

A+
1 + A−

1 + M̄1(A
+
1 −A−

1 )
]

=
1

1 + γ−1
2 M̄2

2

[

A+
2 + A−

2 + M̄2(A
+
2 −A−

2 )
]

(20)

If the outlet reflection coefficient R2 =
A

−

2

A
+
2

of the distributor is known, system (19)-(20) gives

the reflection coefficient at the inlet :

R1 =
A−

1

A+
1

= M̄1+1
M̄1−1

(M̄1−M̄2)(M̄2+1)(1− γ−1
2

M̄1M̄2)+(M̄1+M̄2)(M̄2−1)(1+ γ−1
2

M̄1M̄2)R2

(M̄1+M̄2)(M̄2+1)(1+ γ−1
2

M̄1M̄2)+(M̄1−M̄2)(M̄2−1)(1− γ−1
2

M̄1M̄2)R2
, (21)

while the transmission coefficient is:2

T1 =
A+

2

A+
1

=
2M̄2

1 + M̄2

(M̄1 + 1)(1 + γ−1
2

M̄2
2 )

(M̄1 + M̄2)(1 + γ−1
2

M̄1M̄2)
(22)

The same derivation for a diffuser gives R2 as a function of R1 =
A+

1

A−

1

:
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R2 =
A+

2

A−
2

= 1−M̄2

M̄2+1

(M̄2−M̄1)(M̄1−1)(1− γ−1
2

M̄1M̄2)+(M̄1+M̄2)(1+M̄1)(1+ γ−1
2

M̄1M̄2)R1

(M̄1+M̄2)(1−M̄1)(1+ γ−1
2

M̄1M̄2)+(M̄1−M̄2)(1+M̄1)(1− γ−1
2

M̄1M̄2)R1
(23)

and the transmission coefficient is:2

T2 =
A−

1

A−
2

=
2M̄1

1 − M̄1

(1 − M̄2)(1 + γ−1
2

M̄2
1 )

(M̄1 + M̄2)(1 + γ−1
2

M̄1M̄2)
(24)

Those results, summarized in Table 1, generalize the formulae given by Marble and Can-

del:2 for R2 = 0, Eq.(21) is identical to their results, while Eq.(23) matches their results

when R1 = 0. A similar work, introducing entropy disturbances, has recently been done by

Moase et al.23

3 Numerical evaluation of impedances using the lin-

earized Euler equations

The hypothesis of compacity is only applicable when the acoustic wave length is much larger

than the nozzle length. This is too strict an approximation as soon as perturbation fre-

quencies are no more small. The problem has then to be solved in more details, e.g mean

flow and then fluctuating pressures and velocities have to be calculated in the duct 3. The

first consequence of taking finite length ducts into account is that impedances now depend

on frequency, which is a major improvement in comparison with the previous approximations.

The inlet impedance (or outlet impedance) of a distributor (diffuser) can be obtained

by solving the linearized Euler equations under some assumption: the mean flow in these

ducts is quasi one-dimensional and isentropic, all geometrical complexities are included in

the one-dimensional cross section evolution of the inlet or outlet ducts,which are described

like simple nozzles, and, finally, the flow is a perfect gas with constant composition (no

chemistry) and constant heat capacities. With these assumptions, the Euler equations are

written:

3Marble and Candel present an analytical resolution2 for a finite length choked nozzle in which the mean
axial velocity varies linearly along the duct. This last approximation provides the impedance everywhere in
the nozzle. Nevertheless, in general, the mean velocity evolution is not linear and the acoustic problem must
be solved numerically.
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∂ρA

∂t
+

∂ρuA

∂x
= 0 (25)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
= 0 (26)

∂s

∂t
+ u

∂s

∂x
= 0 (27)

The system is completed by the equation of state for perfect gas : p = ρ R
W

T .

3.1 Acoustics in a nozzle

For the linearization of system (25) to (27),1–3,24 the variables (velocity, pressure or density)

are first decomposed in two parts: a mean component (overbarred values), which only varies

with space coordinates and a small fluctuating one (primed values), which depends on both

space and time. The quasi one-dimensional Euler equations (25)-(27) are then linearized:

∂

∂t

(

ρ′

ρ̄

)

+ ū
∂

∂x

(

ρ′

ρ̄
+

u′

ū

)

= 0 (28)

∂

∂t

(

u′

ū

)

+ ū
∂

∂x

(

u′

ū

)

+

(

ρ′

ρ̄
+ 2

u′

ū

)

dū

dx
=

p′

p̄

dū

dx
−

p̄

ρ̄ū

∂

∂x

(

p′

p̄

)

(29)

(

∂

∂t
+ ū

∂

∂x

)(

s′

cv

)

= 0 (30)

Introducing the mean velocity ū and density ρ̄ allows to completely hide the section changes

A(x) in Eq.(28) to (30). For the present approach, entropy waves have not been taken

into account even though the interaction of entropy waves with nozzles can be a source of

instabilities.2,22, 23 Since combustion is a strong source of entropy perturbations, it is logical

to assume that these waves participate to some combustion instabilities. Some recent studies,

however, suggest that the entropy waves have a limited influence on the resonant modes in

swirled combustors.25 Even though this simplification may not be justified for all cases, it

was used in the present study and may have to be relaxed for future work. We thus consider

that entropy fluctuations are zero:

p′

γp̄
−

ρ′

ρ̄
=

s′

cp

= 0 so that
ρ′

ρ̄
=

p′

γp̄
(31)
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Under the assumption of monochromatic fluctuations, one can write:

p′

p̄
= ϕ(x)e−iωt; u′

ū
= ν(x)e−iωt; ρ′

ρ̄
= δ(x)e−iωt = 1

γ
ϕ(x)e−iωt (32)

Using Eq.(28), (29) and (31) and introducing the local Mach number, system (28)-(29) for

the perturbed pressure ϕ and velocity ν becomes:

−iωϕ + ū
dϕ

dx
+ γū

dν

dx
= 0 (33)

ū

M̄2

dϕ

dx
+ γū

dν

dx
− (γ − 1)

dū

dx
ϕ + γ

[

2
dū

dx
− iω

]

ν = 0 (34)

Introducing Eq.(33) in Eq.(34) also gives for the momentum equation:

(

1

M̄2
− 1

)

ū
dϕ

dx
−

[

(γ − 1)
dū

dx
− iω

]

ϕ + γ

[

2
dū

dx
− iω

]

ν = 0 (35)

Using reduced values, the acoustic impedance can be written:

Z =
1

γM̄

ϕ

ν
(36)

Eq.(33) and (35) can be solved if appropriate boundary conditions are specified as described

below. It should be noted here that only longitunal acoustic modes are considered in this

resolution, whereas higher order acoustic modes can occur in a duct.9 Nevertheless, as

the main context is the study of the thermo-acoustic stability of a combustion chamber

(especially gas turbines), only the lower frequency acoustic eigenmodes (hence longitudinal

ones) are of interest.

3.2 Impedance of a choked nozzle

Distributors are most often choked in gas turbines (except for idle operating conditions).

In this particuliar case, knowing the mean flow is enough to determine the inlet acoustic

impedance of a choked nozzle. In the time domain, system (33)-(35) is strictly hyperbolic

(terms in −iω are replaced by time derivatives) and its two characteristic velocities (eigen-

values) are:

(

dx

dt

)

A±

= ū ± c̄ (37)

At the throat of a choked nozzle, ū∗ = c̄∗ which implies that the A− wave does not move at

the throat: no information can propagate upstream of the throat. Mathematically, it means
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that x = x∗ is a singular location for system (33)-(35). Eq.(35) at the throat with M∗ = 1

allows to write the throat impedance4:

Z∗ =
1

γM̄∗

ϕ∗

ν∗
=

2dū
dx
|∗ − iω

(γ − 1)dū
dx
|∗ − iω

(38)

3.3 Numerical resolution

To determine inlet or outlet acoustic impedance of ducts, the mean flow needs to be char-

acterized first. Its computation within a nozzle of cross section A(x) is a simple textbook

problem: as M̄ = ū/c̄ is the local Mach number, one can write, using Hugoniot relations

derived from the equations (25)-(27) for stationary flow :

A(x)

A∗

=
1

M̄

[

2

γ + 1

(

1 +
γ − 1

2
M̄2

)

]
γ+1

2(γ−1)

(39)

The Mach number is supposed to be 1 at x = x∗. Knowing M̄ at a boundary section enables

to calculate the critical section A∗. Then, the Mach number can be determined everywhere

else using an iterative Newton-Raphson method for equation (39). All other variables can

be calculated with isentropic flow relations using total values:

ρ̄(x)

ρ̄t

=
(

1 +
γ − 1

2
M̄2

)

−1
γ−1

and
p̄(x)

p̄t

=
(

1 +
γ − 1

2
M̄2

)

−γ

γ−1

(40)

Knowing the mean flow, the impedance can be computed as follows: for a given time fre-

quency ω, the computational domain is discretized in space x = {x(j)}1≤j≤N and the system

(33)-(35) becomes:

−iωϕ(j) +
ū(j)

h
δ−ǫ ϕ(j) + γ

ū(j)

h
δ−ǫ ν(j) = 0 (41)

(

1

(M̄ (j))2
− 1

)

ū(j)

h
δ−ǫ ϕ(j) −

[

(γ − 1)

h
∆ǫ

0ū
(j) − iω

]

ϕ(j) + γ

[

2

h
∆ǫ

0ū
(j) − iω

]

ν(j) = 0 (42)

where the difference operators ∆ǫ
0 and δ−ǫ are defined by:

δ−ǫ ϕ(j) = ǫ(ϕ(j) − ϕ(j−1)) and ∆ǫ
0ū

(j) =
ǫ

2
(ū(j+1) − ū(j−1)) (43)

4For low pulsations and constant section, Eq.(33) and (35) reduce to Marble and Candel’s result (Eq.(15)):
in this case, Eq.(33) and (35) lead to dϕ

dx
= γ dν

dx
, so that ϕ = ϕ∗ and ν = ν∗, and the impedance at the inlet

is Z1 = 1
γM̄1

ϕ1

ν1

= 1
γM̄1

ϕ∗

ν∗
. At the throat for ω → 0, Eq.(38) gives Z∗ = 2

γ−1 , ϕ∗

ν∗
= 2γ

γ−1 and Z1 = 2
(γ−1)M̄1

which is Eq.(38).
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The parameter ǫ depends on the type of flow: for a diffuser, ǫ = 1, while for a distributor

ǫ = −1. The system (41)-(42) is integrated from where the impedance is given (x = x(1))

to where it is searched (x = x(N)) as shown in figure 4. The system can thus be written in

compact form :

[D](j)





ϕ(j)

ν(j)



 =





g1(ϕ
(j−1))

g2(ν
(j−1))



 (44)

[D](j) is a 2 × 2 matrix and the acoustic impedance can be expressed at x = x(j):

Z(j) =
1

γM̄ (j)

ϕ(j)

ν(j)
(45)

At x = x(1), only Z = Z(1) is known: typically, section 1 must be the throat for choked

flows or a section where Z is known5. The system (44) with Eq.(45) is solved as follows :

in the section where the impedance is known, ν(1) is set equal to a constant K 6= 0 so that

(ϕ(1), ν(1))T = (γMZ(1)K, K)T , which is a set of boundary conditions for system (44). From

node to node, ∀j ∈ {2, . . . N}, [D](j) can be inverted to give (ϕ(N), ν(N))T . Z(N) is then

recovered using again Eq.(45). Of course, due to the linearity of Eq.(33) and (35), the choice

of K has no effect on Z(N) as pointed out by Mani.26 Calculation is repeated for several

frequencies to obtain the impedance curve versus frequency Z(N)(ω).

4 Numerical evaluation of impedance using the Euler

equations

Another way to determine acoustic impedances of section varying ducts is to use a space-

time solver and the Euler equation without linearization: extracting acoustic waves from the

solution of the unsteady Euler equations is expensive but used here as a verification of the

FD method of section 3. The solver is here based on the cell-vertex finite volume formulation

of the Lax-Wendroff scheme27,28 and boundary conditions are computed following the Euler

Characteristic Boundary Conditions approach.29,30 For example, the time simulation is

solved for a distributor (figure (5)) as follows. The mean flow is first imposed in the duct.

When the mean flow is established, monochromatic acoustic waves A+ of angular frequency ω

are injected at the inlet (resp. outlet) of the computational domain. The outlet impedance

is set to Z2. The reflected waves A− are then extracted from the pressure and velocity

temporal signals at the inlet, using a characteristic decomposition. Finally, a Fourier analysis

5In the case of a choked distributor, the singularity is avoided by using relation (38) as the boundary
condition for system (44), writing : x(1) = x∗ and Z(1) = Z∗.

14 of 48



of ingoing (reference) and outgoing acoustic waves gives the real and imaginary parts of the

inlet acoustic impedance at angular frequency ω.

This operation is repeated for several angular frequencies to obtain a map of Z(ω). Care

has to be taken with the use of the inlet boundary condition, since it must impose both the

mean flow and an acoustic wave.31 Moreover, it must totally evacuate the reflected waves A−

(non reflecting inlet boundary condition), otherwise the calculation of the inlet impedance is

biased. In the following comparisons, only the case of the distributor is shown even though

validations have also been made for diffusers. The procedure is similar for diffusers, except

that the inlet impedance Z1 is imposed and the outlet impedance Z2 is calculated.

5 Code verification

The FD method described in Section 3.3 is validated here in two cases: a constant section

duct where an analytical solution is available (Section 5.1) and a distributor (unchoked)

with a fixed outlet pressure where a space-time solver (Section 4) is used to evaluate the

impedance by forcing the inlet in the time domain (Section 5.2).

5.1 Comparison of FD method and analytical formulae in a con-

stant section duct

For simple test cases as the constant section duct, a trivial analytical solution can be derived.

The acoustic pressure and velocity of non-zero Mach number flow in a constant section duct

of length L both verifiy:

d2φ

dt2
− c̄2∂2φ

∂x2
= 0 (46)

where φ = φ(x, t) is either p′ or u′ and d/dt = ∂/∂t + ū∂/∂x. The solutions of Eq.(46) are

given by Eq.(2) and (3), section 2. Given the impedance at the outlet of the duct, one can

write it at the inlet for M̄ < 1. It has been calculated for flow conditions summarized in

Table 2 and outlet impedances Z2 = 0 and Z2 = ∞.

The analytical formulations of inlet impedance in those two cases are the following :

Z1|Z2=0 = −i tan(
kL

1 − M̄2
) (47)

Z1|Z2=∞ = i cot(
kL

1 − M̄2
) (48)
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Comparisons between imaginary parts of inlet impedances (real parts are zero) given by the

FD method and Eq.(47)-(48) are shown on figures 6 and 7 for a frequency range from 1 to

1000 Hz. The agreement between the two methods is very good even for higher frequencies.

5.2 Comparison of analytical formulae, FD technique and space-

time solver for an unchoked distributor

The comparison between the different methods to calculate impedances is performed here for

an unchoked distributor. The geometry (figure 8) is discretized unsig a non-regular Carte-

sian grid for the Euler equations solver and the characteristics of the flow are gathered in

Table 3. The outlet impedance at x = Lx is set to Z2 = 0.

Figure 9 shows a good agreement between the results of the space-time solver Euler

equations solver and Eq.(39) for the mean flow in the distributor, characterized here by y-

integrated Mach number M̄(x) =
∫

Ly
M̄(x, y)dy. Real and imaginary parts of inlet acoustic

impedance are plotted on figures 10 and 11. Here again, the agreement between the FD

method and the space-time solver is good. Moreover, the asymptotic behaviour at low

frequencies for both approaches coincides with the impedance analytically obtained from

Eq.(21). Nevertheless, as in the case of a constant section duct, the real and imaginary parts

of the impedance quickly evolve with frequency. It clearly shows a posteriori the importance

of solving the system (44) and the limits of analytical formulae (such as those obtained in

Section 2). The peaks observed on the real part (and change of sign of the imaginary part)

correspond to the acoustic modes of the nozzle. The first one is the quarter wave mode λ =

4Lx and f=435 Hz. Figures 12 and 13 show that the low frequency approximation (Eq.(21))

is valid up to frequencies f of approximately 200 Hz and a wavelength λ ≈ 1.7 m ≈ 10Lx.

Note that the real part of the inlet impedance is negative for some range of frequencies. This

is equivalent to a reflection coefficient modulus greater than 1. It is possible because of the

presence of a mean flow, as pointed out by Munjal32 and Mechel et al.33 In such a case, the

average flux through a surface and over a period of a fluctuation is written :

Wac =
|AI |2

2ρ̄c̄

[

(1 + M)2 − |R|2 (1 − M)2
]

(49)

Eq.(49) shows that Wac can be positive (acoustic loss) even if |R| > 1, as soon as there is a

mean flow (M 6= 0)6.

6As indicated by Munjal, this paradox (|R| > 1) is only apparent due to the choice of the variables u′

and p′ to define the reflection coefficient in Eq.(5). If proper aeroacoustic variables adapted to non-zero
mean flow are used to define R (the perturbed mass flow rate ṁ′ and the perturbed total enthalpy h′

t), the
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6 Impedances of combustion chambers in gas turbines

As recalled in Section 2, it is common to set Z = 0 for a flow that discharges in the at-

mosphere. Besides, Y = 0 is also often used for the inlet of a duct where the mass flow

rate is imposed constant in time. These boundary conditions can be used in the case of

academic configurations but not in gas turbines, where distributors and diffusers must be

taken into account. The previous sections have shown that methods exist to evaluate the

inlet impedance of distributors or the outlet impedances of diffusers when the impedance of

the other side of the nozzle is known. The most favorable case is when the ducts connected to

the casing or the chamber are choked. Indeed, the impedance at location x = x(1) is known.

As shown in section 3, the impedance at the throat of a choked distributor can be expressed

through the relation (38). For a choked diffusor, a normal shock (or a shock network) exists

between the throat and the casing inlet. Then, relations derived by Stow et al22 and Moase

et al23 can be used to determine the reflection coefficient of the shock.

Unfortunately, diffusers and distributors are not always choked and the flow can be fully

subsonic, especially at idle regimes. In such cases, location x = x(1), where the calculation

using FD method is started, is often the inlet or the outlet of a rotating machines. A first

approximation is to use Y (1) = 0 at the inlet of the diffuser (to model a constant flow rate) or

Z(1) = 0 at the outlet of the distributor (to model a constant pressure), but those are crude

approximations. As the accuracy of the resolution of (44) strongy relies on those values, one

would also rather try to model the compressor and the turbine with complex impedances by

studying their acoustic response. This could be done using the work of Kaji and Okazaki34

(and the concept of semi-actuator disk), if little information on the turbomachinery blade

rows is provided. A finer way to determine complex impedances of turbomachines lying up-

stream and downstream the chamber is to experimentally measure or compute the scattering

of acoustic waves through them.35,36

The next section shows the effects of impedances changes for diffusers and distributors in

the case of a realistic gas turbine. It confirms their importance and the necessity of modeling

them accurately.

reflection coefficient is always less than one.
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7 Application of impedance methods in a Helmholtz

solver for a real chamber

This section shows how Helmholtz solvers are built and provides one example of real gas

turbine application where the result of the solver is directly controlled by the acoustic

impedances used at inlets and outlets. Multidimensional Helmholtz codes15,37–39 solve the

linearized acoustic wave equation in the Fourier domain: they give the complex frequency

(stability analysis) and spatial structure of all acoustic eigenmodes.

The Helmholtz equation is obtained by linearizing the reactive Navier-Stokes equations

under the following assumptions:6,39 low Mach number, no volume forces, linear acoustics,

large scale fluctuations (long wavelength), homogeneous mean pressure, constant polytropic

coefficient γ. The fluctuating pressure field is then given by the wave equation7:

~∇ · (c2~∇p′) + ω2p′ = 0 (50)

with the following boundary conditions:

Z(ω) =
p′

ρ̄c̄~∇p′ · ~n
, (51)

where Z(ω) is the local impedance on the domain boundaries. The system (50)-(51) is

discretized using finite element formulation39 as follows: to be able to handle complex ge-

ometries such as gas turbine combustors, the computational domain is decomposed in linear

P1 elements (triangles in 2D, tetrahedra in 3D) and equations (50) and (51) are solved us-

ing a lumped mass matrix Galerkin finite element method (see Nicoud18). The discretized

equation can be put in a matrix form:

[A]{p′} + ω[B(ω)]{p′} + ω2[C]{p′} = 0 (52)

where [B(ω)] contains boundary conditions. The matrix problem (52) is a non-linear eigen-

value problem and is reformulated to be linear. It is then solved using a parallelized

implementation of the Arnoldi method.40 Several examples of its application have already

been referenced15,16, 18 and shown the accuracy of the solver.

Compared to Navier-Stokes solvers in the space-time domain, Helmholtz codes are faster

and directly supply the frequency and structure of all acoustic modes. Moreover these codes

can easily handle complex-valued boundary conditions that vary with frequency, whereas

7For this example, the effects of the active flame on the pressure field are neglected9, 39

18 of 48



it remains a challenge in the time domain, especially in complex geometries, despite some

developments41–43 making use of discrete convolutions.

As an example to show the influence of the boundary conditions, several calculations

have been realized on a real annular combustor (see Fig. 14 and 15). In this configuration,

both the chamber and its casing are considered and the swirler is also meshed. The only

differences between the computations presented below are the acoustic boundary conditions

at the chamber inlet and outlet (which are respectively linked with the diffuser and the

distributor). The boundary conditions are either obtained using the analytical formulae of

Table 1 or computed using the FD method of Section 3.

For the diffuser, the boundary condition upstream of the thoat is supposed to be either

Z1,in = 0 or Y1,in = 0 (Fig. 15). For the distributor, the acoustic condition downstream of

the nozzle correspond either to Z2,out = ∞ or to a Z2,out = Z∗ choked nozzle. The results of

the Helmholtz code are limited here to the first mode (lowest frequency). Table 4 provides

the frequency of this first mode for each case. The structures of the modes (adimensionalized

pressure modulus in the central plane of the chamber) are displayed in figures 18 and 19.

The results of the calculation illustrates the effects of impedances on the results. A compar-

ison between Case A and B highlights the impact of the inlet boundary condition, on the

diffuser side. Both the structure of the mode and its frequency (that has shifted from 245 to

360 Hz) are modified when the inlet impedance varies from 0 (Case A) to ∞ (Case B). The

approximation of u′ = 0 (infinite impedance) for the outlet to model a choked nozzle (case

B) gives very similar results to the right acoustic impedance calculated using the FD solver

(case C), at least for low frequencies. Analytical formulae or impedances given by the FD

method (case D) should be preferred since the the frequency and structure of the first mode

depends strongly on their values.

8 Conclusion

To determine the acoustic eigenmodes of gas turbine combustors, Helmholtz solvers are a

very interesting and commonly used method.5,7, 8, 17, 18 This paper shows that their accuracy

directly depends on the boundary conditions used for inlets and outlets. Some analytical

expressions have been derived in the past,2 extended here and shown to be efficient at low

frequencies. In practical cases, they are not often sufficient. A methodology to calculate

those acoustic boundary conditions, by approximating the ducts connected to the chamber

as one dimensional nozzles and solving linearized Euler equations, has been presented and

verified with different academic cases including a comparison with a full Euler equations
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solver. It enables the quick determination of inlet or outlet impedances of section varying

ducts (choked or not) in the frequency domain. The application of this method in a realistic

gas turbine chamber with a subsonic diffuser and a choked distributor has shown that even

when the whole chamber is computed (including casing and swirlers), results still depend on

the boundary conditions used for the inlets and outlets. This means that a proper prediction

of acoustic modes cannot be performed without these impedances. Results show that while

impedances can be calculated on the distributor side where a choked nozzle is usually found,

the problem is more complex for the inlet where diffusers are often unchoked and where a

location to identify a proper acoustic boundary condition is difficult to find. The study of

the scattering of acoustic waves has then to be considered to derive accurate impedances.
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3Candel, S., Etudes Théoriques et Expérimentales de la Propagation Acoustique en Mi-

lieu Inhomogène et en Mouvement , Ph.D. thesis, Université Paris VI, 1977.
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thesis, University Montpellier II, 2005.

40Lehoucq, R. and Sorensen, D., “ARPACK : Solution of Large Scale Eigenvalue Problems

with Implicitly Restarted Arnoldi Methods. www.caam.rice.edu/software/ARPACK,” User’s

guide, 1997.

41Fung, K., Ju, H., and Tallapragada, B., “Impedance and Its Time-Domain Extensions,”

AIAA J., Vol. 38, No. 1, 2000, pp. 30–38.

42Fung, K. and Ju, H., “Broadband Time-Domain Impedance Models,” AIAA J., Vol. 39,

No. 8, 2001, pp. 1449–1454.

43Ju, H. and Fung, K., “Time-Domain Impedance Boundary Conditions with Mean Flow

Effects,” AIAA J., Vol. 39, No. 9, 2001, pp. 1683–1690.

23 of 48



List of Tables

1 Reflection coefficients depending on the acoustic boundary conditions and the
flow regime in the low frequency limit. . . . . . . . . . . . . . . . . . . . . . 25

2 Main parameters of the flow in the 1D tube. . . . . . . . . . . . . . . . . . . 26
3 Characteristics of the variable section duct and boundary conditions. . . . . 27
4 Frequencies of the 1st acoustic eigenmode and set of boundary conditions used

for the calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

24 of 48



Diffuser Distributor

Choked R2 =
1−γM̄2+(γ−1)M̄2

2

1+γM̄2+(γ−1)M̄2
2

R1 =
1− 1

2
(γ−1)M̄1

1+ 1
2
(γ−1)M̄1

or Z1 = 2
M̄1(γ−1)

Unchoked
R2 : see Eq.(23)
T2 : see Eq.(24)

R1 : see Eq.(21)
T1 : see Eq.(22)

Table 1: Reflection coefficients depending on the acoustic boundary conditions and
the flow regime in the low frequency limit.
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Parameters Value
L 0.2
ρ 1.1723

r = R/Wair 288.19
T 300
M 0.2

Table 2: Main parameters of the flow in the 1D tube.

26 of 48



Geometry Value Boundary conditions Value
Lx 0.2 uin 30

Ly(inlet) 0.015 pout 1.013
Nx 101 ρin 1.1723
Ny 11 Tin 300
γ 1.399 r = R/Wair 288.19

Table 3: Characteristics of the variable section duct and boundary conditions.
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Cases Inlet impedance Z2,in Outlet impedance Z1,out 1st mode frequency (Hz)
A 0 (Eq.(23) with M1 ≈ M2 and R1 = −1) ∞ (Eq.(15) with M1 → 0) 245
B ∞ (Eq.(23) with M1 ≈ M2 and R1 = 1) ∞ (Eq.(15) with M1 → 0) 360
C ∞ (Eq.(23) with M1 ≈ M2 and R1 = 1) Z1,out (FD method) 357
D Z2,in (FD method) Z1,out (FD method) 330

Table 4: Frequencies of the 1st acoustic eigenmode and set of boundary conditions
used for the calculations.

28 of 48



List of Figures

1 Combustion chamber with diffuser and distributor. Ducts feeding the chamber
are replaced by acoustic impedances for the eigenmode calculation. . . . . . 30

2 Connections between the different calculations needed to study the thermoa-
coustic stability of combustion chambers. . . . . . . . . . . . . . . . . . . . . 31

3 Compact nozzle modelled as a discontinuity between the upward and down-
ward flows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 System (41)-(42) integration for diffusers and distributors. Boundary condi-
tions are given at x = x(N). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Impedance calculation with a temporal solver : once the mean flow is stabilized
(1), downstream travelling acoustic waves A+ are injected at the inlet (2) and
compared with the reflected acoustic waves A− that come back (3)-(4). . . . 34

6 Comparison between inlet impedances given by the analytical expression (47)
and the FD method. The outlet impedance is Z2 = 0. . . . . . . . . . . . . 35

7 Comparison between inlet impedances given by the analytical expression (48)
and the FD method. The outlet impedance is Z2 = ∞. . . . . . . . . . . . . 36

8 Geometry and mesh of the variable section duct. . . . . . . . . . . . . . . . . 37
9 Mean Mach number evolution. M̄(x) =

∫

Ly
M̄(x, y)dy. . . . . . . . . . . . . 38

10 Real part of the inlet acoustic impedance for the nozzle of figure 8. . . . . . 39
11 Imaginary part of the inlet acoustic impedance for the nozzle of figure 8. . . 40
12 Zoom of the real part of the inlet acoustic impedance of variable section duct

described, corresponding to the black box on figure 10. . . . . . . . . . . . . 41
13 Zoom of the imaginary part of the inlet acoustic impedance of variable section

duct described, corresponding to the black box on figure 11. . . . . . . . . . 42
14 Geometry of the complete annular combustor. . . . . . . . . . . . . . . . . . 43
15 Cut of the mesh used for the acoustic eigenmode calculation. . . . . . . . . . 44
16 Reduced acoustic admittance Y2,in = 1/Z2,in at the outlet of the diffuser. . . 45
17 Reduced acoustic impedance Z1,out at the inlet of the distributor. . . . . . . 46
18 First longitudinal acoustic eigenmode for two different inlet boundary condi-

tions . Left (case A): p′ = 0 at the inlet and u′ = 0 at the outlet. Right (case
B): u′ = 0 at the inlet and u′ = 0 at the outlet. . . . . . . . . . . . . . . . . . 47

19 First longitudinal acoustic eigenmode for two different simulations . Left (Case
C): u′ = 0 at the inlet and Z1,out is given by the FD method at the outlet.
Right (Case D): Z2,in at the inlet Z1,out at the outlet are both computed using
the FD solver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

29 of 48



Figure 1: Combustion chamber with diffuser and distributor. Ducts feeding the
chamber are replaced by acoustic impedances for the eigenmode calculation.
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Figure 2: Connections between the different calculations needed to study the ther-
moacoustic stability of combustion chambers.
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Figure 3: Compact nozzle modelled as a discontinuity between the upward and
downward flows.
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Figure 4: System (41)-(42) integration for diffusers and distributors. Boundary

conditions are given at x = x(N).
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Figure 5: Impedance calculation with a temporal solver : once the mean flow is
stabilized (1), downstream travelling acoustic waves A+ are injected at the inlet (2)
and compared with the reflected acoustic waves A− that come back (3)-(4).

34 of 48



Figure 6: Comparison between inlet impedances given by the analytical expression
(47) and the FD method. The outlet impedance is Z2 = 0.
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Figure 7: Comparison between inlet impedances given by the analytical expression
(48) and the FD method. The outlet impedance is Z2 = ∞.
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Figure 8: Geometry and mesh of the variable section duct.
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Figure 9: Mean Mach number evolution. M̄(x) =
∫

Ly
M̄ (x, y)dy.
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Figure 10: Real part of the inlet acoustic impedance for the nozzle of figure 8.
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Figure 11: Imaginary part of the inlet acoustic impedance for the nozzle of figure 8.
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Figure 12: Zoom of the real part of the inlet acoustic impedance of variable section
duct described, corresponding to the black box on figure 10.
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Figure 13: Zoom of the imaginary part of the inlet acoustic impedance of variable
section duct described, corresponding to the black box on figure 11.
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Figure 14: Geometry of the complete annular combustor.
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Figure 15: Cut of the mesh used for the acoustic eigenmode calculation.
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Figure 16: Reduced acoustic admittance Y2,in = 1/Z2,in at the outlet of the diffuser.
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Figure 17: Reduced acoustic impedance Z1,out at the inlet of the distributor.
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Figure 18: First longitudinal acoustic eigenmode for two different inlet boundary
conditions . Left (case A): p′ = 0 at the inlet and u′ = 0 at the outlet. Right (case B):
u′ = 0 at the inlet and u′ = 0 at the outlet.
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Figure 19: First longitudinal acoustic eigenmode for two different simulations . Left
(Case C): u′ = 0 at the inlet and Z1,out is given by the FD method at the outlet. Right
(Case D): Z2,in at the inlet Z1,out at the outlet are both computed using the FD solver.
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