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This paper deals with aerodynamic shape optimization using a high fidelity solver. Due
to the computational cost needed to solve the Reynolds-averaged Navier-Stokes equations,
the performance of the shape must be improved using very few objective function evalu-
ations despite the high number of design variables. In our framework, the reference algo-
rithm is a quasi-Newton gradient optimizer. An adjoint method inexpensively computes
the sensitivities of the functions with respect to design variables to build the gradient of
the objective function. As usual aerodynamic functions show numerous local optima when
the shape varies, a more global optimizer is expected to be beneficial. Consequently, a
Kriging based optimizer is set up and described. It uses an original sampling refinement
process which adds up to three points per iteration by using a balancing between func-
tion minimization and error minimization. In order to efficiently apply this algorithm
to high-dimensional problems, the same sampling process is reused to form a Cokriging
(gradient-enhanced model) based optimizer. A comparative study is then described on two
drag minimization problems depending on six and forty-five design variables. This study
was conducted using an original set of performance criteria characterizing the strength and
weakness of each optimizer in terms of improvement, cost, exploration and exploitation.

Nomenclature

A Amplitude of the Hicks-Henne bump function
C(x) Sampling refinement criterion
Cd Drag coefficient
Cdf Friction drag coefficient
Cdi Induced drag coefficient
Cdp Pressure drag coefficient
Cdvp Viscous pressure drag coefficient
Cdw Wave drag coefficient
Cl Lift coefficient
c Mean chord length
D Domain of design variables
Fs Exact function at samples [N ]
F (x) Objective function
H(x) Hessian matrix of the objective function
HH(x) Hicks-Henne deformation function
I(f) Improvement of the objective function (in percent)
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N Order of the correlation matrix / quantity of information
naug Number of gradient augmented samples
ndv Number of design variables
neval Number of function evaluations
ngrad Number of gradient evaluations
niter Number of iterations of the optimization process
npop Optimizer population size
ns Number of samples
P Set of possible optima on the response surface
RS Response Surface
R Correlation matrix [N × N ]
r(x) Correlation vector [N ]
S Sample dataset
scf(.) Spatial correlation function
S(x) Standard error
si i-th sample
x Vector of design variables [ndv]
β Zero order regression model
σ2 Model variance
θ SCF correlation coefficients [ndv]
||.|| 2-norm

Subscripts

i ∈ [1, ns]
j ∈ [1, ns]
k ∈ [1, niter]
c ∈ [1, neval]
r ∈ [1, npop]
v ∈ [1, ndv]

Superscripts

ini initial sampling database
.̂ approximated value
.̄ scaled value
ref best known value at current iteration (iteration k)

I. Introduction

In the field of aerodynamic aircraft design, the functions studied are very sensitive to small changes on
the shape and it is particularly hard for designers to reach an optimal solution by trial-and-error. Numerical
shape optimization tools are thus particularly favoured by aerodynamicists. These tools form a completely
automatic process capable of handling computer expensive numerical simulations given some degrees of
freedom on the geometry and a figure of merit qualifying the performance of the shape. In the context of
detailed design, a single optimization involves a few hundred resolutions of the RANS (Reynolds-Averaged
Navier-Stokes) equations on three-dimensional meshes. In order to limit the computational cost and wall
clock time of the process, the optimization algorithm must then be carefully chosen. It should improve
the objective function as much as possible given a limited number of function evaluations in spite of a
high number of design variables. The choice of the optimizer reflects a compromise between the amount of
improvement of the objective function and the computational cost (or time).

The quickest optimization algorithms use gradient information to converge along a descent path depart-
ing from a baseline shape to a local optimum. The first optimizations conducted by Hicks and Henne1

demonstrate the interest of gradient based optimizers in the field of numerical aerodynamic shape design.
This type of process is still in use nowadays2–5 with the addition of efficient gradient calculation techniques
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such as the adjoint method which enables to compute the sensitivity of the objective function with respect
to the design variables at a computational cost independent of the number of design variables. Despite their
speed of convergence, gradient based algorithms are known to be easily trapped by local optima.

The non-linear physical phenomena occuring in transonic flows imply numerous local optima on aerody-
namic functions (e.g. drag, lift, momentum). Due to this fact, the local optimum obtained with gradient
based optimizers could certainly be further improved by using more global optimizers such as genetic algo-
rithms. However, this type of algorithm would require thousands of function evaluations and the related
computational cost is not sustainable when dealing with three-dimensional Navier-Stokes analysis. The use
of global optimizers was made possible more recently thanks to the use of surrogate models6–10 which ap-
proximate the expensive CFD function by a black-box model which is inexpensive to evaluate. Numerous
surrogate model management methods exist (variable-fidelity, trust-region, sampling refinement, etc.). In
the simplest method, the surrogate model is built once for all at the beginning of the process and then
completely replaces the CFD solver.11 The success of this strategy depends largely on the accuracy of the
global response surface. It is only applicable to low-dimensional problems because reaching a high density of
sampling points becomes too computationally expensive when dimension increases (curse of dimensionality).
When dealing with high-dimensional problems, it is preferable to use a hybrid algorithm to perform some of
the evaluations with the CFD solver and the remaining evaluations on the surrogate model. In this article,
the hybridization technique retained is the iterative sampling refinement. At each iteration of the process, a
global optimum is determined on the surrogate model and is then validated through a CFD evaluation. The
new CFD evaluation is then added to the sample database and the surrogate model is updated.

The main goal of this article is to present an original optimizer based on iterative sampling refinement
and to assess its efficiency for aerodynamic design. This algorithm is original for several reasons. Firstly, it
combines multiple sampling refinement criteria within the same process iteration. Secondly, it uses a variant
of Cokriging (gradient enhanced Kriging) method12 referred to as sample limited Cokriging to build the
response surfaces. This formulation was set up to overcome the large computational cost needed to build
a surrogate model interpolating high-dimensional gradient vectors. Many articles present new optimizers
through a description followed by applications to some aerodynamic optimization cases. This effectively
shows that the new optimizer works well within a specific optimization framework (specific shape parame-
terization, specific analysis code), but this does not give insights into the efficiency of this optimizer within
another optimization framework. It is then impossible to determine if the new optimizer will be more efficient
than your favorite optimizer. Indeed, no reliable validation test-cases exist in the field of aerodynamic shape
optimization. Recently, a move towards an Aerodynamic Optimization Workshop was initiated by Epstein et
al.13 by comparing three different optimization frameworks on a wing design problem (same initial geometry
but different shape parameterizations and analysis codes). Since it is not yet available, the performance of
the optimizer is assessed by comparison with those of a well-known optimizer, namely DOT-BFGS .14 All
optimizers were implemented within the same aerodynamic optimization framework (same analysis code and
shape parameterization) and it was therefore possible to accurately benchmark their relative performance.
Additionally, this article proposes some original criteria to analyze and describe performance of optimizers.
Nowadays, optimization tools are being commonly used within design departments. These tools generally
propose a wide variety of optimization algorithms and designers need measures in order to clearly identify
advantages and drawbacks of each optimizer and to be able to choose the optimizer best suited to their
problems.

This paper is organized as follows. Section II describes the criteria used to assess the performance of
optimizers. It also presents the high-fidelity optimization suite OPTaliA and the gradient based optimizer
DOT-BFGS. The latter algorithm uses a classical quasi-Newton method and is taken as the reference op-
timizer. Numerous applications were successfully conducted using this optimization framework,4,11 but to
tackle the limitations underlined previously two response surface based optimizers have been developed using
a Kriging or Cokriging method which are presented in section III. They rely on a multi-criteria sampling
refinement process and are able to run multiple CFD runs in parallel in order to reduce the total clock time
of the process. Finally, section IV compares the response surface based optimizers to the gradient based ref-
erence optimizer on a low-dimensional drag reduction problem considering 6 design variables on a RAE2822
airfoil and a high-dimensional test problem considering 45 design variables on a wing. These problems were
chosen to assess the effect of dimensionality on the efficiency of optimizers.
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II. Optimization suite

The in-house software OPTaliA developed at Airbus is used to perform aerodynamic shape optimization.
This high-fidelity optimization suite can improve aerodynamic performance of an aircraft by changes in the
shape (planform variables fixed) and is adapted to the work done during the detailed design phase.

A. Common optimization framework

A general optimization framework, represented in Figure 1, has been set up in OPTaliA, in order to implement
various type of optimizers (gradient, genetic, response surface). From a global point of view, the process
can be described as a succession of two main tasks: evaluation and optimization. The evaluator is in
charge of computing the function value and if needed the gradient value of all elements of the population.
The population size (npop) depends on the optimization algorithm chosen, but if it is greater than unity the
evaluator performs the simulations of all shapes simultaneously by running multiple jobs on high performance
computers. A large population can reduce the wall clock time of the optimization process at the risk
of saturating computational resources. Once all shapes have been evaluated, the optimizer uses the new
information on the functions to propose a new population of shapes and the next iteration begins. In

Evaluate
Gradient(s)

No

No

Yes

Initial Population

Convergence ?

New Population

Optimizer

Evaluate Function(s)

New Gradient ?

Figure 1. Description of the optimization process implemented to accommodate various types of optimizers.

addition to the internal stopping criteria of the optimizer, the convergence is forced at the process level when
the number of iterations or the number of function evaluations exceeds a given threshold, max niter = 100,
max neval = 200.

One of the challenges in aerodynamic shape optimization is to manage running efficiently the evaluator
and the optimizer automatically in batch mode. More particularly, the evaluator itself is a complex process
requiring large computational resources. It is described below.

B. Evaluator for CFD functions

1. Shape parameterization and mesh deformation

The shape parameterization consists in applying Hicks-Henne sinusoidal bump functions on the surface skin
of a block-structured mesh. Each bump function is defined by three variables driving the amplitude, the
position and the width expansion. The direction of the deformation can be either along the vector locally
normal to the surface or along a fixed vector (vertical axis). This type of deformation was initially developed
by Hicks and Henne1 for numerical optimization of airfoils. The original Hicks-Henne bump formulation
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gives deformation along a curve. When applied on a two-dimensional surface, a linear propagation of the
bump is done in the second direction using fixed propagation distances.

Once computed, the field of deformation on the surface skin is spread in the volume mesh using a mixed
integral / transfinite interpolation method. The integral method is used to compute deformation of nodes
defining boundaries between blocks and then the transfinite interpolation computes deformation inside each
block in parallel.

An analytical linearization of the shape parameterization and of the mesh deformation modules enables
to inexpensively compute (in terms of CPU time) the sensitivity of the surface mesh and the sensitivity of
the volume mesh with respect to design variables.

A description of the mesh deformation technique and a validation case can be found in Meaux et al.4

2. Flow simulation, mean-flow and adjoint codes

Flow analyses were performed with the elsA15 software developed by Onera and Cerfacs. The flow is
simulated by solving the RANS equations associated with the one-equation Spalart-Allmaras turbulence
model on block structured meshes using a cell-centered finite volume approach. The second order Roe’s
upwind scheme with the Van Albada limiter is used as spatial scheme coupled with an implicit time resolution.
Diffusive terms are discretized with a second order centered scheme. Multigrid and local time stepping
techniques are used to increase the converge rate.

An overview of various results obtained with elsA was described by Cambier and Veuillot.15 Industrial
users such as Airbus participate to the validation of the software. The results obtained by Airbus engineers
on the AIAA-Drag-Prediction-Workshop-2 test case were described by Brodersen et al.16

One of the main requirement from designers is to obtain the same results when using the CFD solver
inside or outside the automatic optimization tool. As hysterisis phenomena are common when dealing with
transonic flows, the same initial flow condition (uniform flow) was used for all the simulations performed
during the optimization. Therefore, the computational cost of CFD simulations cannot be reduced by using
a restart strategy using the flow solution corresponding to the previous shape. The computational cost of
the optimization grows linearly with the number of function evaluations.

The sensitivity of the objective function with respect to the design variables is computed using the discrete
adjoint method.17 For an explicit presentation of the adjoint system solved within elsA and an evaluation of
the accuracy of the sentivities the reader is referred to Peter et al.18 and Meaux et al.4 This method enables
to compute the sensitivity of a single function with respect to ndv design variables at the cost of one linear
system resolution (same size as the RANS system). The gradient vector is computed using approximatively
the same computational time (factor ≈ 1.5) as one mean-flow simulation. For typical aerodynamic problems
considering hundreds of design variables and a few functions (lift, drag), this is a considerable improvement
over the classical method of forward finite differences requiring as many flow solutions as design variables.

3. Aerodynamic function computation

The objective function chosen is the far-field pressure drag,

F = Cdp = Cdvp + Cdw + Cdi, (1)

where Cdvp, Cdw and Cdi denote the viscous pressure drag, the wave drag and the induced drag, respectively.
The friction drag, Cdf , is excluded from the objective function as it does not significantly change with the
amplitude of deformation considered. The wetted surface is almost unaffected by the shape deformation.
The post-processing code used is ffd41 19 developed by Onera. It implements a far-field drag breakdown
method. The two main advantages of this approach are its ability to decompose pressure drag into physical
components (wave drag, induced drag, viscous pressure drag) and its accuracy through a filtering of non-
physical drag (spurious drag). The accuracy of this software was assessed during the second AIAA Drag
Prediction Workshop.16

The post-processing module can also compute the sensitivities of the drag with respect to the flow
variables and with respect to the mesh with an analytical formulation.

C. Gradient based optimizer, reference optimizer (DOT-BFGS)

The reference optimizer is gradient based and uses the classical quasi-Newton BFGS method (Broyden-
Fletcher-Goldfarb-Shanno) from the DOT (Design Optimization Tools)14 library. This algorithm is similar
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to the very well-known algorithm CONMIN. The description of one internal step of this optimizer is given in
Figure 2. Firstly, the algorithm determines a descent direction, dk, using the evolution of the gradient vector
during the last two internal iterations. Once the direction is computed, a line search aiming at computing
the norm of displacement giving the best improvement is performed. The line search is driven by a mono-
dimensional polynomial interpolation and requires successive function evaluations. This type of optimizer

Compute search direction

Direction
New Search

Yes

No

Update the approximation of

Build polynomial interpolation
for one dimensional search

the Hessian matrix
Ĥk given ∇F (αk); ∇F (αk−1)

dk = −Ĥ
−1
k

· ∇F (αk)

F̂ (αk + x dk)

dk = dk−1

Find αk+1 solution

of minx

(

F̂ (αk + x dk)
)

Figure 2. Description of the gradient based optimizer module DOT-BFGS.

is intrinsically sequential as it follows a single descent path. The optimizer stop when no improvement is
achieved during two optimizer internal iterations or if the gradient norm is null (falls under a given threshold).
This type of algorithm is quick to converge, but can only find a local optimum depending on the starting
location. It is possible to use a multi-start strategy in order to try to avoid some local optima, but the
computational cost is increased because of the multiple optimizations to perform. The main advantage of
this algorithm being its speed, the multi-start strategy was not used. For the optimization framework, only
one vector of design variables is handled by process iteration (npop = 1) whereas an internal iteration of the
optimizer comprises multiple function evaluations (a search direction update and a complete line search).

In terms of quantity of information, the quasi-Newton gradient algorithm proposes the next set of variables
by using only the information about the current internal iteration. The internal iteration contains information
about the search direction plus some function evaluations. The number of function evaluations performed
during the line search is not constant. It generally does not exceed ten and it is assumed to be equal to ten
in this paper. The line search step involves the computation of N = 10 scalar information concerning the
unknown function. The computation of the search direction requires two gradient vectors giving N = 2ndv

scalar information on the function to the optimizer. This optimization algorithm proposes a new shape based
on N = 2ndv + 10 scalar information on the unknown function. Even if the approximated Hessian matrix,
Ĥk, is more and more accurate as the number of internal iterations increases, the algorithm does not retain
all the information known about the function but focuses on the information in the vicinity of the current
shape.

D. Performance measurement of optimization algorithms

The properties of optimization algorithms are commonly described by two opposite notions: exploration
and exploitation. Exploration represents global search for promising solutions within the entire domain
of variables, whereas exploitation represents local search of promising solutions given some information
on the function. Optimizers that perform exploration to the exclusion of exploitation (random search) are
likely to discover a variety of interesting solutions at the cost of many trials without gaining the full potential
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represented by each solution. Conversely, optimizers that perform exploitation to the exclusion of exploration
are likely to find themselves trapped by the nearest local optimum.

The figure of merit measuring the wall clock time needed for an optimization to converge is the number of
process iterations, niter. The figure of merit measuring the computational cost of an optimization is the total
number of function and gradient evaluations, neval + ngrad. These quantities both qualify the exploitation
properties of the optimizer. One has to notice that a distinction is made between iteration at the process level
(Figure 1) and iteration at the optimizer level (Figure 2). The number of internal iterations of the optimizer
does not directly intervene to assess performance and is not reported (for DOT-BFGS it corresponds to the
number of gradient calculations).

Values denoted by the superscript ref are reference values obtained by comparing the value of the objective
function at a given process iteration to all previous evaluations, so as the quantity Fc−F ref

c is always positive
or null. This reference value corresponds to the current best function value known by the optimizer, the
current optimum. The reference value at the last iteration of the gradient algorithm correponds to the last
computation because it converges by following a descent path. That is not necessarily true for response
surface based optimizers. The evolution of the reference value with respect to the number of iterations
reprensents the convergence history.

Exploration denotes the ability of the optimizer to poll extensively the domain of variables. It is measured
in terms of variation of the design variables (xc) with respect to the current best known variables (xref

c )
during the optimization,

∑

||x̄c− x̄ref
c ||/ndv. In order to properly measure this quantity, the design variables

are scaled between zero and one and the distance between vectors of design variables is divided by the
number of design variables. Alternatively, the exploration can also be measured in terms of variation of
the function value during the optimization,

∑

(Fc − F ref
c ), but as the functions studied are non-linear it is

better to measure distances in the space of scaled variables. The reference point (xref
c ) chosen to measure

exploration is important. It does not seem logical to choose the baseline shape (null deformation) as the
reference point because lots of algorithms do not require a starting point. An optimum found by one of the
optimizers used could have been chosen a posteriori, but it would have introduced a bias as it is not ensured
that all optimizers would poll this location. By choosing the current best variables known by the optimizer
as reference point, the exploration criterion measures effectively the ability of the optimizer to ignore its
current best value in the sake of other promising locations.

The performance of an optimizer is expected to vary with respect to the complexity of the optimization
problem considered. This complexity cannot be precisely assessed as it depends on numerous parameters:
number of variables, range of the variables, number of functions, behaviour of the functions on the domain.
Despite that, it is generally admitted that the complexity of an optimization problem is the product of the
number of variables by the number of functions (objectives and constraints).

At each iteration, the optimizer reads and exploits a database containing information on the function
in order to find a promising location. This database contains function and sometimes gradient values
at the locations already explored during the previous iterations. Some optimizers take into account the
whole database (for example response surface based methods) and others use only a part of the database
(for example DOT-BFGS uses only the two last locations). Anyhow, the total quantity of information,
N , contained in this database will be used as a figure of merit to compare optimizers. A function value
will be counted as one scalar value and a gradient value will be counted as ndv scalar values, so that
N = neval + ngrad ndv.

As a summary, the criteria retained to characterize optimizers are:

1. Main criterion: the relative improvement of the function (I(f) = F ini
−F ref

F ini · 100).
2. Cost criteria: the computational time and cost of the optimization represented by the total number

of process iterations (niter), function evaluations (neval), gradient evaluations (ngrad) and the total quantity
of scalar information required by the optimizer to reach the optimum (N).

3. Exploitation criteria: the ability of the optimizer to translate an information on the function into

an improvement, I(f)
N

or I(f)
neval

.
4. Exploration criteria: the ability of the optimizer to investigate locations far from the current best

known location ( 1
ndv

∑

||x̄c − x̄ref
c ||) and the exploration per iteration or per quantity of information.

The choice of the optimizer comes from a compromise between four competing criteria: improvement,
computational cost (or time), exploitation and exploration.
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III. Response Surface based optimizer (RS Kriging and RS Cokriging)

Surrogate modeling tools are now widely used in engineering. Basically, these tools enable to inexpensively
approximate a function on a continous domain D given a database of ns samples, S. Once built, the
surrogate model can predict numerous information on the true function through: graphical plots giving
trends, sensitivity of the function with respect to each variable, or the value and location of the minimum
when coupled with an optimizer.

A. Response surface based optimization

Although it is computationally affordable to build a globally reliable response surface when considering three
or four design variables, a phenomenon described by Bellman20 as the ’curse of dimensionality’ prevents
the use of global response surfaces on high-dimensional spaces.21 In fact, this phenomenon makes the
global optimum almost impossible to reach on high-dimensional problems because the number of evaluations
required increases exponentially with the number of variables. It means that the design predicted by the
response surface has to be confirmed with calls to the true function. The response surface is only trusted
locally at samples locations (local response surfaces). These additional calls to the true function enable to
validate the prediction made by the surrogate and also to enhance its accuracy.

A previous study22 shows that when increasing dimension from one to six the complexity of aerodynamic
functions can not be represented with as few as 200 function evaluations and recommends the use of local
response surfaces. Local response surface based optimizers are initialized with a space filling sampling giving
rough trends of the function and internally use an expensive global optimizer to optimize one or multiple
sampling refinement criteria, Cr(x), in order to iteratively increase the surface accuracy around locations of
possible optima. At each iteration multiple locations can be explored. Once the evaluator has computed the
function values at these locations, the response surface is updated by adding these new samples.

This type of optimizer relies on the assumption that an efficient surrogate model can be built in high-
dimensional search spaces (several ten variables).

B. Building response surfaces: From Kriging to samples limited indirect Cokriging

Kriging (DACE formulation) was chosen to build the response surface F̂ (x) for its ability to approximate
accurately non-linear functions and to guarantee a null error at samples. This method is very well-known in
the field of numerical optimization and CFD. The reader is referred to articles by Sacks et al.23 and Jones
et al.6 for a detailed description of the method. The next section presents only its main features.

1. Kriging

The Kriging method is formed by a constant term, β̂, representing a mean of the function at samples, Fs,
plus a linear combination of basis function interpolating each sample built up as a stochastic process, Z(x),

F̂ (x) = β̂ + Z(x) ≈ F (x). (2)

The basic assumption underlying Kriging is that the covariance of the function is linked to the spatial
correlation and this correlation is maximum when the distance between points is null and decreases with the
distance,

cov[Z(si), Z(sj)] = σ̂2Rij . (3)

The correlation matrix R (order N = ns) results from evaluations of a spatial correlation function linking
the distance to the correlation between two points,

Rij =
∏

v

scfv(|s
i
v − sj

v|). (4)

The correlation function tends toward 1 when distance decreases toward 0. A cubic spline correlation function
depending of one parameter driving the directional strength of the correlation , θv, was chosen,

scfv(x) =











1 − 6(xθv)2 + 6(xθv)3 , x < 1
2θv

2(1 − xθv)
3 , 1

2θv
≤ x < 1

θv

0 , x ≥ 1
θv

(5)
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If the distance between two samples is too small, their corresponding columns in the correlation matrix will
be almost the same implying an ill-conditioned matrix and an unstable Kriging model. That is why space
filling sampling methods like Latin Hypercube Sampling (LHS) are recommended when using Kriging.

To evaluate Kriging at an unknown location (x) a vector of correlation (r) between sample points and
this unknown point is computed,

ri(x) =
∏

v

scfv(|xv − si
v|). (6)

Once the correlation matrix has been inverted, the prediction, F̂ , can finally be computed at the point x,

F̂ (x) = β̂ + rt(x)R−1(Fs − 1β̂). (7)

One should notice that the Kriging method does not require a minimum number of samples to be built,
whereas a linear polynomial interpolator would require at least ndv + 1 samples. In addition, the predicted
uncertainty of the Kriging function or standard error, Ŝ(x), can be computed,

Ŝ(x) = σ̂

(

1 − rt(x)R−1r(x) +

(

1 − 1R−1r(x)
)2

1tR−11

)

1

2

≥ 0. (8)

The standard error of Kriging is null at samples and increases with distance.

2. Kriging fit

Kriging models are fitted by maximizing the logarithm of their likelihood estimates (Maximum Likelihood
Estimate (MLE) problem). For the parameters β and σ2 analytical expressions maximizing this value are
known,

β̂ = (1tR−11)−11tR−1Fs, (9)

σ̂2 =
1

ns

(Fs − 1β̂)tR−1(Fs − 1β̂). (10)

The correlation parameters (θv) are solution of the following MLE optimization problem,

MLE = maxθ

(

−
1

2

(

ns

(

ln(σ̂2) + ln(2π) + 1
)

+ ln |R|
) )

, (11)

It is solved using a gradient based optimization algorithm initialized by an appropriate guess as described
by Laurenceau and Sagaut.22 Each likelihood evaluation requires the computation of the determinant of
the correlation matrix and the resolution of the optimization problems requires several hundred likelihood
evaluations.

During the sampling refinement process, the parameters are refitted at each update of the sample
database.

3. Sample limited indirect Cokriging, gradient enhanced Kriging

Gradient enhanced response surfaces interpolate the function and the gradient at each sample location.
Such response surfaces built using the Kriging method are commonly called Cokriging model. The benefits
of gradient enhanced surrogates was described by Chung et al.,24 Liu12 and Sobester et al.25 As Cokriging
models include more information on the true function than Kriging models, they need fewer samples to
achieve a given level of accuracy. Moreover, a comparison varying the dimension of the problem and the
number of samples on an aerodynamic test case22 has proven that the vectorial information provided by the
gradient is more beneficial for high-dimensional problems.

For its flexibility, the formulation retained to build the gradient enhanced Kriging is the indirect Cok-
riging formulation.12 It does not change the Kriging formulation described previously because the gradient
interpolation is performed through a sample database augmentation scheme. Instead of directly using the
gradient information, it is used to add one point per direction at each sample using a first order Taylor
approximation,

F (sns+iv) = F (si) +
∂F (si)

∂xv

10−4rangev(S). (12)
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After using the gradient information at each sample, the augmented database contains N = ns(ndv + 1)
samples.

The computational cost of the response surface (fit and evaluation) is considered negligible compared
to CFD function evaluations for matrix order up to N ≈ 400. However, as the computational cost of
Cokriging depends on the number of variables, it becomes impractical for high-dimensional problems. It is
then necessary to use altered augmentation schemes.

Liu12 proposed a direction limited augmentation scheme using only one augmentation point per sample,
N = 2ns. Practically, this strategy implies a loss of information because only one element of the gradient
vector is used. In the context of the OPTaliA optimization software, gradients of CFD functions are computed
with an adjoint method and the complete gradient vector is computed even if only one term of the vector is
included in the database.

For this reason a sample limited augmentation scheme is preferred. It consists in using the complete
gradient information only for a limited subset of samples: the first naug in the database. The augmented
matrix order is then N = ns + naugndv. Practically, the parameter naug is used to adapt the Cokriging
computational cost to the number of variables. For the problem considering six design variables (ndv = 6),
ten augmented samples were used (naug = 10), whereas for the 45 design variables test case (ndv = 45), five
augmented samples were used (naug = 5).

C. Global optimization on the response surface for sampling refinement

As stated in III.A, another optimization problem has to be solved inside the response surface based optimizer
module. Some sampling refinement criteria, Cr(x) (presented in the next section), must be optimized to
exploit the information contained in the response surface and find a suitable new set of design variables. As
the criteria are inexpensively evaluated, a global optimization strategy was adopted for their minimization.
In order to effectively find the global minimum even for high-dimensional problems (45 variables here), a
strategy using multiple optimizers is used. This strategy proceeds in building a set, P, of possible optima of
the criterion given by the various methods and finally retains only the optimum of this set of limited size.

Firstly, the set of possible optima, P, is initialized by the minimum coming from the sample database.
Secondly, a binary coded genetic algorithm a is used with a population size of 100 individuals and a

maximum number of generations equal to 1000. A convergence test was implemented to stop this algorithm
when no improvement on the function is made during 10 consecutive iterations. This algorithm is ran 100
times using different seed values. Each run enables to insert a new point in the set of possible optima P. At
this stage, the set P contains 101 elements.

Thirdly, a pseudo-random exploration is performed by evaluating the function at 105 locations. The
minimum of the exploration phase is used to initialize a gradient descent (quasi-newton BFGS method).
Once converged the minimum of the gradient algorithm is inserted in the set P. This step is repeated 10
times with different seed values for the exploration. At this stage, the set P contains 111 elements.

Finally, a last gradient descent is performed departing from the minimum point of the set of possible
optima P.

This strategy is maybe not the most efficient one in terms of number of evaluations, but the authors are
confident that it enables to find the global optimum on the response surface with as much accuracy on the
6 design variables test case than on the 45 design variables test case. As no bias can be attributed to this
internal optimization step, any loss of performance of the response surface based optimizer when increasing
dimension will be attributed to a loss of accuracy of the response surface.

D. Sampling refinement strategy

In our context the sampling database is very sparse due to the relatively high number of variables (45
variables) and the limited number of samples (less than 200 samples). The response surfaces are thus
globally inaccurate and the success of the optimization strategy lies on the sampling refinement method. This
updating method must represent a compromise between exploitation and exploration. It must perform some
exploration in order to avoid being trapped by one of the multiple local optima and some exploitation in order
to decrease the computational cost as much as possible. Moreover, it must prevent a premature convergence
in case of ill-fitted models. These ill-fitted models correspond to models built with incorrect correlation

agenetic algorithm from D. Caroll of CU Aerospace, http://www.cuaerospace.com/carroll/ga.html
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parameters. When dealing with very sparse sampling databases, the MLE optimization sometimes gives
overestimated correlation parameters corresponding to completely uncorrelated samples which is unrealistic.

The adaptive sampling process can be designed to produce one sample or multiple samples by iteration. As
stated in the Surrogate Management Framework,26 the optimizer has to exploit efficiently at each iteration
the current response surface (’SEARCH’ step). It is then recommended to explore the response surface
globally for multiple prospective pools instead of restricting the search to the minimum of the response
surface. Consequently, it was decided to implement a process handling multiple refinement locations per
iteration. One of the advantages of this type of process is that the calls to the true function (the expensive
CFD computation) can be parallelized and the total clock time decreased. The classical approach to obtain
multiple samples by iteration is to use a single sampling criteria and take multiple local optima or multiple
individuals of the last generation of a genetic algorithm as refinement locations.25 In this paper a different
approach is developed. The authors propose to combine multiple sampling refinement criteria within the
same iteration in order to form an original and efficient sampling refinement process. In order to maintain
the efficiency of the optimizer and limit the total computational cost, the number of criteria combined was
limited to three.

1. A combination of three sampling criteria

The most obvious criterion exploits only information on the function and search for the location of the
minimum on the model,27

C1(x) = F̂ (x). (13)

This criterion ensures that in the case of a globally accurate response surface, the optimum of the function
will be sampled. That is why it was included within our combination of sampling criteria. This criterion is
devoted to exploitation, but is not exempt from exploration because the model is inacurrate. This article
will not present a complete comparison of sampling criteria, but from the authors’ experience this criterion
used on its own within an optimization process leads to a premature convergence and gives only a moderate
improvement of the function. This fact has led us to couple this criterion with other criteria exploiting
the information given by the standard error (Eqn. 8) of the model in order to enhance the exploration
capabilities of the algorithm.

It is possible to directly place the new sample at the location of maximum predicted error. It would enable
to achieve a globally accurate model, but it would certainly waste a lot of samples to find the optimum of
the function. This criterion is devoted to pure exploration and was not retained here. Several techniques
exist to balance the exploitation of zones of low function values with the exploration of zones of high error
values (locations far from samples).

The Expected Improvement (EI)6 is the most favored criterion when using Kriging. This criterion
represents a balancing between exploitation and exploration, which has proven to be efficient at least for
low-dimensional problems,6,28–30 when the number of variables does not exceed ten. It maximizes the
probability of improving the function over the current best known sample given a model and its standard
error. However, the EI criterion was not retained here because its maximization is very difficult on high-
dimensional problems. The EI function is highly multimodal and exhibits large flat areas with null gradients.6

The Lower Confidence Bounding (LCB) criterion of Cox et al.31 was preferred as it tends to give a more
regular function (a regularity similar to the one of the original function) and is then easier to optimize. It
directly uses a balancing coefficient b between function and error to perform a linear combination,

LCBb(x) = F̂ (x) − bŜ(x), b ∈ R. (14)

The minimum of the LCB criterion indicates the location of the sample. The standard error of Kriging
being always positive, the error balancing coefficient, b, can be chosen positive or negative. An increase of
the balancing coefficient enhances the exploration of the criterion and vice versa. Cox et al. used the values
b = 2.0 and b = 2.5 to solve several low-dimensional mathematical test problems but they specified that
their choice for b needed further investigations. This parameter depends on the optimization problem studied
and the user has to define an appropriate value. The authors made some attempts (not described here) to
determine this coefficient dynamically thanks to heuristic methods, but no significant gain on the efficiency
of the optimization were achieved over the most obvious choice b = 1.0. Therefore, the value b = +1.0 was
retained.

C2(x) = LCB1(x) = F̂ (x) − Ŝ(x). (15)
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This LCB1(x) criterion is dedicated to exploration as it tends to explore locations distant from samples
(where the standard error is high). The low value for b enables to perform moderate exploration which is
coherent with the fact that the samples database is very sparse.

The first criterion can be related to a LCB criterion with a null balancing coefficient, C1(x) = LCB0(x).
In this work, it was decided to use a LCB criterion with a negative coefficient b = −1.0.

C3(x) = LCB
−1(x) = F̂ (x) + Ŝ(x). (16)

With a negative balancing coefficient the criterion LCB
−1 performs less exploration than the first criterion

minimizing directly the function (C1). It is dedicated to exploitation. Most of the time C1(x) = LCB0(x)
and C3(x) = LCB

−1(x) produce the same refinement location so that only C1(x) = LCB0(x) is activated.
Despite that, from the authors’ experience this criterion is crucial when dealing with very sparse sampling.
Its role is to enhance the robustness of the process and to avoid a premature convergence for example in case
of ill-fitted models.

The new Kriging/Cokriging based optimizers (Figure 3) are initialized using a latin hypercube space
filling sampling method during the first iteration. The refinement process begins at the second iteration
after nini

s function evaluations. Once initialized, this framework runs simultaneously up to three CFD runs
(npop ≤ 3) per iteration. Due to the fact that the sampling refinement process tends to explore locations of
high standard error values (minimum of C2(x) = LCB1(x)), it is able to explore undersampled regions. Due
to its robustness, this optimizer is able to manage very coarse initial sample database (10 samples for 45
variables) at the cost of more iteration of the process. Anyhow, a large initial sampling database is beneficial
in terms of total clock time because the first nini

s evaluations are performed simultaneously.
For a wider point of view on surrogate based optimization and sampling refinement techniques, the reader

is referred to the review paper of Forrester and Keane32 and the thesis of Sasena.28

2. Distance check and convergence

Each location indicated by the minimization of a sampling refinement criterion must be validated by perform-
ing a distance computation with respect to already computed locations. The main purpose of this validation
is to avoid performing expensive CFD computations on quasi-identical shapes. The secondary purpose is
to ensure a good conditioning of the Kriging correlation matrix. The point is rejected if its minimal scaled
distance with respect to already computed samples falls below a fixed threshold,

xref accepted if, mini

(

1

ndv

∑

v

|x̂ref
v − ŝi

v|

)

> ǫ. (17)

The value of the threshold, ǫ, must be adapted to the level of convergence expected from the optimizer i.e.
the number of iterations allowed. The value chosen here is ǫ = 10−6.

Convergence is reached when all three proposed refinement locations are rejected (too close from already
sampled locations Eqn. 17) or if the function value was not improved during the last 20 iterations.

Figure 3 describes the sampling refinement process implemented within our new response surface based
optimizers.

Update the Response Surface with new samples
Build F̂k(x) and Ŝk(x)

Find minx

(

F̂k(x)
)

Find minx

(

F̂k(x) − Ŝk(x)
)

Find minx

(

F̂k(x) + Ŝk(x)
)

check distance and update Scheck distance and update Scheck distance and update S

Figure 3. The sampling refinement process of the new response surface based optimizers.

IV. Results

The no-free-lunch theorem for optimization by Wolpert et al.33 states that the ultimate optimization
algorithm does not exist. If optimizer A performs better than optimizer B for a given set of problems
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then it must perform worse on the remaining problems. it is theoretically possible to find another set
of problems where the optimizer will not be to contradict this fact. Their recommendations are then to
use a wide variety of test problems in order to compare general-purpose optimization algorithms and to
incorporate problem-specific knowledge into the optimizer as much as possible. The aim of the present
paper being to determine optimizers suited to aerodynamic design problems, the comparison of optimizers
was not made using a large spectrum testing environment (such as CUTEr) as would have been done
for a general-purpose optimizer. In the following section, a comparison between two new Kriging and
Cokriging based optimizers and the reference gradient optimizer (DOT-BFGS) is made by studying two
aerodynamic test cases. The test cases are directly performed within OPTaliA on functions evaluated
through CFD computations (including numerical noise). Moreover, the problems are defined as representative
simplifications (no constraint functions, less design variables, coarser meshes) of real industrial problems
handled by aircraft designers.

A. Airfoil drag minimization considering 6 design variables and 1 function

The first test problem concerns a RAE2822 airfoil at a Mach number M = 0.729 and an angle of attack of
2.31o. The chord length is one meter and the Reynolds number value is Re = 7.106. The C-mesh is formed
of 73 × 458 nodes with its boundary layer refinement. The wall clock time for one steady flow simulation is
five minutes using two processors AMD Opteron 275 (2.2 Ghz) to perform 400 iterations.

The objective function considered is the far field pressure drag. Two bumps (ndv = 6) are applied to
deform the upper surface in the direction of the vertical axis. Only positive deformations are allowed and
the maximum amplitude of one bump is 5 millimeters (Amax

c
= 0.5%). The domain of variation for the

position of the bumps allows bump overlapping. The complexity of the optimization problem is low as only
one function and six design variables are considered. Moreover, the extent of the domain of design variables
can be considered relatively small as it is restricted to combinations of two positive bumps.

The same initial samples distribution is used for Kriging and Cokriging response surfaces. It contains 10
samples, nini

s = 10 and N ini = 10, including the baseline shape and nine space filling samples distributed

by a Sobol method. The initial sampling density is low, its value is 10
1

6 ≈ 1.5 points per direction. The
size of the initial database was minimized in order to enable the exploration of the design space through the
iterative sampling refinement process. The sample database augmentation for the sample-limited Cokriging
includes the information of 10 gradient vectors, naug = 10, providing a quantity of information equivalent to

60 additional samples, N ini
RSCokriging = 70 (70

1

6 ≈ 2.1). The computational cost of the gradient augmented
database is higher (10 adjoint computations). This additional cost is not very significant because the 10
initial samples are evaluated in parallel during the first iteration. However, it is reported in Table 2.

The starting point for the gradient algorithm corresponds to large equidistributed bumps of null ampli-
tudes.

On Figure 4 are represented the baseline and the optimized shapes and the associated pressure coefficient
values. The pressure distribution on the baseline shape shows the presence of a shock (drag production)
at the upper surface of the airfoil at 55% of the chord length. This shock is attenuated (suppressed) by
the deformations proposed by the different optimizers. The noteworthy differences between each pressure
distribution show that all optimizers converged to different solutions. Whereas both response surface opti-
mizers found an optimal shape by distributing the two bumps near the leading edge and the shock location,
the gradient optimizer was trapped by the high sensitivity of the drag to deformations near the shock loca-
tion and tried to superpose both bumps near the shock. This illustrates the fact that functions studied in
numerical aerodynamic shape optimization exhibit multimodal behaviour and strong trends (high gradient
values). The low complexity of this problem does not prevent the gradient optimizer to be trapped in a local
optimum.

In terms of improvement of the objective function (Table 1), the response surface optimizers largely
outperform the gradient optimizer. Both response surfaces algorithms give very close results in terms of
final shape deformation and function value. This fact seems to indicate that both methods tend to the
same solution which is probably the global optimum of the problem. It confirms their enhanced exploration
capabilities. One can see from Table 1 that contrary to the RS optimizers, DOT-BFGS does not manage to
completely suppress the wave drag (Cdp) and slightly increases the viscous pressure drag (Cdvp).

Despite the fact that an improvement is achieved within the initial sample database of the response
surfaces, it appears that a multi-start strategy involving DOT-BFGS departing from each one of these 10
samples does not manage to outperform either of the RS optimizers. The multi-start gradient strategy

13 of 24



departing from 10 space filling plus the baseline shape achieved an improvement of I(f) = 21.3%. This is
2 percent worse than the RS optimizers, but 6 percent better than DOT-BFGS departing from the baseline
shape. The computational cost involved largely exceeds our initial bounds (414 function evaluations and
73 gradient evaluations) that is why this approach was not extensively studied. Moreover, it appeared that
all the 11 optimizations ran on this problem with DOT-BFGS were all trapped by different local optima
whereas the problem considers only 6 variables.

Even if the purpose of this article is not to determine a realistic design but to compare the optimizers,
a short assessment of the aerodynamic performance of optimized shapes was made. It appears that the
increased thickness (positive amplitude of the bumps) of the optimized airfoils induces an increase of the
lift coefficient. The aerodynamicists want to decrease drag for a given lift. In order to confirm the interest
of the optimized shapes, the angle of attack of the optimized airfoils was recalibrated to achieve the same
lift as on the baseline shape (Cl = Cl0 on Table 1). In these conditions, the ranking between the different
shapes remains unchanged.
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Figure 4. Optimization of the RAE2822 airfoil: pressure coefficient distributions (left) and optimal deforma-
tions of the upper surface (right) given by DOT-BFGS, RS Kriging and RS Cokriging optimizers.

Baseline DOT-BFGS RS Kriging RS Cokriging

Cdp = F 100 84.6 (-15.4%) 76.7 (-23.3%) 76.9 (-23.1%)

Cdw 100 16.5 0.0 3.0

Cdvp 100 100.7 95.3 94.5

Cl/Cd 100 110 114 114

AoA for Cl = Cl0 2.31 2.19 2.24 2.243

Cdp for Cl = Cl0 100 79.7 (-20.2%) 79.0 (-21.0%) 76.9 (-23.1%)

Cl/Cd for Cl = Cl0 100 112 113 114

Table 1. Optimization of the RAE2822 airfoil: aerodynamic performance of the baseline and optimized shapes.

Figure 5 represents the convergence history of each optimizer. On the right-hand side, the symbols
represent the points being currently evaluated (Fc) and the lines represent the current best known value
by the optimizer (F ref

c ). The exploration in terms of function value,
∑

|Fc − F ref
c |, corresponds to the

sum of the differences between symbols and lines so that a distribution of symbols widely spread indicates
more exploration. On the left-hand side is represented the evolution of F ref

c with respect to the iteration
number for each optimizer. It appears that even the purely space filling samples (computed during the first
iteration of RS optimizers) managed to improve the baseline shape and to outperform the optimum found
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by DOT-BFGS. Despite that, the worst algorithm in terms of final function value, DOT-BFGS, is also the
quickest to converge (lowest niter) and less expensive. Its full performance characteristics will now be drawn
up by using the criteria described previously (II.D).

These performance data are reported in Table 2 and summed up in a polar diagram in Figure 6. In
this diagram, a bigger value represents a better performance and the values increase with distance from
the center of the circle. The upper axis shows the improvement of the function, the bottom one represents
the total time of the optimization, the right part of the diagram stands up for the exploration criterion
and the left part for the exploitation criterion. DOT-BFGS is quicker than RS based optimizers because
it performs very few exploration of the domain. It performs around 50 times less exploration than the RS
based optimizers. The RS Kriging optimizer achieves higher total exploration (+50%) and exploration per
evaluation values than the RS Cokriging optimizer. It is important to note that the RS Kriging reaches a
plateau of convergence in 48 iterations (DOT-BFGS needs 41 iterations to converge), but needs around twice
this number of iterations (90) to converge. The stopping criterion triggered (no new point) corresponds to
the fact that RS Kriging fails to find unsampled locations to explore with respect to the condition stated
in Eqn. 17. In terms of exploitation, the best choice is definitely DOT-BFGS followed by RS Cokriging
(−55%) and RS Kriging (−65%).

The additional gradient information used by RS Cokriging seems not absolutely necessary, certainly due
to the low dimensionality of the problem. It seems to effectively produce a more accurate surrogate model as
can be deduced from the lower values of exploration compared to RS Kriging, but it only slightly accelerates
the convergence of the optimization process.
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Figure 5. Optimization of the RAE2822 airfoil: evolution of the objective function F during the optimizations;
the lines represent the best function value explored by the optimizer F ref at niter for the left figure and neval

for the right figure; on the right, the symbols represent the function values of all shapes explored during the
optimizations at evaluation neval.

The experience of numerous airfoil optimizations with OPTaliA demonstrated that it is impossible to
increase indefinitely the number of design variables on two-dimensional airfoils without having highly corre-
lated design variables. By considering only two bumps, one can expect that the correlation between design
variables is low and that the complexity of the optimization problem is effectively represented by the number
of design variables.

B. Wing drag minimization considering 45 design variables and 1 function

In order to increase the number of design variables with as less redundancy between variables as possible a
three-dimensional shape is considered, the AS28 wing in cruise condition, at a Mach number of 0.8 and an
angle of attack of 2.2o. The wing span is 25 meters and the mean chord value is c = 5.4 meters giving a
Reynolds number Re = 40 · 106. The structured mesh (Figure 7) is formed of 4 blocks containing a total
of 500 · 103 nodes with its boundary layer refinement. The wall clock time for one steady flow simulation is
more than one hour using two processors AMD Opteron 275 (2.2 Ghz) to perform 500 iterations.
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DOT-BFGS RS Kriging RS Cokriging

improvement I(f) 15.4% 23.3% 23.1%

niter ; neval + ngrad ; nini
s ; N 41 ; 41+6 ; 0 ; 77 90 ; 172+0 ; 10 ; 172 63 ; 131+10 ; 10 ; 191

stopping criterion No improv. No new point No new point

I(f) at neval = 41 ; niter = 41 15.4% ; 15.4% 20.8% ; 22.7% 18.5% ; 21.8%

I(f)/neval 37.6 · 10−2 13.5 · 10−2 17.6 · 10−2

I(f)/N 20.0 · 10−2 13.5 · 10−2 12.1 · 10−2

∑

|Fc − F ref
c | 56.2 1503 953

1
ndv

∑

||x̄c − x̄ref
c || 0.200 15.6 10.0

1
ndv

∑

||x̄c − x̄ref
c ||/neval 0.48 · 10−2 9.07 · 10−2 7.63 · 10−2

1
ndv

∑

||x̄c − x̄ref
c ||/N 2.60 · 10−3 90.7 · 10−3 52.3 · 10−3

Table 2. Optimization of the RAE2822 airfoil: performance of the optimizers DOT-BFGS, RS Kriging and
RS Cokriging; the last and next-to-last set of lines show respectively the performance in terms of exploration
and exploitation.
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Figure 6. Optimization of the RAE2822 airfoil: polar diagram summarising the performance of the optimizers;

improvement corresponds to I(f), exploration corresponds to 1

ndv

P

||x̄c − x̄ref
c ||, speed corresponds to 1

niter
and

exploitation corresponds to I(f)/neval.
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Z

Figure 7. Optimization of the AS28 wing: view of the mesh (left) and pressure coefficient distribution on the
upper surface (right) for the baseline shape.
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The 45 shape parameters correspond to 15 Hicks-Henne bump functions on the upper surface. The bumps
are distributed by group of three in five spanwise sections and are oriented along the z-axis. At each section,
the three bumps are equidistributed and an overlapping is allowed between two neighbouring bumps. In
order to ensure a wide variety of possible shapes (maximum degrees of freedom) with this parameterization,
the linear spanwise expansion of each sectional deformation is stopped either at the closest boundary or at
the closest deformed section. Only positive deformations are allowed so that the internal volume of the wing
can only increase and the maximum amplitude of one bump is 50 millimeters. Compared to the previous
RAE2822 airfoil optimization case, the maximum amplitude scaled with respect to the mean chord value
Amax

c
has increased from 0.5% to 1.0%. The complexity of this problem is thus increased by considering

more independent design variables (ndv) and also by increasing the relative range of possible deformation
(Amax

c
).

The RS based optimizers were initialized with only 11 samples, nini
s = 11 and N ini = 11, and the

number of samples is even less than the number of variables. The initial database was formed of the baseline
configuration plus 10 space filling samples (Latin Hypercube Sampling method). The Cokriging sampling was
augmented by including the information of 5 gradient vectors, naug = 5, giving 225 additional scalar values
(N ini

RSCokriging = 236). The starting point for the gradient algorithm corresponds to large equidistributed
bumps of null amplitude.

In cruise condition a shock wave appears on the upper surface of the baseline configuration. The Table
3 shows that the drag reduction of most of the optimizers comes from the minimization of the wave drag
and leads to shapes with very weak shocks as can be verified on the pressure distribution on the wing skin
(cf. Figures 8, 9, 10 and 11). Here again, all optimizers find different shapes (cf. Figures 12, 9, 10 and
11). DOT-BFGS converges to the most regular deformation, whereas RS based optimizers both find more
original and detailed shape deformations.

Baseline DOT-BFGS RS Kriging RS Cokriging

Cdp = F 100 95.1 (-4.9%) 94.6 (-5.4%) 93.5 (-6.5%)

Cdw 100 28.3 28.3 11.2

Cdvp 100 99.2 98.3 98.7

Cdi 100 103.2 102.9 103.7

Cl/Cd 100 106 106 108

AoA for Cl = Cl0 2.2 2.07 2.09 2.07

Cdp for Cl = Cl0 100 90.9 (-9.1%) 93.3 (-6.7%) 90.2 (-9.8%)

Cl/Cd for Cl = Cl0 100 107 108 108

Table 3. Optimization of the AS28 wing: aerodynamic performance of the baseline and optimized shapes.

Figure 13 presents the convergence history of the optimizations. The gradient based algorithm keeps the
same properties as with the previous test problem. It converges using few process iterations and very few
objective function evaluations (even fewer than on the six-dimensional problem). Despite its speed, it gives
the lowest improvement of the objective function due its lack of domain exploration (Table 4). Contrary
to the previous case, the first iteration of the RS based optimizers (corresponding to space filling samples)
does not bring any improvement of the function, but it appears that RS Cokriging and DOT-BFGS have
the same improvement speed during the first 20 iterations. When considering the last process iteration of
DOT-BFGS (niter = 26), the function value given by the gradient optimizer is larger than the function
value given by the Cokriging based optimizer. One could say that RS Cokriging has similar exploitation
performance (improvement per iteration and improvement per evaluation) to DOT-BFGS when considering
only the first 26 iterations. However, the RS Cokriging optimizer has not yet reached a plateau at this
iteration and needs three times more iterations to converge. Overall, DOT-BFGS is largely better in terms
of exploitation.

For the RS based optimizations, the influence of the very coarse initial sampling can directly be observed
by comparing exploration values of Kriging and Cokriging optimizers in Table 4 and on Figure 14. As the
Kriging response surface is less accurate, RS Kriging performs three times more exploration and needs more
iterations to converge to its final value. Despite that, a significant improvement of the function is achieved
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Figure 8. Optimization of the AS28 wing: pressure coefficient contours on the upper surfaces of the optimal
shapes given by DOT-BFGS (left), RS Kriging (middle) and RS Cokriging (right) optimizers.
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Figure 9. Optimization of the AS28 wing: pressure coefficient distributions (left) and optimal deformations of
the upper surface (right) given by DOT-BFGS, RS Kriging and RS Cokriging optimizers at the wing section
located at 35% of the wing span.
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Figure 10. Optimization of the AS28 wing: pressure coefficient distributions (left) and optimal deformations
of the upper surface (right) given by DOT-BFGS, RS Kriging and RS Cokriging optimizers at the wing section
located at 50% of the wing span.
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Figure 11. Optimization of the AS28 wing: pressure coefficient distributions (left) and optimal deformations
of the upper surface (right) given by DOT-BFGS, RS Kriging and RS Cokriging optimizers at the wing section
located at 85% of the wing span.
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Figure 12. Optimization of the AS28 wing: optimal deformations of the upper surface given by DOT-BFGS
(left), RS Kriging (middle) and RS Cokriging (right) optimizers.

and RS Kriging outperforms slightly the gradient reference. Somehow, its convergence is stopped because
the maximum number of function evaluations authorized is reached (200) whereas the optimizer continues
its domain exploration characterized by the large widespreading of symbols on Figure 13. The Kriging based
optimizer seems to need more iterations to converge to a minimum of the function from the mathematical
point of view (respecting the Karush-Kuhn-Tucker condition). In other words, when the increase in the
number of design variables is not taken into account in the size of the initial response surface database,
the optimizer needs more iterations to converge. The RS Cokriging optimizer is also stopped by the same
criterion, but this premature convergence seems less problematic in this case. In fact, the optimizer seems
close to satisfy the usual convergence criterion (no improvement during 20 consecutive iterations) because
very few improvement is achieved during the last 50 iterations despite the continous exploration of the
domain.

It is interesting to compare DOT-BFGS and RS Kriging optimizers. Their results in terms of function
improvement and improvement per quantity of information are very close whereas the methods are completely
different. The quantity of scalar values needed to converge is the same for both optimizers, but DOT-BFGS
converges largely quicker than RS Kriging. Contrary to RS Kriging, it performs very few exploration.

The sample limited Cokriging based optimizer reaches the best objective function improvement. The
relative gap between RS Kriging and RS Cokriging improvement is more than twice the gap between RS
Kriging and DOT-BFGS improvement (Figure 14). However, it appears that RS Cokriging performs less
exploration than RS Kriging (≈ −70%). This means that the exploration conducted during the RS Kriging
optimization is considerably less efficient. This is due to the fact that the response surface is less accurate as
it does not include any gradient information. The interest of the adjoint method coupled with a Cokriging
model is thus demonstrated on this high-dimensional problem.

V. Conclusion

A general framework for optimization enabling the use of various optimizers was set up. Two algorithms
based on response surfaces built with Kriging and Cokriging were then implemented and compared to the
quasi-Newton reference algorithm DOT-BFGS. The Cokriging model was built using an original sample
limited strategy which enables to limit the computational cost of the model needed to build the model. The
response surface based algorithms use an original multi-criteria sampling refinement process and require at
each iteration a global minimization of three carefully chosen criteria based on combinations of the predicted
function and error (C1 = F (x), C2 = F (x) − S(x), C3 = F (x) + S(x)). Despite its efficiency, the global
optimization strategy used for this purpose needs to be simplified in the near future.

Since response surface and gradient based optimizers are very different in nature, a set of measures was
defined in order to characterize the general performance of optimizers. From these criteria it appears relevant
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Figure 13. Optimization of the AS28 wing: evolution of the objective function F during the optimizations;
the lines represent the best function value explored by the optimizer F ref at niter for the left figure and neval

for the right figure; on the right, the symbols represent the function values of all shapes explored during the
optimizations at evaluation neval.

DOT-BFGS RS Kriging RS Cokriging

improvement I(f) 4.9% 5.4% 6.5%

niter ; neval + ngrad ; nini
s ; N 26 ; 26+4 ; 0 ; 206 66 ; 209+0 ; 11 ; 209 87 ; 208+5 ; 11 ; 433

stopping criterion No Improv. Max neval Max neval

I(f) at neval = 26 ; niter = 26 4.9% ; 4.9% 3.1% ; 4.1% 4.7% ; 5.7%

I(f)/neval 18.8 · 10−2 2.58 · 10−2 3.12 · 10−2

I(f)/N 2.38 · 10−2 2.58 · 10−2 1.50 · 10−2

∑

|Fc − F ref
c | 26.8 534.4 205.5

1
ndv

∑

||x̄c − x̄ref
c || 0.149 8.83 3.03

1
ndv

∑

||x̄c − x̄ref
c ||/neval 0.57 · 10−2 4.22 · 10−2 1.46 · 10−2

1
ndv

∑

||x̄c − x̄ref
c ||/N 0.723 · 10−3 42.2 · 10−3 7.00 · 10−3

Table 4. Optimization of the AS28 wing: performance of the optimizers DOT-BFGS, RS Kriging and RS
Cokriging; the last and next-to-last set of lines show respectively the performance in terms of exploration and
exploitation.

����������	

�
����	�	���

����

�
�����	���

���

�

��������

����������

������������

Figure 14. Optimization of the AS28 wing: polar diagram summarising the performance of the optimizers;

improvement corresponds to I(f), exploration corresponds to 1

ndv

P

||x̄c − x̄ref
c ||, speed corresponds to 1

niter
and

exploitation corresponds to I(f)/neval.
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to retain four competing measures: the improvement of the function, the time (cost) of the optimization, the
exploration value and the exploitation value. The comparison of optimizers using these performance measures
effectively enable to draw up their strengths and weaknesses and the authors would like to promote the use
of such criteria in order to assess the comparative performance profile of new optimizers. In all cases, the
reference gradient optimizer DOT-BFGS is the quickest method and achieves the best exploitation values
but gives the lowest improvements of the function. This is linked to the fact that it performs very few
exploration and converges along a descent path whereas the problems treated in numerical aerodynamic
shape optimization are multimodal. The response surface based optimizers seem very promising as they
achieve better function improvements and exploration values and are complementary to the reference gradient
optimizer. Best practices can be inferred from the results obtained on the two drag reduction test problems
presented.

For the low-dimensional problem (ndv = 6), both response surface based optimizers largely outperform
the gradient based algorithm in terms of total improvement of the function, but also outperform it at
equivalent computational cost and wall clock time. Despite the fact that the gradient algorithm converges
to a local optimum, it needs fewer function evaluations to reach its final optimum. The interpolation of
gradient information does not significantly improve the performance of Cokriging based optimizer, that is
why in conclusion the Kriging based optimizer should be preferred for low-dimensional problems.

When increasing the complexity of the problem by considering 45 design variables on a wing, the Kriging
based optimizer requires twice more iterations after gradient convergence before outmatching DOT-BFGS.
It appeared that due to the lack of accuracy of the Kriging model (insufficient size of the sample database)
this optimizer wastes computational resources in an excessive exploration of the domain. The sample limited
Cokriging based optimizer does not suffer from this problem. It largely gives the best improvement and also
manages to outmatch the gradient reference at equivalent wall clock time even if it needs three times more
iterations to converge. The total additional cost needed is moderate in terms of wall clock time due to the
efficiency of the parallel framework, but is large in terms of total number of function evaluations. However,
it remains in the imposed limit of a maximum of 200 CFD runs per optimization. The Cokriging based
optimizer should be preferred for this type of problems.

Overall, the gradient optimizer DOT-BFGS converges very quickly but it does not reach the best function
improvement (it converges toward a local optimum). It should be preferred when the computational cost is
severely limited (several ten CFD runs) or when the number of variables is too high to compute unexpensively
a sample limited Cokriging (several hundred variables). One can see here again that there is no free lunch
in optimization and that in order to obtain a better solution one has to pay the computational price.

These behaviours can be explained by considering the quantity of information, N , used by the optimizers
to propose a new vector of design variables. At a given iteration, DOT-BFGS analyzes the information
of two gradient vectors to determine a search direction plus a few function evaluations to perform a line
search. It proposes a new shape based on NGradient ≈ 10 + 2 · ndv scalar information on the unknown
function. The use of gradient vectors implies that this quantity depends on the number of variables which
explains why the gradient algorithm is not much affected by the dimensionality of the problem. However,
this quantity of information does not depend on the number of evaluations or the number of iterations.
This means that the gradient algorithm ignores some previously computed information on the function.
It only uses the information in the vicinity of the current shape. Conversely, response surfaces exploit
all known information on the function through the sample database and the sampling refinement process
aims at exploiting this database effectively in order to find the optimum. For the Kriging based algorithm,
the quantity of information is independent of the number of variables NRSKriging = neval explaining its
domain of applicability (low-dimensional problems). The Cokriging based algorithm interpolates a fixed
number (naug) of gradient vectors NRSKriging = neval + naug · ndv giving an efficient algorithm even for
high-dimensional problems.

Further improvement of these response surface based algorithms could be made regarding the possibilities
offered by the multi-criteria sampling refinement process. It would be interesting to increase the size of the
population by using, at each iteration, multiple local optima of the sampling criteria as candidates. It could
be done by keeping the three criteria unchanged but limiting their optimizations to different subzones of the
domain.
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