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Abstract

Current unsteady methods are very time consuming and remain difficult to use in industry. The
Harmonic Balance Technique is a method that benefits from taking into account the periodicity of
periodic unsteady flow in order to reduce computational efforts considerably.
Based upon the work that has been done to implement the Harmonic Balance Technique in the
elsA code, this report treats the generalisations of this method to several frequencies in a flow
(multifrequential approach). On the one hand, it will be possible to take into account several
frequencies that are not multiples of each other, on the other hand non-uniformly distributed
instants may be imposed on the problem.
This report presents the realised literature research and the recapitulation of the theory of the
Harmonic Balance Technique for one frequency and its harmonics, the theory of the multifrequential
approach and a short comparison of the two approaches. Some remarks about oscillations in the
neighbourhood of shocks are made. It also covers the analytic work that has been done on the
determination of the instants within the considered period. The implementation in elsA as well as
the code validation will be discussed. Attention is also turned towards the effect of non-uniformly
distributed instants on the results of unsteady computation.
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Nomenclature

Latin letters

A1 [-] Discrete transformation matrix

A [-] Matrix with A1 on the diagonal

Ak ,A
′
k [-] Coefficients of transformation (in real formulation)

Bk ,B
′
k [-] Coefficients of transformation (in real formulation)

B1 [-] Discrete Fourier transformation (DFT) matrix

B [-] Matrix with B1 on the diagonal

c [m] Chord length

c0 [m/s] Velocity of sound

Cp [-] Pressure coefficient

D [-] Coefficient matrix D

E [J] Energy

Ek [-] Coefficient of transformation of ρE

f [Hz] Frequency

F [-] Vector of discrete conservative variables

i [-] Imaginary unit (i2 = −1)

I [-] Identity matrix

kp [rad/s] kp = ωmax = 2πfmax

L [-] Lower triangular matrix

M [-] Mach number

N [-] Order of the HBT computation/number of frequencies

p [Pa] Pressure

Q [-] Discrete residual vector (convection, diffusion and source terms)

R [-] Residual vector (convection, diffusion and source terms)

Re [-] Reynolds number

S [-] Source term matrix

SD [-] Sub-determinant

t [s] Time
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Latin letters

T [s] Period

u [m/s] Velocity in x-direction

Uk [-] Coefficient of transformation of ρu

U [-] Upper triangular matrix

v [m/s] Velocity in y-direction

V [m3] Volume

Vk [-] Coefficient of transformation of ρv

V(Ω) [m] Characteristic dimension of a cell

w [m/s] Velocity in z-direction

W [-] Vector of conservative variables

Wk [-] Coefficient of transformation of ρw

Greek letters

α0 [◦] Mean angle of attack

αm [◦] Amplitude of the angle of attack

κ(D) [-] Condition number of coefficient matrix D

λ [-] Eigenvalue

ν̃, ν [m2/s] Kinematic viscosity of the turbulence model

νk [-] Coefficient of transformation of ρν̃

ρ [m3/s] Density

ρ(A) [m/s] Spectral radius of the Jacobian (here: ρ(A) = ||u|| + c0)

σ [-] Singular value

τ [s] Time step

Ψk [-] Coefficient of transformation of ρ

ω [rad/s] Angular frequency

ω2N+1 [-] ω2N+1 = e−2iπ 1
2N+1

viii



Chapter 1

Introduction

Even if steady Reynolds Averaged Navier-Stokes (RANS) simulations are done classically during
the process of design of planes or aero-engines, design needs more and more unsteady simulations
to capture unsteady effects. This is done by the resolution of unsteady RANS equations (URANS).
To do so, there are two ways to proceed. In the first way, temporal coherence must be assured
among all grid cells, leading to the choice of the minimum local time as the time step and to an
explicit time integration algorithm. In this case, a large number of steps is needed to describe
unsteady effects during one period. Another way to proceed consists in choosing the time step of
the computation. In this case, temporal coherence is lost and a Dual Time Stepping algorithm
(DTS) is used to converge inner loops with an implicit time integration. Therefore, each inner loop
converges to a solution which can be seen as a snapshot of the flow at the corresponding time.

In an industrial context, the number of URANS computations during the design process is increasing
every day and most of the considered URANS simulations are periodic in time. As an example,
pitching airfoil and turbo machinery are periodic. Actually, the URANS technique does not account
for periodicity and this leads to a loss in CPU time, since a transient regime must be by-passed
before the flow is periodic. Moreover, the length of this transition is unknown preliminarily and
depends on the case at hand, but it is equivalent to several periods of computation (typically four
or more). Actually, no information about the periodic nature of the flow is used and most effort is
needed only to reach the periodic state and not to understand the flow’s physics. This is related
to the parabolic nature in time of the URANS equations that implies that the present instant only
influences the future instants. However, in a periodic flow, the present instant influences the past,
because the future will replicate a scheme of the past. In summary, the poor adaption of URANS
towards periodic flow simulation leads to a waste of computing time.

Here, a novel approach for the computation of periodic unsteady flows is considered. The Har-
monic Balance Method has been developed primarily at Duke University [10, 15, 17] and at Stanford
University under the name of Time Spectral Method [8, 9, 18]. The principle of this approach is
to assume that the flow is periodic and the conservative variables can be represented by Fourier
coefficients. Introducing Fourier expressions in the Navier-Stokes equations and some algebraic
simplifications, one transforms the periodic URANS computation on several steady coupled simu-
lations. This approach has been implemented in the elsA code (cf. Chap. 5) and promises higher
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efficiency than classic methods (faster than URANS and better capture of physics than linearization
methods). The main interest of the technique is its compatibility with all techniques for accelera-
tion in steady flows convergence such as local time stepping and multigrid algorithms. Moreover,
due to the intrinsic periodicity, the transition phase of convergence of the steady computations is
attaining the periodic state much faster.

The method in its present form disposes of two major disadvantages. Firstly, only one frequency and
its harmonics (multiples of the base frequency) can be taken in consideration. Secondly, the instants,
when the steady problems are solved, are always uniformly distributed over the greatest period
(i.e. the period of the base frequency). However, multifrequential flows are encountered in current
multi-stage turbo machinery applications as well as in classical aerodynamic simulations around
planes (e.g. pitching airfoil, . . . ). The Multifrequential Harmonic Balance Technique is a very
recent approach (cf. Ekici and Hall [5, 6]). Several modifications in the theoretical and numerical
approach and of the present implementation in the elsA code will have to be made, but generally
speaking an approach similar to the monofrequential technique is intended. Particularly, some
work concerning the chosen instants will have to be effected. The instants might not necessarily be
uniformly distributed over the time period that is observed.

This report is structured into a theoretical part, treating the mono- and multifrequential approaches
and the differences between them. The transformation into the frequency domain gives rise to the
Gibbs effect and non-uniformly distributed instants can also lead to oscillations. This problem is
treated in a separate chapter. One chapter is dedicated on how to properly choose the instants in
advance. This is necessary due to the need to invert the matrix that transforms the Navier-Stokes
equations into the frequency domain. The report is furthermore structured into the following
chapters: Implementation in the elsA code; validation of the modifications; and the impact of non-
uniformly distributed instants on the solution, if only one base frequency and its harmonics are
considered.
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Chapter 2

Development of the methods

2.1 Monofrequential Harmonic Balance Technique

The Harmonic Balance Technique (HBT) is based on supposing the unsteady periodic variations
of angular frequency ω of the conservative fields over time being representable by discrete Fourier
series at the order of N (cf. Hall [10]). The following section presents a short recall of the Fourier
transformation. Succeeding sections demonstrate the principle of the HBT and the implementation
in the Navier-Stokes equations.

2.1.1 Decomposition in discrete Fourier series

Let g be a function of period T . The discrete Fourier series of g at the order of N is a function of
complex value (in C):

gN (t) =
n=N∑

n=−N

cnexp

(

2iπn
t

T

)

,

where

cn =
1

2N + 1

k=2N∑

k=0

gkexp

(

−2iπ
nk

2N + 1

)

with gk = g

(
kT

2N + 1

)

.

Two important properties of the Fourier series are pointed out which shall be referred to below.
First of all, one has to pay attention to the discontinuity points of g . Although the Fourier series
of a function g tends to g for an infinite number of points, at the discontinuity points we find (cf.
[7]):

lim
N→∞

gN (x ) =
g(x+) + g(x−)

2
.
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Secondly, consider a given equation g = 0. The decomposition in Fourier series yields (ĝk are the
Fourier coefficients):

g =
N∑

k=−N

ĝkexp(iωkt) = 0.

The orthogonality of the complex exponential functions implies, that the individual contribution of
each mode is zero: ĝk = 0 for −N ≤ k ≤ N . This is proved by multiplying the preceding equation
by exp(ilωt) and integrating over one period T = 2π

ω
.

N∑

k=−N

ĝk

∫ T

0
exp(iωkt)exp(iωlt)dt = 0.

If k = −l :
∫ T

0
exp(iωkt)exp(−iωkt)dt = T ,

if k 6= −l :

∫ T

0
exp(iωkt)exp(iωlt)dt =

∫ T

0
exp(iω(k + l)t)dt

=
1

iω(k + l)
[exp(iω(k + l)t ]T0

=
1

iω(k + l)
(exp(iω(k + l)T ) − 1)

=
1

iω(k + l)
(exp(2iπ(k + l)) − 1)

= 0.

2.1.2 Principle of the Monofrequential HBT

To begin with, one can write the Navier-Stokes equations in the following semi-discrete form:

V
∂W

∂t
+ R(W ) = 0, (2.1)

V : Control volume,

W : Vector of conservative variables,

R(W ) : Residual (convection, diffusion and source terms).

Under the assumption of temporal periodicity with an angular frequency ω, the conservative vari-
ables are developed in Fourier series (with the Fourier coefficients Ŵk and R̂k ):

Weq =

N∑

k=−N

Ŵeq ,kexp(iωkt), (2.2)

R(W )eq =
N∑

k=−N

R̂eq ,kexp(iωkt). (2.3)
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Thus, the Navier-Stokes equations can be noted in the following manner (continuity, momentum
and energy equation, as well as the equations of the turbulence model respectively: 1 ≤ eq ≤
number of equations):

N∑

k=−N

(iωV Ŵeq ,k + R̂eq ,k)exp(iωkt) = 0. (2.4)

2.1.3 Starting point of the resolution

As it has been shown in section 2.1.1, the orthogonality of the complex exponential functions implies
that the individual contributions of each mode are zero. Therefore (2N +1) equations are obtained
linking the (2N + 1) Fourier coefficients of W and R(W ):

ikωVŴeq ,k + R̂eq ,k = 0. (2.5)

2.1.4 Implementation in the Navier-Stokes equations

Noting down the conservative variables (with a one-equation turbulence model)

ρ =
∑

k

ψk (x , y , z )exp(ikωt),

ρu =
∑

k

Uk(x , y , z )exp(ikωt),

ρv =
∑

k

Vk(x , y , z )exp(ikωt),

ρw =
∑

k

Wk (x , y , z )exp(ikωt),

ρE =
∑

k

Ek(x , y , z )exp(ikωt),

ρν̃ =
∑

k

νk (x , y , z )exp(ikωt),

one may write the Navier-Stokes equations in matrix form:

R̂ + ViωP1Ŵ = 0, (2.6)

with

Ŵ = [ψ−N , . . . , ψN ,U−N , . . . ,UN ,V−N , . . . ,VN ,

W−N , . . . ,WN ,E−N , . . . ,EN , ν−N , . . . , νN ]T ,

R̂ = [R1,−N , . . . ,R1,N ,R2,−N , . . . ,R2,N ,R3,−N , . . . ,R3,N ,

R4,−N , . . . ,R4,N ,R5,−N , . . . ,R5,N ,R6,−N , . . . ,R6,N ]T ,

P1 = diag(−N , . . . ,N ,−N , . . . ,N ,−N , . . . ,N ,−N , . . . ,N ,−N , . . . ,N ,−N , . . . ,N ).

5



The discrete Fourier Transformation operator (DFT) is introduced, where ω2N+1 = exp(−2iπ 1
2N+1 ):

B1 =


















1 ω−N
2N+1 ω

2(−N )
2N+1 . . . ω

2N (−N )
2N+1

1 ω−N+1
2N+1 ω

2(−N+1)
2N+1 . . . ω

2N (−N+1)
2N+1

...
...

...
...

1 ω−1
2N+1 ω−2

2N+1 . . . ω−2N
2N+1

1 1 1 . . . 1
1 ω1

2N+1 ω2
2N+1 . . . ω2N

2N+1
...

...
...

...

1 ωN
2N+1 ω

2(N )
2N+1 . . . ω

2N (N )
2N+1


















. (2.7)

By applying the following relations

ωk
2N+1 = ωk+2N+1

2N+1 since ω2N+1
2N+1 = exp

(

−2iπ
2N + 1

2N + 1

)

= 1

and by interchanging some lines of the matrix, matrix B1 is now found in the following form:

B1 =








1 1 1 . . . 1
1 ω1

2N+1 ω2
2N+1 . . . ω2N

2N+1
...

...
...

1 ω2N
2N+1 ω

2(2N )
2N+1 . . . ω

2N (2N )
2N+1








(2.8)

The interest of casting the matrix into this form is to make it easily invertible. The elements of
the family ωi

2N+1 form an orthogonal basis. B1 is an orthogonal matrix and the inverse of matrix
B1 can be easily determined:

B−1
1 =

1

2N + 1
B̄1 =

1

2N + 1








1 1 1 . . . 1

1 ω−1
2N+1 ω−2

2N+1 . . . ω−2N
2N+1

...
...

...

1 ω−2N
2N+1 ω

−2(2N )
2N+1 . . . ω

−2N (2N )
−2N+1







, (2.9)

where B̄1 is the complex conjugate transpose of B1. For the Fourier transformation, one needs
the conservative variables at the (2N + 1) instants uniformly distributed over one period T and
therefore, the conservative and turbulent fields are now noted at these discrete points (with a
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one-equation turbulence model):

F =












ρi if 0 ≤ i ≤ (2N + 1) − 1

U i−(2N+1) if 2N + 1 ≤ i ≤ 2(2N + 1) − 1

V i−2(2N+1) if 2(2N + 1) ≤ i ≤ 3(2N + 1) − 1

W i−3(2N+1) if 3(2N + 1) ≤ i ≤ 4(2N + 1) − 1

E i−4(2N+1) if 4(2N + 1) ≤ i ≤ 5(2N + 1) − 1

νi−5(2N+1) if 5(2N + 1) ≤ i ≤ 6(2N + 1) − 1












,

Q =












Ri if 0 ≤ i ≤ (2N + 1) − 1

Ri−(2N+1) if 2N + 1 ≤ i ≤ 2(2N + 1) − 1

Ri−2(2N+1) if 2(2N + 1) ≤ i ≤ 3(2N + 1) − 1

Ri−3(2N+1) if 3(2N + 1) ≤ i ≤ 4(2N + 1) − 1

Ri−4(2N+1) if 4(2N + 1) ≤ i ≤ 5(2N + 1) − 1

Ri−5(2N+1) if 5(2N + 1) ≤ i ≤ 6(2N + 1) − 1












,

B = diag(B1,B1,B1,B1,B1,B1)

and hence, Ŵ and R̂ can be defined:

Ŵ =
1

2N + 1
BF ,

R̂ =
1

2N + 1
BQ .

The Navier-Stokes equations may be written then in the following matrix form:

R̂ + ViωPŴ = 0

or (2.10)
1

2N+1BQ + 1
2N+1ViωPBF = 0.

Ŵ = [ψ0 . . . ψN , ψ−N . . . ψ−1,U0 . . .UN ,U−N , . . .U−1,V0, . . . ,VN ,V−N , . . . ,V−1,

W0, . . . ,WN ,W−N , . . . ,W−1,E0, . . . ,EN ,E−N , . . . ,E−1, ν0, . . . , νN , ν−N , . . . , ν−1]
T ,

R̂ = [R1,0, . . . ,R1,N ,R1,−N , . . . ,R1,−1,R2,0, . . . ,R2,N ,R2,−N , . . . ,R2,−1,

R3,0, . . . ,R3,N ,R3,−N , . . . ,R3,−1,R4,0, . . . ,R4,N ,R4,−N , . . . ,R4,−1,

R5,0, . . . ,R5,N ,R5,−N , . . . ,R5,−1,R6,0, . . . ,R6,N ,R6,−N , . . . ,R6,−1]
T ,

P = diag(C ,C ,C ,C ,C ,C ) with C = diag(0, . . . ,N ,−N , . . . ,−1).

It was proved that matrix B1 is invertible and by applying the same reasoning, B is invertible, too:

B−1 = diag(B−1
1 ,B−1

1 ,B−1
1 ,B−1

1 ,B−1
1 ,B−1

1 )) =
1

2N + 1
diag(B̄1, B̄1, B̄1, B̄1, B̄1, B̄1).

In this vein, the components of the Fourier transform are converted back to conservative variables
(at the different instants):

F ∗ = (2N + 1)B−1Ŵ ,

Q∗ = (2N + 1)B−1R̂.
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Nevertheless, special attention should be payed to the points of discontinuity. The remark of 2.1.1
regarding the points of discontinuity is repeated here, detecting the following property:

lim
N→∞

gN (x ) =
g(x+) + g(x−)

2
.

However, the assumption Q∗ = Q can be made. This assumption is justified by the addition of
artificial viscosity which smooths the shocks (cf. Fig. 2.1).

Figure 2.1: Smoothing of shocks by added artificial viscosity.

Transformed back into the time domain, the equation reads:

Q + iωB−1PBF = 0. (2.11)

2.1.5 Numeric treatment

The term S = iωVB−1PBF , called source term, is a spectral discretisation of the time marching
operator (coupling of all the terms of the discrete Fourier transformation). This term can be
interpreted as a discretisation of the time derivative centered in time at kT

2N+1 ∀ 0 ≤ k ≤ 2N .
Eq. (2.11) is a steady equation relying among each other the solutions taken at (2N + 1) instants
of the discretisation of the phenomenon’s period. For numeric treatment, a virtual time τ (cf. Hall
et al.), that allows to iterate in virtual time in order to obtain a steady solution for each physical
instant, is added:

V
∂F

∂τ
+ Q + S = 0,

(2.12)

S = iωVB−1PBF .

2.1.6 Algorithm of McMullen

On the other hand, the algorithm of McMullen et al. [11] of Stanford University consists in resolving
multiple steady systems in the frequency domain:

V
dŴeq ,k

dτ
+ ikVωŴeq ,k + R̂eq ,k = 0 with − N ≤ k ≤ N , 1 ≤ eq ≤ number of equations (2.13)

Since R̂k is not linear, it cannot be calculated directly from Ŵk . This is why one has to go back
into the time domain and calculate R(W ) there.
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2.1.7 Source term

A purely real source term can be built by exploiting all the matrix products (cf. Jameson et al.
[12]). Let Fj with 0 ≤ j ≤ 2N be the (2N +1) values of the conservative field F and be aware that
the source term of time level l does not depend on the conservative field at the instant l :

Sl = −Vω

2N+1∑

j=1,j 6=l

djlFj−1 with djl =
(−1)j−l

2sin
(

π(j−l)
2N+1

) . (2.14)

2.2 Multifrequential Harmonic Balance Technique

When problems are tackled, where several frequencies appear that are not multiples of a base
frequency or if instants must be chosen that are not uniformly distributed over the considered
period, a different approach is necessary. Ekici and Hall [5, 6] have proposed a method that
consists in resolving the Navier-Stokes equations using at about 50% more instants (3N +1), which
leads to a DFT operator that is not square anymore and for which a pseudoinverse must be found.
A different approach is proposed here, which is indeed similar to the monofrequential one, already
implemented in elsA.

2.2.1 Transformation into the frequency domain

Again, a function g is considered. The discrete transformation of g into the frequency domain is a
function of complex values in C:

gN (t) =
n=N∑

n=−N

ĝnexp (iωn t) with ωn = 2πfn .

For the monofrequential approach, the following convergence property is found at the points of
discontinuity of g (cf. section 2.1.1):

lim
N→∞

gN (x ) =
g(x+) + g(x−)

2
(monofrequential).

This property is not valid anymore, if several frequencies appear that are not multiples of the
smallest frequency, due to the fact that the derivation of this property is based upon the assumption
of one frequency and its harmonics (cf. [7]) and cannot be transposed on the multifrequential
approach.
Another difference appears when accounting for an equation g = 0. The transformation into the
frequency domain yields (ĝk are the coefficients of transformation for an angular frequency ωk):

N∑

k=−N

ĝkexp(iωk t) = 0.
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By multiplying the preceding equation by exp(iωl t) and by integrating over one period T = 2π
ω

,
the previous equation reads:

N∑

k=−N

ĝk

∫ T

0
exp(iωk t)exp(iωl t)dt = 0.

If k = −l :

∫ T

0
exp(iωk t) · exp(iω−k t)dt =

∫ T

0
exp(iωk t) · exp(−iωk t)dt = T ,

if k 6= −l :

∫ T

0
exp(iωk t)exp(iωl t)dt =

∫ T

0
exp(i(ωk + ωl)t)dt

=
1

i(ωk + ωl )
(exp(i(ωk + ωl )T ) − 1)

6= 0 in general.

It is not possible to state the individual contributions of each mode to be equal to zero anymore.

2.2.2 Principle of the Multifrequential HBT

Again, the origin is the Navier-Stokes equations in semi-discrete form, Eq. (2.1):

V
∂W

∂t
+ R(W ) = 0. (2.1)

The N frequencies are sorted in ascending order. When carrying through the transformation into
the frequency domain, the negative values of the N frequencies and ω0 = 0 appear in addition. It
holds ω−k = −ωk and basically it must be assumed that ωk is not necessarily equal to kω1. That
way, the conservative variables may be developed with a discrete transformation (with Ŵk and R̂k

being the coefficients of transformation for a frequency ωk):

Weq =

N∑

k=−N

Ŵeq ,kexp(iωk t), (2.15)

R(W )eq =

N∑

k=−N

R̂eq ,kexp(iωk t). (2.16)

The Navier-Stokes equations may be written in the following way then (for each of the following
equations: continuity, momentum and energy equations, as well as the equations of the turbulence
model: 1 ≤ eq ≤ number of equations):

N∑

k=−N

(iωkV Ŵeq ,k + R̂eq ,k )exp(iωk t) = 0. (2.17)
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2.2.3 Starting point of the resolution

As it was shown in section 2.2.1, ikωVŴk + R̂k = 0 cannot be asserted anymore. The approach
described below consists nevertheless in pursuing the exact same procedure as for the monofrequen-
tial approach. In order to make sure that the individual contribution of each angular frequency
ωk equals zero, the complex exponential functions exp (iωk tn) must form a basis. Since the angu-
lar frequencies ωk are prescribed by the examined flow and are therefore constants, the idea is to
choose the instants preliminarily so, that the complex exponential functions form a base. Then,
the instants are not necessarily uniformly distributed over a period T anymore. The effort to find
such a distribution of the instants is treated in section 4. Matrix A1 is defined, in order to be able
to describe the Navier-Stokes equations in the matrix form A1 · X = 0:

A1 =











exp(iω−N t0) . . . exp(iω0t0) . . . exp(iωN t0)
...

...
...

exp(iω−N tk ) . . . exp(iω0tk ) . . . exp(iωN tk )
...

...
...

exp(iω−N t2N ) . . . exp(iω0t2N ) . . . exp(iωN t2N )











. (2.18)

Be aware of the fact that matrix A1 is not equal to matrix B1 and is rather the pendant to B−1
1 .

This proceeding results in A1 · X = A1 ·
[

R̂eq + ViP1Ŵeq

]

= 0 (the definitions of the vectors are

given below). If the complex exponential functions are forming a basis, A1 is invertible. From
now on, it is supposed that the instants are properly chosen and therefore A1 is invertible. Then,
Eq. (2.1) reads:

iωkV Ŵeq ,k + R̂eq ,k = 0. (2.19)

2.2.4 Implementation in the Navier-Stokes equations

By defining again (with a one-equation turbulence model)

ρ =
∑

k

ψk (x , y , z )exp(iωk t),

ρu =
∑

k

Uk (x , y , z )exp(iωk t),

ρv =
∑

k

Vk (x , y , z )exp(iωk t),

ρw =
∑

k

Wk (x , y , z )exp(iωk t),

ρE =
∑

k

Ek (x , y , z )exp(iωk t),

ρν̃ =
∑

k

νk (x , y , z )exp(iωk t),

the Navier-Stokes equations in matrix form read:

R̂ + ViPŴ = 0, (2.20)
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with

Ŵ = [ψ−N , . . . , ψN ,U−N , . . . ,UN ,V−N , . . .VN ,W−N , . . . ,WN ,E−N , . . . ,EN , ν−N , . . . , νN ]T ,

R̂ = [R1,−N , . . . ,R1,N ,R2,−N , . . . ,R2,N ,R3,−N , . . . ,R3,N ,

R4,−N , . . . ,R4,N ,R5,−N , . . . ,R5,N ,R6,−N , . . . ,R6,N ]T ,

A = diag(A1,A1,A1,A1,A1,A1),

P = diag(P1,P1,P1,P1,P1,P1) with P1 = diag(ω−N , . . . , ωN )

Similarly to the monofrequential approach, one needs the conservative and turbulent fields at the
discrete points i to effect the transformation into the frequency domain.

F =












ρi if 0 ≤ i ≤ (2N + 1) − 1

U i−(2N+1) if 2N + 1 ≤ i ≤ 2(2N + 1) − 1

V i−2(2N+1) if 2(2N + 1) ≤ i ≤ 3(2N + 1) − 1

W i−3(2N+1) if 3(2N + 1) ≤ i ≤ 4(2N + 1) − 1

E i−4(2N+1) if 4(2N + 1) ≤ i ≤ 5(2N + 1) − 1

νi−5(2N+1) if 5(2N + 1) ≤ i ≤ 6(2N + 1) − 1












,

Q =












Ri if 0 ≤ i ≤ (2N + 1) − 1

Ri−(2N+1) if 2N + 1 ≤ i ≤ 2(2N + 1) − 1

Ri−2(2N+1) if 2(2N + 1) ≤ i ≤ 3(2N + 1) − 1

Ri−3(2N+1) if 3(2N + 1) ≤ i ≤ 4(2N + 1) − 1

Ri−4(2N+1) if 4(2N + 1) ≤ i ≤ 5(2N + 1) − 1

Ri−5(2N+1) if 5(2N + 1) ≤ i ≤ 6(2N + 1) − 1












.

The coefficients of transformation can be calculated in matrix form with the help of matrix A1. As
a matter of fact, it is the inverse of A1 that needs to be calculated. This can easily be shown by
examining the arbitrary functions gi (t) unified in a vector G :

fi(t) =

k=N∑

k=−N

f̂kexp (iωk t) ,

G = AĜ ,

A−1G = A−1A
︸ ︷︷ ︸

=I

Ĝ = Ĝ .

Note the coherence among A−1
1 and A−1:

A−1 = diag(A−1
1 ,A−1

1 ,A−1
1 ,A−1

1 ,A−1
1 ,A−1

1 ).

This obviously results immediately in:

Ŵ = A−1F ,

R̂ = A−1Q .

The Navier-Stokes equations are noted in matrix form in the following way:

R̂ + ViPŴ = 0

or (2.21)

A−1R + 1
2N+1ViPA−1F = 0.
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In order to transform back to the time domain, Eq. (2.21) must be multiplied from the left side by
A. That way, the coefficients of transformation are transformed into the conservative variables (at
each distinct instant):

F ∗ = AŴ = AA−1F ,

R∗ = AR̂ = AA−1Q .

Taking into account the remark concerning the convergence at the points of discontinuity in sec-
tion 2.2.1, the following assumption is made: Q∗ = Q similarly to the monofrequential case, which
is justified by the added artificial viscosity, that smooths the shocks. The transformed equation in
the time domain presents itself therefore in the following form:

Q + ViAPA−1F = 0. (2.22)

2.2.5 Numeric treatment

A new source term S = ViAPA−1F appears. It couples all the terms of the discrete transformation.
Eq. (2.22) is a steady equation, connecting among themselves all the solutions taken at (2N + 1)
instants of discretisation over the considered period. A virtual time step is added for the numeric
treatment. That way the solution can be iterated until a steady solution of the physical instant is
obtained:

V
∂F

∂τ
+ Q + S = 0,

(2.23)

S = ViAPA−1F .

2.2.6 Source term

The source term of the multifrequential approach cannot be simplified like the one of the monofre-
quential approach, because the frequencies are not necessarily multiples of a base frequency and
the instants are not uniformly distributed in general. Hence, the arising matrix products must be
evaluated in the elsA code in the following formulation:

S = VDF ,

(2.24)

D = iAPA−1.

Admittedly, the following minor problem will be encountered: D is not necessarily real which
cannot be tolerated since the initial values are real. The way out of this problem, chosen for this
approach, is to simply pass to a real formulation.
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2.2.7 Real formulation

Eq. (2.15) and (2.16) are noted then (ω0 = 0):

Weq =
N∑

k=−N

Ŵeq ,kexp(iωk t) = Aeq ,0 +
N∑

k=1

(Aeq ,kcos(ωk t) + Beq ,ksin(ωk t)) , (2.25)

R(W )eq =

N∑

k=−N

R̂eq ,kexp(iωk t) = A′
eq ,0 +

N∑

k=1

(
A′

eq ,kcos(ωk t) + B ′
eq ,ksin(ωk t)

)
. (2.26)

Matrix A1 becomes:

A1 =











1 cos(ω1t0) . . . cos(ωN t0) sin(ω1t0) . . . sin(ωN t0)
...

...
...

...
...

1 cos(ω1tk ) . . . cos(ωN tk ) sin(ω1tk ) . . . sin(ωN tk )
...

...
...

...
...

1 cos(ω1t2N ) . . . cos(ωN t2N ) sin(ω1t2N ) . . . sin(ωN t2N )











. (2.27)

It is useful for the following sections, particularly section 4, to mention here, that matrix A1 in real
formulation can be obtained by elementary transformations of the matrix in complex formulation.
Actually, this is only about the addition of two corresponding columns (i.e. two columns of the
same frequency but different algebraic sign of the exponent) and the division by 2 or −2i (complex
number: i =

√
−1) respectively.

The coefficients of transformation are:

Ŵeq =















Aeq ,0

Aeq ,1
...

Aeq ,N

Beq ,1
...

Beq ,N















, R̂eq =















A′
eq ,0

A′
eq ,1
...

A′
eq ,N

B ′
eq ,1
...

B ′
eq ,N















. (2.28)

The term ∂W
∂t

changes slightly:
∂Weq

∂t
=
∂A1

∂t
Ŵeq . (2.29)

Matrix ∂A1
∂t

is obtained by temporal derivation of matrix A1 (ω0 = 0):

∂A1

∂t
=











0 −ω1sin(ω1t0) . . . −ωN sin(ωN t0) ω1cos(ω1t0) . . . ωN cos(ωN t0)
...

...
...

...
...

0 −ω1sin(ω1tk ) . . . −ωN sin(ωN tk ) ω1cos(ω1tk ) . . . ωN cos(ωN tk )
...

...
...

...
...

0 −ω1sin(ω1t2N ) . . . −ωN sin(ωN t2N ) ω1cos(ω1t2N ) . . . ωN cos(ωN t2N )











(2.30)

Eq. (2.11) finally reads:

Q + V ∂A
∂t

A−1F = 0 (2.31)

with
∂A
∂t

= diag
(

∂A1
∂t
, ∂A1

∂t
, ∂A1

∂t
, ∂A1

∂t
, ∂A1

∂t
, ∂A1

∂t

)

.
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Numeric treatment in real formulation

The numeric treatment remains essentially the same:

V
∂F

∂τ
+ Q + S = 0,

(2.32)

S = V
∂A

∂t
A−1F .

Source term in real formulation

The source term in real formulation is missing one of the matrix products and is noted therefore
in the following way:

S = VDF

(2.33)

D =
∂A

∂t
A−1

2.2.8 Summary

Thus, it is possible to define a scheme similar to the monofrequential approach. The essential point
is to define in advance the instants distributed over a period T in such a way that matrix A is
invertible. It would be particularly desirable to find analytic formulations that allow to delimit the
intervals in which the instants must be chosen with the angular frequencies being known constants.
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2.3 Differences between the Mono- and the Multifrequential HBT

The following table (Tab. 2.1) displays the most important differences between the Harmonic Bal-
ance Technique for one single frequency and its harmonics (monofrequential) and the HBT for
several frequencies and/or non-uniformly distributed instants (multifrequential).

Table 2.1: Differences between the monofrequential and the multifrequential approach.

monofrequential multifrequential

one frequency f and its harmonics: fk = kf N frequencies: fk is not necessarily kf

0, 1 · f , 2 · f , . . . , N · f 0, f1, f2, . . . , fN

in advance B1 is invertible in advance A1 is not necessarily invertible

the instants tn are uniformly distributed the instants tn are not necessarily
over the period T uniformly distributed over the period T

the source term S = iωVB−1PBF the source term S = VDF

can be simplified into a purely real form: D = iAPA−1 (complex formulation)

Sl = −Vω
2N+1∑

j=1,j 6=l

dj ,lFj−1 D = ∂A
∂t

A−1 (real formulation)

dj ,l = (−1)j−l

2sin
“

π(j−l)
2N+1

” dj ,l must be calculated numerically
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Chapter 3

Simulation of an unsteady shock with
Multifrequential HBT

3.1 Gibbs’ effect

The Gibbs’ effect is related to a raise in order of the Fourier transformation. If a function g disposes
of a discontinuity, the discrete Fourier transformation of g has the tendency to oscillate around this
point of discontinuity. This leads to a bad resolution of the initial function in the neighbourhood
of the discontinuity.

3.2 Oscillations due to non-uniformly distributed instants

Oscillations may also appear when non-uniformly distributed instants are used, particularly oscil-
lations are found around shocks (cf. Chap. 7). This effect is related to bad capturing of shocks in
unsteady flow. The shock’s position is time dependent and the choice of the instants has therefore
an influence on the correct prediction of the shock. When a uniform distribution is chosen, the
whole physical time range is equally covered, while this statement cannot be made for a non-uniform
distribution.
To clarify the above statements and to visualize the effects, a discontinuous function g of second
order with a variable x is defined. The position of the discontinuity is time dependent:

g(x ) =







(
x

1
40

sin(2πft)+0.5

)2
for 0 ≤ x ≤ xs ,

2
(

x−1
1
40

sin(2πft)−0.5

)2
for xs ≤ x ≤ 1,

with xs =
1

40
sin(2πft) + 0.5, f = 1.

The graph of g(x ) is displayed in Fig. 3.1 for three different instants: t0 = 0, the maximum dis-
placement of the discontinuity to the right at t = 0.251

f
and to the left at t = 0.751

f
. Hence, the
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discontinuity moves in the range 0.475 ≤ xs ≤ 0.525. The period of the unsteady function is T = 1
f
.

 0

 0.5

 1

 1.5

 2

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

g(
x)

x

t = 0.00
t = 0.25
t = 0.75

Figure 3.1: g(x ) at significant instants.

Several distributions of the instants have been tested with up to five harmonics (given all in
Tab. 7.1). However, only some of them are discussed here. These are given in Tab. 3.1.

Table 3.1: Distribution of the instants as ratio of period T = 1
f1

with t0 = 0 for each order N and
distribution i.

N,i t1
T

t2
T

t3
T

t4
T

t5
T

t6
T

t7
T

t8
T

t9
T

t10
T

3, 1 0.0416 0.083 0.125 0.16 0.2083 0.25

4, 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4, 3 0.05 0.2 0.25 0.4 0.5 0.72 0.8 0.95
5, 3 0.1 0.2 0.225 0.25 0.64 0.68 0.7225 0.7575 0.79 0.9

Fig. 3.2 shows the mean, real and imaginary parts of the transformed function g(x ) for four fre-
quencies and uniformly distributed instants. The oscillations at the shock can be seen clearly.
Likewise, Fig. 3.3 shows the solution with distribution (4, 3) that is comparable to the one with the
solution of a uniform distribution and does not necessarily show a worse result, because all parts
of the transformed function must be taken in account in order to properly depict function g(x ).
Furthermore, only the real and imaginary part of the first order are given. The real and imaginary
part of higher orders are not displayed. However, distribution (4, 3) is quite close to a uniform one.
An example on how the instants can affect the results in an extreme way can be seen in Fig. 3.4.
The instants are distributed in steps of 1

24T over a quarter period T . The over prediction is of
factor 400. It is not surprising that all computations effected with distribution (3, 1) did not pass
due to errors, that indicate negative pressure or temperature values (cf. Chap. 7). In addition, the
instants being distributed in 0 < t < 0.251

f
capture the shock’s motion neither in 0.475 ≤ xs ≤ 0.5,

nor do they see the backswing of the discontuity from xs = 0.525 to xs = 0.5. Fig. 3.5 shows similar
behaviour, although less distinct and is another example of bad results. This distribution disposes
of no instants in 0.25 < t < 0.64.
The conclusion to draw from this digression is that the instants, together with high orders, influ-
ence the results considerably and may not be easily comparable among each other. The experiences
mentioned in this chapter should be kept in mind, when interpreting the results of Chap. 7.
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Figure 3.2: g(x ) with distribution (4, 0)
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Figure 3.3: g(x ) with distribution (4, 3)
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Figure 3.4: g(x ) with distribution (3, 1)
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Figure 3.5: g(x ) with distribution (5, 3)
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Chapter 4

Methods to find restrictions for the
choice of the instants

As a first approach, different ways are presented in order to find analytic expressions, that allow
to determine the values the instants must not adopt in order to assure that A1 is invertible.

4.1 Analytic solutions

Let K be a field of C and let M be a square n × n matrix over this field K . Then M is invertible,
if the following equivalent statements are satisfied:

M−1 exists ⇔ rank(M ) = n

⇔ Det(M ) 6= 0

⇔ 0 is not an eigenvalue of M

⇔ the columns of M span K n (i.e. the columns of M form a basis of K n).

Hence, a first approach would be to try to derive a condition for the instants by taking a look at
the determinant. At first though, a small program has been conceived with Maple to build the
matrix A1, that depends on the number of frequencies N taken in consideration. Since ω0 = 0,
t0 = 0 and ω−k = −ωk , (2.18) reads as follows:

A1 =













1 . . . 1 1 1 . . . 1
exp(−iωN t1) . . . exp(−iω1t1) 1 exp(iω1t1) . . . exp(iωN t1)

...
...

...
...

...
exp(−iωN tk ) . . . exp(−iω1tk ) 1 exp(iω1tk ) . . . exp(iωN tk )

...
...

...
...

...
exp(−iωN t2N ) . . . exp(−iω1t2N ) 1 exp(iω1t2N ) . . . exp(iωN t2N )













.
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4.1.1 Choice of the instants based on the determinant of AN
1

Complex formulation To begin with, matrix A1 and its determinant are taken in consideration
with one single frequency N = 1:

AN=1
1 =





1 1 1
exp(−iω1t1) 1 exp(iω1t1)
exp(−iω1t2) 1 exp(iω1t2)



 .

det(AN=1
1 ) = exp(iω1t2)−exp(iω1t1)+exp(−iω1t1)−exp(−iω1t2)+exp(iω1(t1−t2))−exp(iω1(t2−t1))

The angular frequency ω1 is given. The unknowns are therefore t1 and t2, two instants. By resolving
det(AN=1

1 ) = 0, values for t1 and t2 are obtained, which they must not adopt for A1 to be invertible.
For N = 1, these values are easily obtained. The calculation can be performed manually:

det(AN=1
1 ) = 2i [sin(ω1t2) − sin(ω1t1) + sin(ω1(t1 − t2))]

= 4i
[

sin(
ω1

2
(t1 − t2)) · sin(

ω1

2
t1) · sin(

ω1

2
t2)

]

,

det(AN=1
1 ) = 0 ⇔ t1 = t2 or t1 =

mπ

ω1
+ t2 or

t1 = 0 or t1 =
mπ

ω1
or

t2 = 0 or t2 =
mπ

ω1
,

(m ∈ N).

For two frequencies (N = 2), it is getting considerably worse. There are four unknown instants
now: t1, t2, t3 and t4. The matrix AN=2

1 reads:

AN=2
1 =









1 1 1 1 1
exp(−iω2t1) exp(−iω1t1) 1 exp(iω1t1) exp(iω2t1)
exp(−iω2t2) exp(−iω1t2) 1 exp(iω1t2) exp(iω2t2)
exp(−iω2t3) exp(−iω1t3) 1 exp(iω1t3) exp(iω2t3)
exp(−iω2t4) exp(−iω1t4) 1 exp(iω1t4) exp(iω2t4)









.

The determinant det(AN=2
1 ) becomes noticeably more complex and already Maple does not manage

to resolve det(AN=2
1 ) = 0 in a reasonable period of time on a regular computer. The computation

had actually to be interrupted.

Real formulation Recall the remarks concerning matrix A1 in section 2.2.7 and some properties
of the determinant:

• The interchange of two lines (columns) changes the sign of the determinant

• The multiplication of a line (column) by a multiplies the determinant by a

• The addition of a multiple of one line (column) to another line (column) does not change the
value of the determinant
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Hence, for both formulations (complex and real approach), the same solutions of the equation
det(A1) = 0 will be obtained and the two formulations will result in the same problems of resolution
for higher orders.

4.1.2 Choice of the instants based on a decomposition of AN
1 into a lower and

upper triangular matrix

The determinant of a matrix of upper triangular form is simply the product of its entries on
the diagonal. We can therefore decompose AN

1 into LU (L: lower triangular matrix, U : upper
triangular matrix). The definition of L states that L should only have ”ones” on the diagonal. The
decomposition furnishes:

AN
1 = L · U ,

det(AN
1 ) = det(L · U ) = det(L)

︸ ︷︷ ︸

=1

·det(U ) = det(U ).

If each entry uii of U on the diagonal is non-zero, the determinant is non-zero and thus, AN
1 is

invertible. That way, a solution may be found for the ti by setting each uii = 0. Maybe Maple is
able to resolve this more rapidly, because each term on the diagonal is less voluminous than the
whole determinant. The remarks made above concerning the two formulations are valid here just
as well. For N = 1, the same results, already known from the approach with the determinant, are
obtained. For N = 2, the same problems as before are encountered.

Maple has enormous problems to solve the occurring equations for more than two unknown instants.
For Maple the angular frequencies ωk are unknowns, too. They cannot be set to their numeric
values though, because a general analytic solution is wanted, which depends necessarily on the
inflicted angular frequencies. Even if the numeric values of those frequencies would be given, Maple
still could not solve these equations for more than two unknowns. The fact that the number of
unknowns/instants is increased by two, when one supplementary frequency is considered, makes
computations for higher orders quasi impossible.

4.1.3 Choice of the instants based on the eigenvalues of AN
1

AN
1 is invertible, if zero is not an eigenvalue. Equation det(AN

1 − λ · I ) = 0, that provides the
characteristic polynomial, is therefore considered:

pNλ
N + pN−1λ

N−1 + · · · + p1λ
1 + p0 = 0. (4.1)

If p0 6= 0, none of the eigenvalues λi = 0, but p0 is simply det(AN
1 ) and this leads back to the

problem of section 4.1.1. Nevertheless, one may make Maple calculate the eigenvalues and see, if
Maple can find solutions of λi = 0 for the instants tn . The expressions of the three eigenvalues that
are obtained are enormous, even for N = 1, for both the complex and real formulation. Hence, the
expressions do not simplify with this approach.
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4.1.4 Choice of the instants based on the singular values of AN
1

One property of singular values of a matrix is: the smallest and the biggest one of them set limits
to the absolute values of the eigenvalues:

σmin(A1) ≤| λi (A1) |≤ σmax (A1)

Matrix A1 is therefore invertible, if σmin(A1) > 0. The singular values are calculated by extracting
the square root of the eigenvalues of the matrix product AT

1 · A1:

σi(A1) =
√

λi(AT
1 · A1)

This might be a promising approach due to the very special structure of matrix A1. For N = 1,
very long expression are found for the three singular values that do not hold any complex terms
or exponentials in complex formulation. The variables ωk and tn are anyway in the exponents of
integers. One finds for each equation σi(A

N=1
1 ) = 0 the well known solutions. No analytic solution

may be achieved with the matrix in real formulation and just like for the eigenvalues of the matrix
AN=2

1 , the five singular values cannot be determined. Of course, trying to find a solution by treating
the determinant of the matrix product AT

1 · A1 may be promising as well. If this determinant is
not zero, the smallest singular value will not be either. It is not surprising that the same problems,
that have already been described in section 4.1.1, are encountered.

4.1.5 Summary and proceeding

Obviously, an analytic solution cannot be obtained with the approaches mentioned above. This
is mostly due to the intricate structure of the matrix and the incapacity to solve the upcoming
equations for one variable, that depends on six more unknowns for N = 2 (i.e. t0 = 0, ω0 = 0
→ two unknown instants and four frequencies). If this was possible, instants could be chosen
arbitrarily and then a quick check could have been performed to see, if this choice was a valid one.
Furthermore a universal rule for any number of frequencies might have been derived by considering
the restrictions for N = 1 to 5.
Nevertheless, in the following section, approaches to determine the instants step by step with a
numeric code are proposed.

4.2 Numeric solutions

4.2.1 Choice of the instants in a way that the lines of A1 are forming an orthog-
onal basis

The objective of this section is to add a restriction to the choice of instants in order to find simpler
expressions. This restriction specifies that the lines of A1, considered as vectors, do not only form
a basis, but even an orthogonal basis.
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Complex formulation Matrix A1 is considered in its most general form:

A1 =
















exp(−iωN t0) . . . exp(iω0t0) . . . exp(iωN t0)
...

...
...

exp(−iωN tk ) . . . exp(iω0tk ) . . . exp(iωN tk )
...

...
...

exp(−iωN tl ) . . . exp(iω0tl ) . . . exp(iωN tl )
...

...
...

exp(−iωN t2N ) . . . exp(iω0t2N ) . . . exp(iωN t2N )
















.

If the lines of the matrix form an orthogonal basis, the dot product of no matter which two lines
must be equal to zero: ∀ l , k ∈ {0 . . . 2N } : vl · vk = 0,

vk =
[
exp(−iωN tk ) . . . exp(iω0tk ) . . . exp(iωN tk )

]
,

vl =
[
exp(−iωN tl ) . . . exp(iω0tl ) . . . exp(iωN tl )

]
,

vl · vT
k = exp(−iωN (tk + tl )) + · · · + exp(iω0(tk + tl )) + · · · + exp(iωN (tk + tl )) = 0.

This equation may be simplified by passing to trigonometric notation and by setting ω0 = 0:

1 + 2cos (ω1 (tk + tl )) + · · · + 2cos (ωi (tk + tl )) + · · · + 2cos (ωN (tk + tl )) = 0. (4.2)

Before the analysis of this case for one single frequency, it is remarked again that this relation must
satisfy each combination of tk and tl . For N = 1, we resolve the equation:

1 + 2cos (ω1 (tk + tl )) = 0.

Thus, we find the following relation among the instants tk and tl :

tk = tl +
a

ω1
; with a =

2π

3
,
4π

3
,
8π

3
,
10π

3
,
14π

3
,
16π

3
, . . .

Three instants have to be determined: t0, t1 and t2. One may choose as usually t0 = 0. According
to the above relation, a = 2π

3 is chosen and the second instant is determined to t1 = 2π
3ω1

. Since
this relation must also be satisfied for t0 and t2, the natural choice for the third instant would be
t2 = 4π

3ω1
. It can be seen though, that the third relation is not satisfied:

1 + 2cos (ω1 (t1 + t2)) = 1 + 2cos

(

ω1

(
2π

3ω1
+

4π

3ω1

))

= 1 + 2cos (2π) = 3 6= 0.

The solution consists in choosing the coefficients a of each instant in a way that the sum of the
two chosen coefficients is another value out of the possible coefficients. This would be true e.g. for
a = 8π

3 , which furnishes t2 = 8π
3ω1

and hence:

1 + 2cos (ω1 (t1 + t2)) = 1 + 2cos

(

ω1

(
2π

3ω1
+

8π

3ω1

))

= 1 + 2cos

((
10π

3

))

= 1 + 2

(

−1

2

)

= 0.

If more frequencies are being taken in account, the resolution of Eq. 4.2 does not provide such a
pretty solution anymore. Actually, the zeros of the function on the left side of Eq. 4.2 have to be
determined numerically e.g. with an algorithm of Newton. To do so, the period of this function is
calculated first. This is the least common multiple (LCM) of the frequencies’ periods:

T = LCM {T1,T2, . . . ,TN } (4.3)
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There exist J solutions in the period of the following form:

x = tk + tl ∈ S = {s1, s2, s3, . . . , sJ}. (4.4)

The solutions si + T (and equally si + 2T , si + 3T , ...) may be added to S . These are valid as
well, but they do not need to be calculated separately.

Real formulation Special attention needs to be paid to the fact that different solutions are
obtained, if a real formulation is used. The solutions of the real formulation are therefore examined,
because this is the formulation used for programming.

A1 =
















1 cos(ω1t0) . . . cos(ωN t0) sin(ω1t0) . . . sin(ωN t0)
...

...
...

...
...

1 cos(ω1tk ) . . . cos(ωN tk ) sin(ω1tk ) . . . sin(ωN tk )
...

...
...

...
...

1 cos(ω1tl ) . . . cos(ωN tl ) sin(ω1tl ) . . . sin(ωN tl )
...

...
...

...
...

1 cos(ω1t2N ) . . . cos(ωN t2N ) sin(ω1t2N ) . . . sin(ωN t2N )
















,

vl =
[
1 cos(ω1tk ) . . . cos(ωN tk ) sin(ω1tk ) . . . sin(ωN tk )

]

vk =
[
1 cos(ω1tl ) . . . cos(ωN tl ) sin(ω1tl ) . . . sin(ωN tl )

]
,

vl · vT
k = 1 + cos(ω1tk )cos(ω1tl ) + . . . + cos(ωN tk )cos(ωN tl )

+sin(ω1tk )sin(ω1tl ) + . . . + sin(ωN tk )sin(ωN tl ).

Merging the terms of the same frequency leads to:

1 + cos (ω1(tl − tk )) + · · · + cos (ωN (tl − tk )) = 0. (4.5)

For N = 1, 1 + cos (ω1(tl − tk )) = 0 is resolved and the following relation is found:

tk = tl +
a

ω1
; with a = π, 3π, 5π, . . .

Solutions similar to the complex formulation cannot be found. Generally speaking, for N > 1 in
both, complex and real formulation, solutions like tk , tl ∈ S and tk + tl ∈ S ∀ l , k ∈ {0, . . . , 2N }
cannot be found. However, a system of equations may be created for all combinations of tk , tl :
tk + tl = si with i ∈ {0, . . . , J}. According to the formula of Gauss, this system holds 1

2 · ((2N +
1)− 1) · (((2N +1)− 1)+1) = N · (2N +1) equations for N frequencies ((2N +1) instants). Hence,
this approach features three major disadvantages:

1. The system of equations is over-determined for N > 1 and hence, a solution for every combi-
nation of instants cannot be found in S .

2. tk = 0 cannot always be a solution anymore. If it was defined e.g. t0 = 0, one would obtain
immediately tk ∈ S ∀ k ∈ {1, . . . , 2N } because of Eq. (4.4) and it is mentioned above that
these instants do not resolve all equations.

3. The calculated instants might also be negative, which could be accepted, though, due to the
periodicity of the problem.
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4.2.2 Evolutionary determination

The determinant of a matrix can be found with the formulae of Laplace:

detA =

n∑

i=1

(−1)i+j · aij · detAij (development by column j ),

detA =
n∑

j=1

(−1)i+j · aij · detAij (development by line i).

If matrix A1 is developed by column subsequently, an expression, in which the determinants of
matrices of the order of 2×2 appear, is obtained. Actually, the determinants of matrices built with
every possible combination of two columns of the last two lines will be found.

det(A1) = c1(t1, . . . , t2N−2) ·
∣
∣
[
2 × 2

]∣
∣ + c2(t1, . . . , t2N−2) ·

∣
∣
[
2 × 2

]∣
∣ + . . . (4.6)

These determinants will be referred to as sub-determinants of sub-matrices with a certain dimension
d (given in the superscript): SDd . A matrix of dimension (2N + 1) × (2N + 1) leads to

( 2N+1
dim(SD)

)

different sub-determinants (dim(SD): dimension of sub-determinant). Obviously, there exist much
more sub-determinants, but only

( 2N+1
dim(SD)

)
are different from each other.

E.g.: N = 2, dim(SD) = 2 →
(5
2

)
= 10. Hence, there exist ten different determinants when the 2×2

sub-matrices of a 5 × 5 matrix are considered. The following equation illustrates the development
in sub-determinants with d = 2 for 2 frequencies. The coefficients ci are unknowns for now and for
N = 2 they depend on t1 and t2. They derive from the formula of Laplace.

det(AN=2
1 ) = c1(t1, t2) · SD2

1 + . . . + c10(t1, t2) · SD2
10 (4.7)

The instant t2N (the last instant) fixes the observed period. Thus, t2N may be considered known.
For the determination of the last instant see section 4.3. Furthermore, the number of frequencies, the
frequencies themselves and therefore the angular frequencies ωk are known. The sub-determinants
of Eq. (4.7) must not be zero simultaneously, otherwise the determinant det(A1) is equal to zero.
An even stricter restriction is used here: None of the SD2

i may be zero. The only unknown of the
SD2

i is the instant t3 in the present example. Hence,
(5
2

)
= 10 equations SD2

i = 0 must be resolved
for the instant t3 in the period t0 ≤ t3 ≤ t4 with e.g. an algorithm of Newton. Having done that, all
the values, that t3 must not adopt, are known and a value for this instant can be chosen arbitrarily.
The instants t0, t3 and t4 are then known numbers in the matrix AN=2

1 .
The next step is to determine the instant t2N−2. In the present example: t2N−2 = t2. To do
this, all combinations of three columns of matrix A1 of the last three lines are considered and the
sub-determinants SD3 of dimension 3 are calculated. By carrying through the same steps described
above, one can determine the value of t2N−2 (here: t2N−2 = t2):

det(AN=2
1 ) = c1(t1) · SD3

1 + . . . + c10(t1) · SD3
10 (4.8)

This must be repeated until all instants except for instant t1 are known. Then attention must be
paid: The instant t0 = 0 is known. This means, that if instant t1 would be determined with the
help of sub-determinants SD2N−1 6= 0 (here: SD4 6= 0), the combination of them, that furnishes
det(A1) might still be zero. SD2N−1 is skipped therefore and det(A1) is calculated directly, which
is only a function of t1 and the values, that t1 must not adopt are found by resolving det(A1) = 0.
After having given t1 a numeric value, one knows all the instants and is sure of A1 to be invertible.
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It is possible to accept that one or more of the sub-determinants become zero, when choosing the
next time step (particularly if they are of higher order, i.e. determinants of matrices of a small
dimension compared to A1). This does not affect the determinant considerably.

The procedure described above was realised with a Maple program. The structogram of this
program is given in the appendix. The program in the present configuration is able to perform
the necessary computations up to an order of N = 5. The extension to higher orders is easy, one
only has to add some extra external procedures and call them in the main code. These external
procedures build the sub-determinants of matrix A1. For each dimension of sub-matrices, a proper
procedure is needed. Procedures for a maximum sub-matrix dimension of 9×9 are already developed
(this means, that instants for orders up to N = 5 can be determined). Procedures for higher orders
can be obtained by copy-and-paste of these existing procedures and some minor modifications. It
has to be mentioned that computation does become quite expensive for high orders. For an order
of N = 5 (dim(A) = 11) and a sub-matrix of dimension 5 × 5, there exist

(11
5

)
= 462 different

sub-matrices and therefore 462 determinants with one unknown instant, for which the values of the
instant have to be found so that the respective sub-determinants equal zero.

4.3 Determination of the last instant t2N

The last instant needs to be chosen carefully. In the monofrequential approach with uniformly
distributed instants, the last instant is always t2N = 2N

2N+1
1
f
. This is not a necessary condition

anymore, when the Multifrequential HBT is used. The last instant may be chosen arbitrarily, but
one must act with caution, because convergence behaviour might change dramatically when the
last instant is chosen too small (i.e. near t0). This is also true for a distribution of the instants
far away from a uniform distribution. Tests regarding this issue were effected and are described in
Chap. 7.
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Chapter 5

Implementation

The modified computation of the source term and the fact of taking in account several frequencies
and instants that might not be uniformly distributed over the considered period must be imple-
mented in the elsA code (ensemble logiciel pour la simulation en Aérodynamique [2]). elsA is an
Onera software co-developed by Cerfacs that is able to treat internal and external flows as well as
multidisciplinary aerodynamic applications, including:

• aerodynamics, aeroelastics

• airplanes, helicopters, turbo-engines, missiles, rockets, air inlets, nozzles

• research and industrial applications

• Euler, RANS, URANS, DES, LES simulations

• hypothesis of pure ideal gas with a given value for the specific heat coefficient

• computation of sensibility for ideal conception

The code is object-oriented and is written in C++ with routines for low-level computation written
in FORTRAN. The user interface is offered by a Python upper layer.

All modifications described in the following sections were realised in a way that the monofre-
quential approach still runs on this version of the elsA code. The structograms of all modified or
newly created code are given in the appendix.

5.1 Interface

Some additional input is needed for the Multifrequential HBT. First of all, each frequency must be
defined separately, because the frequencies are not multiples of a base frequency anymore. Further-
more, the instants not being necessarily uniformly distributed must also be declared by the user.
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The necessary Python-keys are created for ten frequencies and consequently 21 instants. This is
thought to be sufficient for all upcoming problems. Anyway, the number of frequencies/instants can
easily be increased by copy-and-paste. The order of the computation (or the number of frequencies)
remains an input just like for the Monofrequential HBT, because it is a frequently needed constant
(e.g. for the computation of matrix A1, etc.).
The implementation of the HBT in the elsA-code must acknowledge the existence of several instants
of the same computation. Besides, the HBT is meant to be used in RANS. Hence, two different
systems are treated in elsA: a mean field and a turbulent field. There is no multigrid application
for the turbulent field. The constructor (of the source term, but also of other operators like e.g.
the flux) must therefore be called for each multigrid level of the mean field and for the turbulent
field. This is done for each instant and was realised for the Monofrequential HBT by duplication
of blocks. The identifier brotherhood is introduced here. Blocks of the same brotherhood derive
from the same block of the original computation, but may be at a different instant, multigrid level
or system. If the original computation disposes of n blocks, a multigrid level of m is employed
and N frequencies are taken in account, the final number of blocks is nm(2N + 1) for an Euler
or laminar computation and n(m + 1)(2N + 1) for a turbulent computation. It is chosen here to
define all frequencies and instants for each block. This makes the predefinition in the Python layer
a little more laborious, but the great advantage is obviously, that each block may be given different
frequencies or instants. This will be needed for multistage turbo machinery applications.
The additional Python keys for the monofrequential approach (harmonic balance, harmonic bal steps
and harmonic frequency), that are still in use here, are listed in Tab. 5.1. These were completed
by hbt multifreq freq i (1 ≤ i ≤ 10) and hbt multifreq timelevel j (0 ≤ j ≤ 20).

Table 5.1: Python keys.

Key Signification Type Values

harmonic balance HBT active ? list [’inactive’, ’HBT’, ’HBT deform’]

harmonic bal steps number of frequ. integer [0]

harmonic frequency frequ. (monofrequ.) real [0.0]

hbt multifreq freq 01 frequ. (multifrequ.) real [0.0]
...

hbt multifreq freq 10

hbt multifreq timelevel 00 instants (multifrequ.) real [0.0]
...

hbt multifreq timelevel 20

5.2 Main code

A new class SouHbtMultiFreq.C was derived from class SouHbt.C which is derived from Oper-
Source.C. The necessary attributes that are used both for the monofrequential and multifrequential
approach are given in List. 5.1.
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Listing 5.1: Attributes of SouHbt.C and SouHbtMultiFreq.C.

/∗ L i s t o f Source Terms and as soc i a t e d Grids ∗/
vector<const SouHbt∗> l i s tSouHbt ;
vector<const GeoGridBase∗> l i s t G r i d ;

/∗ Terms shared by a l l i n s t anc e s o f SouHbt / SouHbtMultiFreq∗/
vector<E Float > f ; // base f requency o f monofreq .
vector<FldArrayF∗> dCoef f ; // D−c o e f f i c i e n t s
vector<FldArrayF∗> fMu l t i ; // f r e qu enc i e s o f mu l t i f r e q .
vector<FldArrayF∗> t imeLeve l s ; // time l e v e l s o f mu l t i f r e q .
E Int currentMgLevel ; // mu l t i g r i d l e v e l
E Int N ; // number o f f r e qu . / order

/∗ Parameters o f the current in s tance o f SouHbt / SouHbtMultiFreq ∗/
const E Int i d ; // id o f the b l o c k
const E Int s t ep ; // s t e p in the time per iod
const E Int b rother ; // brotherhood
const E Int nbGrids ; // number o f mu l t i g r i d l e v e l s
const E Int mgLevel ; // mu l t i g r i d l e v e l

In createSou.C, a query states whether a frequency for the Multifrequential HBT was declared
or not. If so, the frequencies and instants defined by the user are passed to two field arrays and
are now available in the software. In class SouHbtMultiFreq.C, one first passes by the constructor
SouHbt::SouHbt, where the lists of blocks and source terms are created. In the case of a multi-
frequential application, the base frequency of the monofrequential approach is set to zero. This
will provide a possibility to distinguish in the program whether the monofrequential or the mul-
tifrequential part of the code is to be used. In the constructor of SouHbtMultiFreq.C, the vectors
fMulti and timeLevels are equipped with the values of the (N + 1) frequencies (f0 = 0) and the
(2N +1) instants. Then, the method computeDCoeff is called to calculate the elements of the field
array dCoeff.

5.2.1 Computation of matrix D

The basic modification is the computation of the source term. For the monofrequential approach,
all source term elements are calculated by simply applying Eq. (2.14). As mentioned, for the Mul-
tifrequential HBT, these elements are obtained by exploiting the matrix products (cf. Eq. (2.33)).
The elements of matrix D are referred to as D-coefficients, because they multiply the conservative
variables. Four FORTRAN routines were added and are called in computeDCoeff :

• souhbtmultifreqa - Matrix A1 is defined here, all matrix elements depending on the known
frequencies and instants are calculated
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• souhbtmultifreqdadt - Matrix ∂A1
∂t

is defined here, all matrix elements depending on the known
frequencies and instants are calculated

• souhbtmultifreqainv - This routine gets Matrix A1 as input and calculates its inverse using
the LAPACK 1-subroutines dgetri.f and dgetrf.f

• souhbtmultifreqdcoeff - Performs the matrix product ∂A1
∂t

· A−1
1 and furnishes D

5.2.2 Computation of the source term

Two methods in SouHbtMultiFreq.C had to be modified for the computation of the source term:
compute and updateSourceTerm. These are actually applying Eq. (2.33) S = VDF except that the
multiplication by the volume V is done in RhsTerm::compute().
The source term is identified by three attributes that do not change during the computation:

• An integer id defining non-ambiguously the source term (it is equal to the corresponding
block ID.

• The time step in the period: 0 ≤ step ≤ 2N .

• The brotherhood brother.

The attributes currentMgLevel, mgLevel and nbGrids are auxiliary attributes to determine the
multigrid level. It is iterated over all instances of the source list and the ones of same brotherhood
and multigrid level are determined as the present term. If this is the case, the conservative field
and the corresponding D-coefficient are loaded in order to update the source term.
Checking the brotherhood and multigrid level attributes is done in compute. In the monofrequential
code, there is additionally a query whether the current time step is the same. If so, the source term
is not updated because there are zeros on the diagonal of matrix D. This simplification must not
be effected in the multifrequential approach, because the diagonal elements cannot be stated to be
zero in general. The method updateSourceTerm is called then. In the monofrequential approach,
only a small part of the matrix D has to be calculated, because of the matrix’ inherent properties
(zeros on the diagonal, ω−k = −ωk and each line is a permutation of the first line of matrix D).
Obviously, the whole matrix D must be gotten in updateSourceTerm to pick the right coefficient
in the multifrequential approach. The current instant provides the information in which line this
coefficient remains and the column is determined by the time step of the element of the source term
list. The D-coefficient is then passed to FORTRAN subroutine souhbt , which updates the sum of
the source term for all cells and all equations of the considered system.

1LAPACK - Linear Algebra PACKage (http://www.netlib.org/lapack/): dgetri.f computes the inverse of a general
matrix, using the LU factorization, computed by dgetrf.f. dgetrf.f computes an LU factorization of a general matrix,
using partial pivoting with row interchanges.
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5.2.3 Stability

When a resolution of the Navier-Stokes equations is effected, the local time step must be limited in
order to guarantee stability of the equations. Hence, the convection time step of a cell is calculated
with a CFL number (Courant, Friedrichs, Levy) imposed by the user:

∆τ = CFL
V(Ω)

ρ(A)
. (5.1)

V(Ω) is a characteristic dimension of the cell and ρ(A) is the spectral radius of the Jacobian that is
equal to the maximum characteristic velocity: ρ(A) = ‖u‖ + c0. ‖u‖ is the module of the velocity
and c0 is the speed of sound.
Due to the addition of the source term in Eq. (2.32), the computation of the virtual time step ∆τ
must be modified in order to solve the steady computation Eq. (2.31) (cf. [18]). The virtual time
step is estimated with a stability analysis in the frequency domain (cf. [13]). The modification
consists in adding a term in the denominator:

∆τ = CFL
V(Ω)

ρ(A) + kpV(Ω)
where kp = ωmax . (5.2)

Actually, the most restrictive definition has been chosen by taking the highest frequency or smallest
wavelength, otherwise multiple matrix inversions would have been necessary (for a deeper insight cf.
[13]). In the monofrequential approach ωmax = Nω = 2πNf , because all frequencies are multiples
of the base frequency. In the multifrequential approach ωmax = 2πfmax .
The following method has to be modified: TmoTimeStepLocalConvGridMotion. The modifications
consist in performing a query whether the monofrequential or the multifrequential approach is
used. This is simply done by checking which constant has the greater value: the frequency con-
stant (monofrequential) or the maximum frequency of the vector of frequencies (multifrequential).
Either the frequency of the monofrequential approach is passed after being multiplied by the order
(or number of frequencies) of the current computation or the maximum frequency of the multi-
frequential approach is passed to the FORTRAN subroutine, calculating the actual virtual time
step. This is compcellspecradius2 for TmoTimeStepLocalConvGridMotion. Before, the frequency
and the order were passed to these subroutines and multiplied in there. This is now done in the
C++ methods, because obviously the maximum frequency of the multifrequential approach is not
to be multiplied by the order.

5.2.4 Implicit method

An implicit solver is used, in order to be able to apply high CFL numbers (at the order of 102).
The theory of the implicit method is described here in short. The Navier-Stokes equations in
semi-discrete form are noted:

V
∂W

∂t
+ R(W ) = 0. (2.1)

In completely discrete form, the equation is noted:

V
W t0+δt − W t0

δt
+ R(W ∗) = 0,
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where the ∗ value remains unknown.
With an explicit approach, W t0+δt is obtained by calculating R directly at t0:

W t0+δt = W t0 +
δt

V
R(W t0).

However, with an implicit approach, it is not possible to calculate W t0+δt directly from W t0 :

W t0+δt = W t0 +
δt

V
R(W t0+δt ).

The value of R(W t0+δt ) is approximated around the value of W at t0:

R(W t0+δt) = R(W t0) +
∂R

∂t
(W t0)δt

= R(W t0) +
∂R

∂W
(W t0)

∂W

∂t
(t0)δt

= R(W t0) +
∂R

∂W
(W t0)(W t0+δt −W t0),

leading to:

(I − δt

V

∂R

∂W
(W t0))(W t0+δt − W t0) =

δt

V
R(W t0).

elsA is a finite volume code treating structured multi-block grids. The implicit phase is also grid
block oriented. This means, similarly to the fact that the field’s increment is obtained sequentially
block after block, the implicit phase follows suit. The Navier-Stokes equations in their compact
form with the term pertaining to the virtual time step read:

V
∂F

∂τ
+ Q(F ) = S (F ). (5.3)

The source term has a negative algebraic sign in elsA. This is why it appears on the right hand
side of Eq. (5.3). With the exact same procedure stated above, Eq. (5.3) becomes:

V
∂F

∂τ
+
∂Q

∂F
(F t0) + Q(F t0) =

∂S

∂F
(F t0) + S (F t0). (5.4)

Hence, the implicit treatment of the source term makes use of the conservative fields at all time
steps and the D-coefficients will therefore be needed in the implicit phase. This is why some
modifications have to be effected in the method computeLhs of the class TmoSetOfSolver 1.C.
These modifications are actually similar to the ones described in section 5.2.2. Again, the terms on
the diagonal of matrix D must be taken in account contrary to the monofrequential approach. A
case differentiation is therefore implemented, based on the principle described in section 5.2.3 and
instead of loading the repetitive coefficients of the monofrequential approach, matrix D is used to
extract the D-coefficients for the source term computation.
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Chapter 6

Validation

To validate the modified elsA code, tests were run that had also been effected for the monofre-
quential code. When the input values are equal (one frequency and its harmonics and uniformly
distributed instants), the exact same results must be obtained. Convergence behaviour should be
equal as well. In particular, the exact same residuals should be obtained. Three two-dimensional
and two three-dimensional test cases were taken in consideration. For each computation the fre-
quencies and instants are imposed that have been used for the monofrequential validation and are
then compared to the monofrequential solution.

6.1 Forced motion of a 2D airfoil

This section describes a pitching airfoil in subsonic and transonic flow with harmonic excitation
(cf. Sicot [13]). Given a mean angle of attack of α0, the airfoil is subjected to a sinusoidal variation
of the angle of attack of amplitude αm and pulsation ω:

α(t) = α0 + αmsin(ωt) (6.1)

The 2D test case NACA 64A010 is considered in three configurations given in Tab. 6.1. The reduced
frequency of oscillation ω̄ = ωc/(2V∞) where c is the airfoil’s chord and V∞ the velocity at infinity.
The rotation axis is at x/c = 0.269 for CT2 and at x/c = 0.249 for the two other test cases. CT2 is

Table 6.1: Parameters of Test Case NACA 64A010.

α0(deg) αm(deg) Re(×106) f (Hz ) ω̄ M∞

CT2 (DI29) −0.22 1.02 9.98 10.8 0.100 0, 502

CT6 (DI55) −0.21 1.01 12.56 34.4 0.202 0.796

Shock Stall Case (DI89) 4.0 1.01 11.88 35.1 0.204 0.789

completely subsonic and allows a first simple flow computation. CT6 is often used in literature to
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test the precision of numeric methods. The correct prediction of the aerodynamic field requires a
precise simulation of the interaction of shock and boundary layer. The last test case is at increased
angle of attack and presents a boundary layer separation. The experimental data (emanating from
Davis [3]) and a solution obtained from a URANS AEL1 computation is also given in the presented
figures for the sake of completeness, although they are not subject to the present discussion which
only aims to prove equality of the two approaches. The unsteady AEL computations originate
from Delbove [4] (DTS computation with 40 instants per period). The data for comparison with
the Monofrequential HBT originates from Sicot [13].
The grid is fix referring to the airfoil and the variations of the angle of attack are accounted for by
changing the boundary conditions of the far field with time.
When a flow shows boundary layer separation, the turbulence model has a major influence on the
quality of the results (Bohbot [1]). However, the shock’s dynamic in these applications depends
rather on the airfoil’s motion than on turbulence effects. The model of Spalart and Allmaras [14]
is considered to be in good agreement with costs and physical precision by Srinivasan [16] and will
therefore be applied here.

6.1.1 Pitching at low angle of attack in subsonic flow: CT2 (DI29)

This first test case shows the behaviour of the HBT in an entirely subsonic flow without shock. The
distribution of the dimensionless pressure coefficient Cp on the airfoil is compared. The pressure
coefficient is defined as the difference between the local static pressure and the static pressure at
infinity normalised by the dynamic pressure at infinity:

Cp =
p − p∞

1
2ρ∞|V∞|2

In incompressible flow Cp = 1 at the stagnation point of the leading edge, for compressible flow
Cp ≥ 1. The pressure coefficient decreases then rapidly both on the suction side and on the pressure
side and tends to a small positive value near the trailing edge. In the aeronautic community, Cp

graphs are plotted with the axis of ordinates being inverted. The real and imaginary parts of the
pressure coefficient in complex notation are displayed with no inversion of the axis of ordinates.
The real and imaginary parts of the experimental data are normed by the amplitude of the pitching
angle αm (with αm in radian): <e(Cp)/αm + i=m(Cp)/αm .

Convergence

The residuals of the computations for different numbers of harmonics are plotted in Fig. 6.1. For
computations with up to four harmonics, a CFL number of 100 was sufficient. After 300 iterations,
five orders of magnitude were lost. When a fifth harmonic is taken into consideration, the CFL
number had to be decreased to 55 in order to achieve convergence. This is actually similar to
the computations that have been made with the monofrequential code. The curve progression
of each case is also akin to a monofrequential calculation (monofrequential residual progression
over the number of iterations is not depicted here). As regards the convergence behaviour of the

1The AEL module is the aero-elasticity module of elsA
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multifrequential approach, it is similar to the monofrequential approach, but residuals are not
strictly the same. The author believes that this discrepancy is due to the computation of the D-
coefficients. Although those are calculated with double precision, they are not exactly equal to the
last digit when being compared to the monofrequential analytically calculated D-coefficients. This
will be discussed to a greater extent in section 6.3.
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Figure 6.1: NACA 64 CT2: Convergence.

Results

Computations have been performed for 1, 2, 3, 4 and 5 frequencies. They all show perfect accor-
dance to the monofrequential computations. The results for the orders N = 1 and 5 are shown in
the following figures. For one frequency and three instants per period, results are shown in Fig. 6.2.
The computations of the mean pressure coefficient with URANS AEL, the Monofrequential HBT
and the new Multifrequential HBT are perfectly coincident (cf. Fig. 6.2(a) - 6.2(b)). This applies
for the real part (cf. Fig. 6.2(c)) of the pressure coefficient as well. In Fig. 6.2(d) the imaginary
part of Cp is displayed. A small shift to the URANS computations is observed, but the result of
the Monofrequential and Multifrequential HBT are again coincident, which is to be shown here.
Fig. 6.3 depicts the resulting graphs when five harmonics are taken in consideration. The results
are essentially the same and even for the imaginary part of the pressure coefficient accordance to
the URANS computation is achieved.
It was pointed out, that for this first simple test case the multifrequential approach shows no differ-
ences to the monofrequential one. Except for small differences in the residuals, the resulting graphs
of the solution are the same and convergence behaviour is equal. Therefore a more demanding test
case, actually provoking the emergence of a shock, may now be approached.
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Figure 6.2: NACA 64 CT2: Pressure coefficient Cp for N = 1.
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Figure 6.3: NACA 64 CT2: Pressure coefficient Cp for N = 5.
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6.1.2 Pitching at low angle of attack in transonic flow: CT6 (DI55)

This test case considers a transonic regime at M ≈ 0.8. Disposing of a low mean angle of attack,
the case shows no boundary layer separation. Shocks appear on the suction and on the pressure
side during the whole oscillation cycle. The shocks are slightly stronger on the pressure side due
to a negative mean angle of attack.

Convergence

In order to achieve convergence, CFL numbers had to be decreased considerably. Convergence
with CFL = 100 and 300 iterations could only be obtained for one frequency. For two frequencies
1000 iterations were performed and the CFL number had to be decreased to 15. For higher orders,
CFL was again reduced by one order of magnitude. The graphs of the residuals are shown in
Fig. 6.4. Convergence behaviour of the Multifrequential HBT is again equal to the one of the
Monofrequential HBT.
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Figure 6.4: NACA 64 CT6: Convergence.

Results

Again, only two out of the total of five computations are presented here. Fig. 6.5 depicts the
obtained graph of the pressure coefficient for N = 1. Although, the two different HBT computations
show a deviation to the AEL graph, the monofrequential and multifrequential graphs are perfectly
superposed. Deviations are particularly noticeable on the real and imaginary parts of the pressure
coefficient (cf. Fig. 6.5(c) - 6.5(d)). By elevating the order of the HBT computation, the oscillations
(cf. Fig. 6.5(a): 0.4 ≤ x/c ≤ 0.55) and overshoots (cf. Fig. 6.5(c) - 6.5(d)) diminish. This can be
seen in Fig. 6.6 for N = 4. The graphs of the monofrequential and of the multifrequential approach
are coincident.
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Figure 6.5: NACA 64 CT6: Pressure coefficient Cp for N = 1.
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Figure 6.6: NACA 64 CT6: Pressure coefficient Cp for N = 4.
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6.1.3 Pitching at high angle of attack: Shock Stall case (DI89)

This test case deals with an elevated mean angle of attack (α0 = 4.0◦). This is why a shock only
appears on the suction side, while the flow on the pressure side remains subsonic. Originally, this
case was thought to show the efficiency of the HBT in both subsonic and supersonic regime. It serves
here as the last two-dimensional test case to prove equivalence of the mono- and multifrequential
approaches. The relatively high incidence also provokes a separation of the boundary layer which
will trouble the turbulence model.

Convergence

As one can state from Fig. 6.7, convergence becomes more difficult to obtain in the Shock Stall case.
Considerably more iterations are needed and the CFL numbers are reduced to even lower values
for the HBT computations. However, the convergence behaviour of the Multifrequential HBT is
again essentially the same compared to the Monofrequential HBT.
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Figure 6.7: NACA 64 Shock Stall case: Convergence.

Results

The results of the computations with one (cf. Fig. 6.8) and with three (cf. Fig. 6.9) frequencies are
presented here. The step appearing on the suction side in Fig. 6.8(a) can be diminished, when a
higher order is used (cf. Fig. 6.9(a)). The graph of the mean pressure coefficient shows very good
accordance to the AEL graph on the pressure side (cf. Fig. 6.8(b)) for N = 1, but disposes of a
small deviation for N = 3 (cf. Fig. 6.9(b)). For the real and imaginary parts, good results are
obtained on the pressure side. Big differences appear though on the suction side at the location
of the shock and higher order computations do not improve this situation (cf. Fig. 6.8(c) - 6.8(d)
and Fig. 6.9(c) - 6.9(d)). However, the crucial observation to be made is the complete accordance
between the Mono- and Multifrequential HBT.
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Figure 6.8: NACA 64 Shock Stall case: Pressure coefficient Cp for N = 1.
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Figure 6.9: NACA 64 Shock Stall case: Pressure coefficient Cp for N = 3.
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6.2 Forced motion of a 3D airfoil

The LANN wing is made of super-critical airfoils (cf. Fig. 6.10). Experimental data was fur-
nished by a collaboration of several research centres (Lockheed-Georgia, Air Force Flight Dynamic
Laboratory, NASA Langley and NLR: LANN, cf. [19]) in order to evaluate CFD software. The
geometry data is given in Tab. 6.2. Six wing sections had been instrumented to allow pressure
measurement (cf. Fig. 6.11).

(a) Airfoil at wing root (b) Salmon-like airfoil

Figure 6.10: Different super-critic airfoils of the LANN wing at the same scale.

Table 6.2: Geometry of the LANN wing.

aspect ratio 7.92
sweep 25.0◦

sweep at leading edge 27.493◦

sweep at trailing edge 16.908◦

wing torsion −4.8◦

chord at wing root 360.8mm
wing span 1000.0mm
wing surface 0.2526m2

As mentioned before, two test cases were considered (cf. Tab. 6.3). The same variation of the
angle of attack described by Eq. (6.1) is applied here. CT5 is at low angle of attack and there is
no boundary layer separation. CT9 induces a separation due to the high mean angle of attack.

Table 6.3: Parameters of the LANN test cases.

α0(deg) αm(deg) Re(×106) f (Hz ) ω̄ M∞

CT5 0.6 0.25 5.43 24 0.102 0, 822

CT9 2.6 0.25 5.32 24 0.103 0.822
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Figure 6.11: Top view of the LANN wing (dimensions in mm).

6.2.1 Pitching at low angle of attack: CT5

Five tests were run for this first three dimensional test case at low angle of attack including up to
five frequencies.

Convergence

Fig. 6.12 illustrates convergence behaviour of the performed computations:
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Figure 6.12: LANN CT5: Convergence.
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The LANN wing does not encounter the same problems of convergence as the NACA airfoil does.
All computations were carried out with CFL = 100 up to five harmonics with only 300 iterations.
Convergence behaviour is the same for each test run, regardless of the number of harmonics taken
in account. It is also equal to the monofrequential HBT convergence graph.

Results

Results of the mean Cp , the real and the imaginary part of the pressure coefficient are given for one
frequency in Fig. 6.13, 6.14 and 6.15 for each section of the wing. Fig. 6.16, 6.17 and 6.18 display
the results for five harmonics. The labeling ’expe s.s.’ and ’expe p.s.’ denote the experimental
results on the suction side and on the pressure side respectively.
The mean pressure coefficient is in good agreement with the experiments and particularly with
the AEL computations. Due to the appearing shocks on the suction side, the results of the HBT
differ slightly from AEL results. Compare Fig. 6.13(c), 6.13(d) and 6.13(e) to Fig. 6.16(c), 6.16(d)
and 6.16(e) respectively. Deviations can be reduced by elevating in order (actually already two
frequencies are enough to do so). The small overshoot on the pressure side of section 6 (6.13(f)
and 6.16(f)) cannot be reduced, though.
The real part of the coefficient of pressure is already less well approximated, although position and
amplitude of the peaks of the HBT are quite good. Using higher orders, a better approach towards
the AEL results is possible (see e.g. section 3 Fig. 6.14(c), 6.17(c) and section 5 Fig. 6.14(e), 6.17(e)
and compare Fig. 6.14(b) and Fig. 6.17(b)). Similar conclusion are drawn from the imaginary part
of Cp . Again, a better approximation of the peaks’ position and amplitude is obtained for higher
order computation.
Nevertheless, the key conclusion to draw is, that monofrequential and multifrequential results are
superposed for all frequencies tested, on all sections of the wing for the mean pressure coefficient,
its real and its imaginary part.
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Figure 6.13: LANN CT5: Mean pressure coefficient Cp for N = 1.
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Figure 6.14: LANN CT5: Real part of Cp for N = 1.
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Figure 6.15: LANN CT5: Imaginary part of Cp for N = 1.
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Figure 6.16: LANN CT5: Mean pressure coefficient Cp for N = 5.
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Figure 6.17: LANN CT5: Real part of Cp for N = 5.
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Figure 6.18: LANN CT5: Imaginary part of Cp for N = 5.
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6.2.2 Pitching at high angle of attack: CT9

The present test case will be the last to validate the Multifrequential HBT. The frequency of the
periodic oscillation of the wing remains the same as for the previous test case. It deals however
with a high mean angle of attack.

Convergence

Just like test case CT5, convergence behaviour is alike for all five computations. Again a CFL
number of 100 was sufficient. The number of iterations is raised to 600 in order to achieve orders
of magnitude of the residuals similar to test case CT5.
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Figure 6.19: LANN CT9: Convergence.

Results

The boundary layer separation is predicted quite badly by the turbulence model as it can be seen
in Fig. 6.20(a) - 6.20(c). On these three sections, the shock is dislocated towards the trailing edge.
There is good accordance of the mean pressure coefficient between the AEL and HBT computations,
though. A step appears on section 4 at the location of the shock (cf. Fig. 6.20(d)). However, this
step is smoothed and finally disappears, the more harmonics are taken in account (cf. Fig. 6.23(d)).
As for the real part of the pressure coefficient (cf. Fig. 6.21 and 6.24), there are strong differences
on section 1 between the AEL and HBT computation. On section 3 − 5, the amplitudes of the
peaks of the HBT results are considerably higher. This over prediction is not reduced noticeably
for higher orders, but these graphs are closer to the experimental data than the AEL results. This
becomes apparent also, when Fig. 6.21(f) is examined: On this section the peak’s orientation is
well predicted by the HBT. The AEL result predicts the inverse orientation. The imaginary part
shows good accordance to the AEL results, while section 1 is the furthest away from the AEL
computation, but closer to the experimental data.
Mono- and multifrequential results are superposed for all frequencies tested. No differences are
perceptible on any section of the wing.
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Figure 6.20: LANN CT9: Mean pressure coefficient Cp for N = 1.
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Figure 6.21: LANN CT9: Real part of Cp for N = 1.
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Figure 6.22: LANN CT9: Imaginary part of Cp for N = 1.
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Figure 6.23: LANN CT9: Mean pressure coefficient Cp for N = 5.
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Figure 6.24: LANN CT9: Real part of Cp for N = 5.
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Figure 6.25: LANN CT9: Imaginary part of Cp for N = 5.
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6.3 Precision discrepancy of D-coefficients

There is a discrepancy between the D-coefficients of the monofrequential approach calculated by
Eq. (2.14) and those calculated for the multifrequential approach, although they should theoretically
be the same, when the same frequencies and instants are used. One must take into consideration
though: For the multifrequential approach the inverse of matrix A1 must be found (and is calcu-
lated numerically) and has to be multiplied by the derivative of matrix A1 (cf. Eq. (2.33)). There
is certainly a loss in precision, when inverting the matrix even though all computation is done with
double precision in elsA.
A first additional computation was performed for test case CT9 with two harmonics and 600 itera-
tions using the multifrequential approach, but imposing in FORTRAN subroutine souhbtmultifreqd
the precise coefficients of the monofrequential approach. A comparison to the Monofrequential
HBT code without any modifications by the author is given in Tab. 6.4. The percent of deviation
is referred to the monofrequential residuals.

Table 6.4: CT9, N = 2: Comparison of residuals of the Mono- and Multifrequential HBT, when
the D-coefficients are imposed in the multifrequential approach.

L2 monofrequ. multifrequ. deviation [%]

ρ 1.0719779E-02 1.0719779E-02 0.00E+00
ρu 8.0258603E-03 8.0258604E-03 1.25E-06
ρv 5.1383217E-03 5.1383218E-03 1.95E-06
ρw 1.8547960E-03 1.8547962E-03 1.08E-05
ρE 4.0618512E-02 4.0618512E-02 0.00E+00
ρν 2.8551927E-05 2.8551927E-05 0.00E+00

A very small deviation in the residual of ρu (∆L2 = 1E-10), ρv (∆L2 = 1E-10) and ρw (∆L2 =
2E-10) is detected. This effect appears not only after 600 iterations, but similar deviations appear
throughout the course of iteration, vanish from time to time and reappear. It is interesting to
see that this effect does not occur when monofrequential computations effected with the modified
code and the original code are compared. In this case, all residuals for each and every iteration
are exactly the same. These deviations are probably due to round-off errors and/or a difference
in the computation of the sine- and cosine-function between FORTRAN and C++, because the
monofrequential D-coefficients are computed in C++, while the multifrequential routines for the
D-coefficients are included in FORTRAN. Hence, this might be a compiler problem. Given the
extremely small order of magnitude of this deviation (seven orders of magnitude smaller than the
residual when convergence is obtained) and considering in addition that it does not increase, but
is rather damped in the course of iteration, the code is considered to be deployable. Furthermore,
the two approaches furnish the same solutions, if the exact same D-coefficients are used for the
computation.

The results shown in the previous sections do not show any deviation. Anyway, due to the deviation
in the D-coefficients calculated by the matrix product mentioned above, a difference in residuals
arises. The effect of the D-coefficients on the residuals is therefore examined. Ten computations of
test case CT9 are taken in account to do so. For N = 1, . . . , 5 frequencies both a monofrequential
and a multifrequential computation are performed. In Tab. 6.5 the maximum relative deviation

62



of the D-Coefficients and the resulting maximum relative deviation of the residuals are given in
percent. The conservative variable that suffers this maximum deviation is also given. Tab. 6.6
contains the absolute deviation from the monofrequential computation.

Table 6.5: CT9: Comparison of D-coefficients and resulting residuals of the mono- and multifre-
quential approach (percent deviation).

Order iterations max. dev. d-Coeff. [%] max. dev. residual [%] Variable

N = 1 600 −6.15E-06 +1.66E-05 ρw

N = 2 600 −1.65E-05 +7.39E-06 ρE

N = 3 600 −2.90E-05 −9.26E-06 ρ

N = 4 600 −4.31E-05 −4.87E-06 ρE

N = 5 600 −5.84E-05 +9.51E-06 ρ

Table 6.6: CT9: Comparison of D-coefficients and resulting residuals of the mono- and multifre-
quential approach (absolute deviation).

Order iterations max. dev. d-Coeff. max. dev. residual Variable

N = 1 600 −1.1713E-08 +4.0E-09 ρE

N = 2 600 −3.51E-08 +3.0E-09 ρE

N = 3 600 +7.03E-08 −1.0E-09 ρ

N = 4 600 −1.17E-07 −2.0E-09 ρE

N = 5 600 +1.76E-07 +3.0E-09 ρE

Tab. 6.5 clearly shows that the deviations of the D-coefficients are rather small, i.e. about an
order of magnitude of −5E-05%. For the smallest matrix (N = 1, dim(A) = 3), the least deviation
occurs and rises constantly when the order N is elevated. The resulting deviation in the residuals
is also very small, but does not seem to have a linear correlation with the deviation of the D-
coefficients: The residual’s relative deviation is actually quite arbitrary. The maximum deviation
is +1.66E-05%. The maximum absolute deviations of the residuals are of an order of magnitude of
10−09 after 600 iterations. These numbers show clearly that the multifrequential approach can be
thought to be equivalent to the monofrequential one. Deviations do appear, but are negligeable.
This is particularly true, when the results of the test cases shown in the previous sections are
considered. They are perfectly coincident with the monofrequential results.

6.4 Summary

The validation of the Multifrequential HBT code with the previous test cases shows very good accor-
dance of the solutions of the mono- and multifrequential approaches. Convergence behaviour is es-
sentially the same. The slight deviation of the residuals due to a difference in the D-coefficients does
not pose a problem. The raise in computing time between a multifrequential and a monofrequential
computation for the test cases described above is less than three percent (∆ = tmulti−tmono

tmono
< 3%).
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Chapter 7

Non-uniformly distributed instants

This chapter is dedicated to the effect of non-uniformly distributed instants on the results of the
test cases. Since the considered test cases only dispose of one frequency, the frequencies taken in
account, when higher orders are used, will still be multiples of this one base frequency. Tab. 7.1
shows the distribution i of the chosen instants for each order N . T denotes the period of the base
frequency of each test case: T = 1

f1
. In Tab. 7.1, the instants are given as the ratio of T and

this means that the instants are not the same for two test cases. The product of frequency and
instant f1 · ti will be equal however. The uniform distribution is given for the purpose of comparison
(distribution i = 0). The determinant of matrix A1 and the condition number of matrix D are
listed in Tab. 7.2. The author recalls the definition of the condition number for regular matrices
(using the L2-norm):

κ(D) = ‖D‖‖D−1‖ with ‖D‖2 =

√
√
√
√

2N+1∑

i=1

2N+1∑

j=1

|Di ,j |2 (7.1)

As far as one can see, the condition number κ of matrix D is extremely high. Orders of magnitude
are mostly greater than 1010 (cf. Tab. 7.2). However, this is true for uniformly distributed instants
as well. The condition describes the dependency of a problem’s solution on the input data. The
condition number is a quantity to measure this condition and specifies the factor by which an error
in the input data is amplified in the worst case. Since the very high condition number does not
seem to pose a problem for the monofrequential approach, no further attention will be paid towards
it.
Nevertheless, the effect of a matrix A1 with a small determinant (like distributions (3, 1), (4, 1)
and (5, 1)) will be discussed in the following sections. For all other tests, the instants were chosen
with the help of the program described in section 4.2.2 in a way that matrix A1 is a regular matrix
with a determinant greater than 0.1 and therefore invertible without any trouble. Unless otherwise
stated, the same CFL and number of iterations are used as for the computations with uniformly
distributed instants. All distributions i = 2 are chosen in a way that the maximum difference to
the corresponding instant of the uniform distribution is less than 0.05T . Hence, it is a distribution
that should lead to convergence and similar results in any case.
The first section will treat 2D test cases with the NACA airfoil and a short proof that frequencies
may be chosen that are not a harmonic of the base frequency. The subsequent section discusses
the solutions of 3D test cases using the LANN wing.
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Table 7.1: Distribution of the instants as ratio of period T = 1
f1

with t0 = 0 for each order N and
distribution i.

N,i t1
T

t2
T

t3
T

t4
T

t5
T

t6
T

t7
T

t8
T

t9
T

t10
T

1, 0 0.3 0.6
1, 1 0.25 0.75
1, 2 0.3 0.62
1, 3 0.1 0.2
1, 4 0.1 0.9
1, 5 0.49 0.51

2, 0 0.2 0.4 0.6 0.8
2, 1 0.125 0.5 0.625 0.75
2, 2 0.175 0.375 0.575 0.775
2, 3 0.1 0.2 0.3 0.4
2, 4 0.4 0.45 0.55 0.6

3, 0 0.142857 0.285714 0.428571 0.571428 0.714285 0.857142

3, 1 0.0416 0.083 0.125 0.16 0.2083 0.25
3, 2 0.16 0.32 0.45 0.605 0.73 0.88
3, 3 0.082 0.17 0.25 0.33 0.42 0.5
3, 4 0.1 0.2 0.3 0.5 0.6 0.7
3, 5 0.08 0.16 0.24 0.32 0.4 0.48

4, 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
4, 1 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5
4, 2 0.1 0.21 0.31 0.425 0.53 0.65 0.755 0.875
4, 3 0.05 0.2 0.25 0.4 0.5 0.72 0.8 0.95

5, 0 0.09 0.18 0.27 0.36 0.45 0.54 0.63 0.72 0.81 0.90
5, 1 0.15 0.2 0.225 0.25 0.65 0.7 0.725 0.75 0.8 0.9
5, 2 0.08 0.17 0.2625 0.3525 0.45 0.536 0.625 0.715 0.82 0.925
5, 3 0.1 0.2 0.225 0.25 0.64 0.68 0.7225 0.7575 0.79 0.9

Table 7.2: Determinant of matrix A1: |A1|, Condition number of coefficient matrix D: κ(D) for
each order N and distribution i.

N,i |A1| κ(D) N,i |A1| κ(D) N,i |A1| κ(D)

1, 0 2.6 0.18E18 2, 0 −14.0 0.41E16 3, 0 −113.4 0.81E16

1, 1 2.0 ∞ 2, 1 −5.7 0.64E17 3, 1 −0.000011 0.26E18

1, 2 2.5 0.37E17 2, 2 −13.6 0.44E18 3, 2 −105.4 0.70E17

1, 3 0.30 0.22E11 2, 3 −0.30 0.18E11 3, 3 −0.38 0.66E17

1, 4 0.23 0.21E10 2, 4 −0.21 0.35E12 3, 4 −29.4 0.34E17

1, 5 0.25 0.93E11 3, 5 −0.19 0.62E17

4, 0 1230.2 0.35E17 5, 0 16692.1 0.12E17

4, 1 0.020 0.21E18 5, 1 0.051 0.81E17

4, 2 1162.5 0.99E17 5, 2 127.7 0.80E18

4, 3 98.8 0.73E18 5, 3 0.33 0.26E18
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7.1 2D NACA airfoil

7.1.1 Test case CT2

Fig. 7.1 shows the solution for one frequency: The reference with uniformly distributed instants
(1, 0) and four different distributions of instants to be found in Tab. 7.1.
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Figure 7.1: NACA 64 CT2: Pressure coefficient Cp for N = 1 with non-uniformly distributed
instants.

Results are very good for the mean pressure coefficient and its real part. The graphs are virtually
superposed with the solution disposing of uniformly distributed instants. Taking in account, that
distributions (1, 3), (1, 4) and (1, 5) are really far away from a uniform distribution and have a
determinant |A1| ≤ 0.3, this is a very pleasant and encouraging result. However, there is an evident
difference on the imaginary part between the five computations at the leading edge. Distributions
(1, 1), (1, 3) and (1, 4) are the ones, who are the furthest away from the AEL solution. Considering
the whole graph, it is still a quite good solution. Convergence behaviour is the same as for the
uniform distribution with CFL = 100 and 300 iterations (five orders of magnitude were lost on the
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residuals).
Results for two frequencies are displayed in Fig. 7.2. Again, the graphs of the residuals are not
given, they are equal to the ones obtained for the uniform distribution of instants. The solution
for distributions (2, 1), (2, 3) and (2, 4) coincide perfectly with (2, 0), even though (2, 3) and (2, 4)
have a small determinant −0.4 < |A1| < −0.1 and are remote of the uniform distribution.
Three more graphs are given in Fig. 7.2 for which the second frequency is modified. For the first
one: f2 = 3f1 and for the second one: f2 = 4.3f1. The last graph also uses f2 = 3f1, but with uni-
formly distributed instants (distribution (2, 0)). It is perfectly coincident with (2, 0), which is not
too surprising, because the results for this test case are already very good for one frequency and do
not vary when higher frequencies are taken in account. Nevertheless, using a different frequency f2
in combination with non-uniformly distributed instants does lead to slight deviations in the graphs
of the real and imaginary part of the pressure coefficient. An undershoot is stated at the leading
edge of about 10% on the real part of Cp and an overshoot of the same magnitude on its imaginary
part. However, using different frequencies does also lead to good results in this test case, even in
combination with non-uniformly distributed instants.
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Figure 7.2: NACA 64 CT2: Pressure coefficient Cp for N = 2 with non-uniformly distributed
instants and/or varying frequencies.
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Looking at the solution of computations of order three (cf. Fig. 7.3), it is evident that very good
accordance with the original results is obtained. All graphs are coincident and the convergence
graphs are again identical to the one with a uniform distribution of the instants.
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Figure 7.3: NACA 64 CT2: Pressure coefficient Cp for N = 3, 4 and 5 with non-uniformly
distributed instants.

However, distribution (3, 1) was not computable and either negative temperature or pressure values
aborted the computation. Rigorous reductions of CFL (CFL was reduced from 100 down to 0.01)
and an increase of cycles in the implicit phase did not lead to convergence. These modifications
make computation much more costly and should be circumvented. It is obviously the very low
determinant of matrix A1 (|A1| ≈ 10−5, cf. Tab. 7.2) that messes up the computation. Distribu-
tion (3, 3) and (3, 5) dispose of a low determinant (0.1 < |A1| < 0.5), but pass very well. It is the
author’s experience that determinants at least greater than 0.1 should be chosen in order to obtain
good convergence behaviour and results, although this does not necessarily assure good results and
greater determinants may have to be obtained. This restriction becomes more and more difficult to
obey though, when a higher order is needed, which is not the case for test case CT2, because results
are already good with only one frequency taken in account. For other test cases more frequencies
might have to be used and there are certainly applications, where an elevated number of frequen-
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cies appear. This means immediately that the number of instants rises as well (number of instants
= (2N +1)). If it is in addition necessary to distribute these instants over a very small period, |A1|
will decrease automatically. This is due to the nature of matrix A1 and inevitable. This effect can
be seen very nicely for distribution (3, 1), where seven instants are distributed between t0 = 0 and
t2N = 1

4T = 1
4f1

.
The statements concerning the determinant made for distribution (3, 1) are equally true for distri-
butions (4, 1) and (5, 1). Both computations did not converge. The solution of distribution (4, 3)
shows a slight deviation on the mean Cp and the imaginary part compared to the other graphs.
Distribution (5, 3) did not converge, the determinant of |A1| ≈ 0.3 being apparently too small.
However, (5, 2) shows very good accordance, but is also very close to a uniform distribution.

7.1.2 Test case CT6

For test case CT6, results are presented in Fig. 7.4. Distributions (1, 1), (2, 1), (3, 2) and (4, 2) are
compared to the computation (4, 0) (cf. Fig. 6.6).
(4,0) has uniformly distributed instants and shows good accordance to the AEL computation. With
one or two frequencies taken in account, distribution i = 1 converges very well. No convergence
was obtained though for distributions further away from the uniform distribution. For N = 3
and 4, only distribution i = 2, which is very close to the uniform distribution, converges. Other
distributions do not converge, even with rigorous reductions of CFL and a raise in implicit phase
cycles. The graphs of the residuals are all four very similar to the ones showed in Fig. 6.4 (for each
frequency respectively).
When Fig. 7.4(a) and 7.4(b) are considered (the mean pressure coefficient of the suction and pressure
side), very good accordance for (3, 2) and (4, 2) is stated. However, (1, 1) and in particular (2, 1)
have problems to resolve the shock at 0.4 ≤ x/c ≤ 0.6. While (1, 1) shows an additional step on the
pressure side, (2, 1) disposes of an overshoot on the suction side and one oscillation at the shock.
Refer here to Chap. 3.
Distribution (4, 2) is almost coincident with the AEL computation for the real and imaginary part
of Cp . (3, 2) is further away from it and oscillates around the shock on the pressure as well as on
the suction side. The result of (1, 1) for the real part is acceptable although the shock is somewhat
shifted towards the trailing edge on the pressure side. The imaginary part shows radical over- and
undershoots though. (2, 1) is even worse. It computes pressure peaks way too high for both the
real and imaginary part of the pressure coefficient. However, it does not show an overshoot at the
end of the shock (x/c = 0.55) on the suction side of the imaginary part.

7.1.3 Test case Shock Stall

The last 2D test case is also the one which poses the biggest problem with non-uniformly distributed
instants. For N = 1, 2 and 3, only distribution i = 2 converges, but shows some deviation. Only the
results for three frequencies are shown in Fig. 7.5, because here, yet the best results were obtained.

The graph of the mean pressure coefficient is quasi coincident with the one obtained with the
uniform distribution of instants. The pressure side on which no shock appears also shows very
good accordance to (3, 0). The pressure side of the imaginary part of Cp disposes of a solution that
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Figure 7.4: NACA 64 CT6: Pressure coefficient Cp for N = 1, 2, 3 and 4 with non-uniformly
distributed instants.

cannot be considered worse than the one with uniform distribution. Distribution (3, 0) features
a step at the location of the shock on the pressure side of the real part. Here, distribution (3, 2)
actually shows an oscillation with a quite high peak. Taking in account though, that distribution
i = 2 is at most ∆T = 0.05T away from the uniform one, it cannot be considered to be a good
solution, anymore.

7.1.4 Summary

For now, the preceding results allow to draw the following conclusions: Using non-uniformly dis-
tributed instants does not pose a problem as long as the physics of the actual problem are not
too extreme (e.g. shocks, boundary layer separation). The condition of the coefficient matrix D
is irrelevant for both approaches. The determinant of matrix A1, giving an idea of the quality of
the instant distribution, must not be too small, however. But again, this depends highly on the
considered problem. For test case CT2, where no shock appears on the airfoil, this determinant
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Figure 7.5: NACA 64 Shock Stall case: Pressure coefficient Cp for N = 3 with non-uniformly
distributed instants.

may be less than one (although it should be chosen greater than 0.1). The other two test cases are
much more sensitive towards the distribution of the instants. It was not possible here to obtain a
solution with the instants being distributed only e.g. over a half or a quarter period. Section 7.2
will have to show, if the 3D test cases are more adequate for non-uniformly distributed instants.

7.2 3D LANN wing

Before discussing the test results, some general remarks are made. Not all the results gained are
shown in this report. Only some results are displayed in order to emphasise the conclusions. The
following distributions were not computable (abort of the computation due to negative pressure
or temperature values) with test case CT5: (3, 1) and (5, 1) and with test case CT9: (3, 1), (4, 1)
and (5, 1). Actually, these computations do not converge even with rigorous reductions of the CFL
number and/or a raise of cycles in the implicit phase. This property was already discovered with
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the NACA test cases and leads to the assumption that it is not really a problem of convergence,
but rather inherent and due to the instant distribution.
Generally speaking, the Cp graphs of the pressure side, where no shock appears are in the major-
ity of cases very close to or even superposed with the AEL or the HBT solution (with uniformly
distributed instants). This is also true for the suction side except for the area in direct neighbour-
hood of the shock. Good results for section 4 and 5 seem to be especially hard to obtain. When
oscillations emerge, it is usually first on these two sections.
Distribution i = 2 always furnishes results that are quasi superposed with the solution with uni-
formly distributed instants, except for distribution (2, 2) (CT5 and CT9). However, convergence
behaviour is good and the determinant is almost equal to the one of (2, 0). Obviously, this instant
distribution does not capture well the physics of the problem.

7.2.1 Test case CT5

As mentioned already, a reduction of the CFL number does not lead to results, if the computation
aborts in the case of non uniformly distributed instants. Hence, CFL = 100 is used for all test
runs. Convergence behaviour is similar to the one with uniformly distributed instants, but small
differences arise. For N = 1 and N = 3, the residual curves are superposed only up to 150 − 200
iterations, but they converge all to the same order of magnitude after 300 iterations. However,
more distinct deviations can be seen for order two and four (cf. Fig. 7.6). (2, 4) deviates the most
from the other residual graphs for N = 2. Convergence behaviour of (5, 3) is similar to the one of
(4, 3). Particularly, (4, 1) shows a quite different behaviour. It actually converges faster between
30 and 120 iterations, but shows oscillatory behaviour on the residuals afterwards. It is less well
converged after 300 iterations than the other distributions. With test case CT9, this distribution
is not computable at all.
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Figure 7.6: LANN CT5: Convergence.

Fig. 7.7- 7.9 are an example of how a good solution with non-uniformly distributed instants (dis-
tribution (1, 1)) can be obtained. On sections 4 and 5 of Cp ’s real part, the shock on the suction
side is even shifted closer to the experimental data points. On the imaginary part, overshoots at
the peaks of about 10% are observable.
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Admittedly, distribution (1, 4), that is further away from a uniform one, shows oscillations at the
position of the shock already on the mean pressure coefficient (cf. Fig. 7.10). These oscillations
aggravate on its real and imaginary part and significant overshoots appear on the peaks. On the
real part of section 6 (cf. Fig. 7.11(f)), the oscillations even spread to the entourage of the shock.
However, apart from the shocks, the solution is either very close or even superposed with HBT
(1, 0) and AEL.
The last example of test case CT5 is of order 3 with a distribution of the instants over half the
period. Fig. 7.13 - 7.15 depict the results. There are no problems with the approximation of the
mean pressure coefficient on the pressure side and on section 1, the shock is still captured quite
well. On all other sections, strong oscillations appear. These even spread to the trailing edge of
wing sections 5 and 6 (i.e. the outer region of the wing). The real and imaginary part of Cp only
show important deviation at the peaks and behind them. Aside from the oscillations, the peaks
are partly extremely over predicted.
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Figure 7.7: LANN CT5: Mean pressure coefficient Cp for (1, 1).
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Figure 7.8: LANN CT5: Real part of Cp for (1, 1).
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Figure 7.9: LANN CT5: Imaginary part of Cp for (1, 1).
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Figure 7.10: LANN CT5: Mean pressure coefficient Cp for (1, 4).
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Figure 7.11: LANN CT5: Real part of Cp for (1, 4).
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Figure 7.12: LANN CT5: Imaginary part of Cp for (1, 4).
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Figure 7.13: LANN CT5: Mean pressure coefficient Cp for (3, 5).
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Figure 7.14: LANN CT5: Real part of Cp for (3, 5).
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Figure 7.15: LANN CT5: Imaginary part of Cp for (3, 5).
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7.2.2 Test case CT9

CFL = 100 is used for all test runs. Only small differences in convergence behaviour compared
to the uniform distributions are observed for N = 1, 4 and 5 for the computations that did not
abort (except for (5, 3), whose convergence behaviour is similar to the one of CT5: (4, 3)). The
residual over the number of iterations is depicted in Fig. 7.16 for N = 2 and 3. Distribution (2, 4)
converges less well than the other distributions and oscillates around 1. (3, 3) and (3, 5) also show
worse convergence behaviour, but end at the same order of magnitude.
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Figure 7.16: LANN CT9: Convergence.

Distribution (1, 4) is used here again, in order to emphasise the fact that the same distribution
may show different behaviour in two test cases, that are basically equal, but where CT9 deals with
a higher mean angle of attack and a boundary layer separation. The mean pressure coefficient is
actually very well approximated (cf. Fig. 7.17). On section 4, the double step appearing at the
shock with (1, 0) is even less distinct with (1, 4). The real part is however shifted away from the
AEL and HBT (1, 0) graphs on both the pressure and suction side (cf. Fig. 7.18). Furthermore,
it is interesting to see, that the shock on section 4 and 5 is very close to the experimental data.
These statements are equally true for the imaginary part (cf. Fig. 7.19). Here, (1, 4) is closer to
the experimental data. Likewise, the real part is approximated quite well.
The previous experience demonstrates that a solution different from the AEL and Monofrequential
HBT solution is not necessarily a bad solution. And sometimes, better results can be obtained,
when a certain instant distribution is chosen.
Fig. 7.20- 7.22 depict the solution with distribution (4, 3) that is also discussed in Chap. 3. The
prediction that this distribution is quite good-natured, can be affirmed here. Only relatively small
oscillations appear and for the most part the graphs are superposed. This can be an interesting
additional test for the choice of a certain distribution. The instants may be first tested on an
arbitrary, relatively simple function, like function g(x ) in chapter 3. Together with the program
described in section 4.2.2, a good distribution may be found. Admittedly, this is a proceeding of
trial and error.
A very bad solution is depicted in Fig. 7.23- 7.25. This highlights, what can happen, when non-
uniformly distributed instants are used. Again, this kind of behaviour was somewhat predicted by
the graphs obtained in chapter 3 for distribution (5, 3).
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Figure 7.17: LANN CT9: Mean pressure coefficient Cp for (1, 4).
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Figure 7.18: LANN ct9: Real part of Cp for (1, 4).
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Figure 7.19: LANN CT9: Imaginary part of Cp for (1, 4).
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Figure 7.20: LANN CT9: Mean pressure coefficient Cp for (4, 3).
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Figure 7.21: LANN ct9: Real part of Cp for (4, 3).
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Figure 7.22: LANN CT9: Imaginary part of Cp for (4, 3).
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Figure 7.23: LANN CT9: Mean pressure coefficient Cp for (5, 3).
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Figure 7.24: LANN ct9: Real part of Cp for (5, 3).
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Figure 7.25: LANN CT9: Imaginary part of Cp for (5, 3).
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7.3 Summary

This chapter gives an insight on what is possible with the Multifrequential Harmonic Balance
Technique and what cannot be done. Clearly, not just any distribution of instants may be chosen.
Better results can be obtained, but for many instant distributions, they are rather worse.
The physical aspects of the problem must be taken in account. This means, by way of example,
that if a shock is in the flow field, the chosen instants must be able to actually capture the shock.
Otherwise, one cannot trust the results. Distributions that are close to a uniform one, usually (but
not necessarily) lead to good results and may suffice for most industrial needs.
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Chapter 8

Conclusion and perspectives

The Multifrequential Harmonic Balance Technique is an expansion of the Monofrequential HBT
that is designed to compute periodic flows with several frequencies that are not multiples of a
base frequency. Moreover, this technique also permits to choose instants that are not uniformly
distributed over the period. The initially unsteady problem is transformed into several steady
problems coupled among each other at the observed instants. The steady problems are then iterated
with the help of a virtual time step until convergence is reached. This convergence is obtained quite
quickly, since all techniques for steady simulations can be used to accelerate convergence (local time
stepping, multigrid).

The validation of the newly added code showed that the monofrequential and the multifrequential
approach may be considered to be equal for cases with a single frequency (and its harmonics) and
uniformly distributed time steps over the period. This is proved by comparison of the pressure
coefficient distribution for various two and three dimensional test cases. The deviation observed
on the residuals is negligibly small and does not increase throughout the course of iteration. This
deviation is due to a difference in the source term computation, that originates from the varying
computation of the coefficient matrix. The monofrequential approach allows to compute analytically
the coefficients, while the multifrequential approach must perform a matrix inversion, a matrix
linearization and a matrix product to obtain the coefficients. All operations reduce the precision
with respect to the analytic computation. The performance of both approaches is also similar: the
raise in computing time, compared to a monofrequential computation, is less than 3% and therefore
acceptable.

Using non-uniformly distributed instants is possible, but may influence the results to a lesser or
greater extent depending on the flow properties. Hence, the choice of the distribution must be
based on several issues. First of all, matrix A1 must be invertible. A Maple program is provided
and described in this report (cf. Chap. 4), that allows to define the instants in advance. However,
if matrix A1 still disposes of a small determinant (|A1| < 1.0), problems do occur. The determinant
mathematically describes the quality of the physical distribution of the instants. Choosing a very
small period, in which the instants must be defined, or picking instants, that are very far away
from a uniform distribution over the greatest period, may lead to oscillations and bad results. This
is particularly true for high order HBT computations (i.e. an elevated number of frequencies taken
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in account). Therefore, one cannot use just any distribution of instants: the physical aspect of the
problem, i.e. shocks or boundary layer separation and particularly their time depending position
in unsteady problems, must be considered.

Actually, the main conclusion from these experiences is, that a uniform distribution should be
chosen, unless

• the problem imposes a different one due to external or internal physical boundaries (this kind
of problems appear in current turbo machine research) or,

• the constraint of matrix A1 to be invertible cannot be complied due to the flow’s inherent
frequencies.

The work that is presented in this report mainly consists in the implementation of the Multifrequen-
tial HBT in the elsA code and proves that the approach does work. Also, some examples are given
on what happens, if a non-uniform distribution is chosen. Given these results, the next natural
step is now to try the multifrequential code on an actual problem, where the flow is subjected to
several frequencies that are not multiples of each other (e.g. current multi-stage turbo machinery
applications). Furthermore, a test case, that does not allow uniformly distributed instants should
be computed and compared to URANS computation in matters of the results’ quality and comput-
ing time. That way, the advantages of the Multifrequential HBT are emphasized with regard to an
industrial application. Furthermore, the approach could eventually be extended and results might
be improved by using more than (2N + 1) instants (N : number of frequencies). Ekici and Hall
propose this approach in their articles (cf. [5, 6]). 50% more instants ((3N + 1) instants) are used
and the transformation matrix is not square anymore. Hence, its pseudoinverse must be found, in
order to transform back to the time domain. According to Ekici and Hall, aperiodic flows may be
simulated with this approach as well.
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Appendix: Structograms

Maple program

The main structogram shown in this section describes the code of the Maple program to determine in
advance non-uniformly distributed instants for the Multifrequential HBT. Below the main program,
the reader finds a selection of the external procedures called in this program. These procedures build
the sub-matrices with a certain dimension out of matrix A1 and compute their determinant. Not
all of the procedures are displayed in this report, because a procedure for a sub-matrix of elevated
dimension can easily be obtained by modification of the scheme applied for lower dimensions. This
is why only two procedures for matrix dimensions 2 × 2 and 3 × 3 are given in this report.

Main Program

Restart (clear all variables)

Change to current directory in order to be able to load external procedures

Load LinearAlgebra- and codegen-package

pi := evalf (Pi , 16)
π with 16 decimals
N := 2
Number of frequencies (order)

ni := 20
Set number of intervals in which a solution is searched
smd := 20
Set dimension of current sub-matrix
LastInst := false
Last instant (t2) to determine? -no: false, -yes: true

w := Vector(N + 1)
Define vector of frequencies
ω[i ] := 2 · π · fi
Define all pulsations with the known frequencies

. . . is continued on the following page
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Main Program (continued)

t := Vector(2 · N + 1)
Define the vector of instants
τ [i ] := . . .
Define the instants already known (starting configuration: τ0 := 0, τ2·N )

A := Matrix (2 · N + 1, 2 · N + 1)
Allocate Matrix A

for i = 1 to (2 · N + 1)

for j = 1 to (N + 1)

A[i , j ] := cos(w [j , 1] · t [i , 1])
for j = N + 2 to (2 · N + 1)

A[i , j ] := sin(w [j − N , 1] · t [i , 1])
NSubMat :=

(2·N+1
smd

)

Number of sub-matrices to build




(smd = 2) AND (LastInst = false)
yes no

read ”procedure2x2”;
proc2x2(N , smd ,A,NSubMat)

∅





(smd = 3) AND (LastInst = false)
yes no

read ”procedure3x3”;
proc3x3(N , smd ,A,NSubMat)

∅





(smd = 4) AND (LastInst = false)
yes no

read ”procedure4x4”;
proc4x4(N , smd ,A,NSubMat)

∅





(smd = 5) AND (LastInst = false)
yes no

read ”procedure5x5”;
proc5x5(N , smd ,A,NSubMat)

∅





(smd = 6) AND (LastInst = false)
yes no

read ”procedure6x6”;
proc6x6(N , smd ,A,NSubMat)

∅



.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

(smd = 7) AND (LastInst = false)
yes no

read ”procedure7x7”;
proc7x7(N , smd ,A,NSubMat)

∅





(smd = 8) AND (LastInst = false)
yes no

read ”procedure8x8”;
proc8x8(N , smd ,A,NSubMat)

∅

. . . is continued on the following page
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Main Program (continued)



.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

(smd = 9) AND (LastInst = false)
yes no

read ”procedure9x9”;
proc9x9(N , smd ,A,NSubMat)

∅





LastInst = true
yes no

DetVect := Vector(1)

DetVect [1] := Determinant(A)
∅





LastInst = true
yes no

NDet := 1

SolveVar := τ [1]

NDet := NSubMat

SolveVar := τ [((2 · N + 1) − smd)]

SolMat := Matrix (NDet ,ni);
Allocate matrix into which solutions are written
for i = 1 to NDet

for p = 1 to ni

SolMat [i , p] := fsolve(DetVect [i ] = 0,SolveVar , (p − 1)/ni · τ2·N ..((p)/ni ·
τ2·N + 0.001))

for i = 1 to NDet
for j = 1 to ni





type(SolMat [i , j ],float) 6= true
yes no

SolMat[i,j] := 0 ∅

len := 1000
k := 1

SolVec := Vector(len)
Allocate solution vector
for i = 1 to NDet

for j = 1 to ni

check := true




SolMat [i , j ] 6= 0
yes no

for l = 1 to len
..........................................................................................................................................................................................................................................................................................................................................

..........................................................................................................................................................................................................................................................................................................................................

SolMat [i , j ] = SolVec[l ]

yes no

check := false ∅

check := false

∅





check = true
yes no

SolVec[k ] := SolMat [i , j ]

k := k + 1
∅

. . . is continued on the following page

101



Main Program (continued)

SolVec := sort(SolVec)

counter := 0
for i = 1 to len





SolVec[i ] 6= 0
yes no

counter := counter + 1

solution[counter ] := SolVec[i ]
∅

for i = 1 to counter

solution[i ]
Print the values the current instant must not adopt

Procedure proc2x2

Input
integer {N , smd ,NSubMat}
real {A}

Global (output)
real {DetVect}

Local
integer {h, count , a, j , k}
real {H }

h := (2 · N + 1) − (smd − 1)
Indicates the row of Matrix A, where the sub-matrices start

H := Matrix (smd , smd)
Initialises sub-matrix H of dimension (smd × smd) (here: 2 × 2)

DetVect := Vector(NSubMat)
Initialises the vector of sub-determinants of dimension NSubmat
count := 0, a := 0, j := 0, k := 0
Auxiliary variables

for j = 1 to (2 · N )

for k = j + 1 to (2 · N + 1)

for a = 1 to smd

H [a, 1] := A[h + a − 1, j ]

H [a, 2] := A[h + a − 1, k ]

DetVect [count ] := Determinant(H )

count := count + 1
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Procedure proc3x3

Input
integer {N , smd ,NSubMat}
real {A}

Global (output)
real {DetVect}

Local
integer {h, count , a, j , k , l}
real {H }

h := (2 · N + 1) − (smd − 1)
Indicates the row of Matrix A, where the sub-matrices start

H := Matrix (smd , smd)
Initialises sub-matrix H of dimension (smd × smd) (here: 3 × 3)

DetVect := Vector(NSubMat)
Initialises the vector of sub-determinants of dimension NSubmat
count := 0, a := 0, j := 0, k := 0, l := 0
Auxiliary variables

for j = 1 to (2 · N − 1)

for k = j + 1 to (2 · N )

for l = k + 1 to (2 · N + 1)

for a = 1 to smd

H [a, 1] := A[h + a − 1, j ]

H [a, 2] := A[h + a − 1, k ]

H [a, 3] := A[h + a − 1, l ]

DetVect [count ] := Determinant(H )

count := count + 1
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elsA programs

The programs’ struktograms depicted in this section are described in detail in chapter 5 and account
for the programming realised in the elsA code.

createSou::createSouHbt





multifrequ. frequency 01 defined
no yes

Monofrequential
assign to freq the monofrequential base
frequency;
return new SouHBT(order, freq, step,
brother, cBlock)

Multifrequential
Field freqMulti(order + 1);
Field instMulti(2 ∗ order + 1);
freqMulti [0] = 0.0

for i = 1 to order

assign to each entry of freqMulti(i)
the corresponding frequency from the
Python initialising files

for i = 0 to (2 ∗ order + 1)

assign to each entry of instMulti(i)
the corresponding instant from the
Python initialising files

return new SouHbtMultiFreq(order, fre-
qMulti, instMulti, step, brother, cBlock)

∅

SouHbtMultiFreq::SouHbtMultiFreq

allocate vectors
fMulti ;
timeLevels;

allocate arrays
fMulti [ brother ] = newFldArrayF (order + 1);
timeLevels[ brother ] = newFldArrayF (2 ∗ order + 1)

for i = 0 to (order)

(∗ fMulti [ brother ])[i ] = freqmulti [i ]
assign instants of each brotherhood

for i = 0 to (2 ∗ order + 1)

(∗ timeLevels[ brother ])[i ] = instmulti [i ]
assign instants of each brotherhood

dCoeff [ brother ] = computeDCoeff (order)
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SouHbtMultiFreq::compute

Objects {listBnd, listJoin, fldout}

get number of grid cells: cellNbTot
get grid dimensions: im, km, jm
get number of equations: eqNb, eqNbTot

firstVar = first Variable of mean of turbulent field (ρ)

loop over all source terms to compute the sum of the source term


.......................................................................................................................................................................................................................................................................

same system (mean or turbulent)

yes no

.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

.................................................................................................................................................................................................................................

same brotherhood

yes no


.................................................................................................................................................................................................

same multigrid level

yes no

call updateSourceTerm(cellNbTot, im, jm, km,
eqNbTot, eqNb, firstVar, loopSouHbt, loopGrid,
fldOut)

∅

∅

∅

SouHbtMultiFreq::updateSourceTerm

Objects {cellNbTot, im, jm, km, eqNbTot, eqNb, firstVar, loopSouHbt,
loopGrid, fldout}

get dCoeff (D-coefficient matrix)

l = current instant (determines the line in the dCoeff)
m = time step of the element in the source term list (determines column in
dCoeff)
d = dCoeff(l,m)

call souhbt (cellNbTot, im, jm, km, eqNbTot, eqNb, firstVar, -d, solution, fld-
Out) (performs the multiplication of d and the conservative variables)
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SouHbtMultiFreq::computeDCoeff

Objects {order}

allocate arrays
MatrixA(2 ∗ order + 1, 2 ∗ order + 1);
MatrixAInv(2 ∗ order + 1, 2 ∗ order + 1);
MatrixdAdt(2 ∗ order + 1, 2 ∗ order + 1);
dCoeff (2 ∗ order + 1, 2 ∗ order + 1)

call souhbtmultifreqa (order, fMulti[ brother], timeLevels[ brother], MatrixA)

call souhbtmultifreqdadt (order, fMulti[ brother], timeLevels[ brother], Ma-
trixdAdt)

call souhbtmultifreqainv (order, MatrixA, MatrixAInv)

call souhbtmultifreqd (order, MatrixA, MatrixAInv, dCoeff)

return dCoeff

Function SouHbtMultiFreq::getMaxFrequency

Objects {brotherhood}




monofrequ. frequency 6= 0
yes no

0��
@@

@@
��

∅




(size of fMulti < brotherhood
yes no

0��
@@

@@
��

∅




fMulti[brotherhood] is nullpointer
yes no

0��
@@

@@
��

∅

currentFreq = fMulti[brotherhood] (vector of frequencies)
index = index of the maximum frequency in fMulti[brotherhood]

return currentFreq[index] (maximum frequency)
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Subroutine souhbtmultifreqa

C IN
integer {order}
real {frequency(1 : (order + 1))}
real {instant(1 : (2 · order + 1))}

C OUT
real {A((2 · order + 1) : (2 · order + 1))}

C LOC
integer {i , j ,n}

n = 2 · order + 1

for i = 1,n

for j = 1, (order + 1)

A(i , j ) = cos(2 · π · frequency(j ) · instant(i))

for j = (order + 2),n

A(i , j ) = sin(2 · π · frequency(j − order) · instant(i))

Subroutine souhbtmultifreqdadt

C IN
integer {order}
real {frequency(1 : (order + 1))}
real {instant(1 : (2 · order + 1))}

C OUT
real {dAdt(1 : (2 · order + 1), 1 : (2 · order + 1))}

C LOC
integer {i , j ,n}

n = 2 ∗ order + 1

for i = 1,n

for j = 1, (order + 1)

dAdt(i , j ) = −2 · π · frequency(j ) · sin(2 · π · frequency(j ) · instant(i))

for j = (order + 2),n

dAdt(i , j ) = 2 · π · frequency(j − order) · cos(2 · π · frequency(j − order) ·
instant(i))
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Subroutine souhbtmultifreqainv

C IN
integer {order}
real {B(1 : (2 · order + 1), 1 : (2 · order + 1))}

C OUT
real {AInv(1 : (2 · order + 1), 1 : (2 · order + 1))}

C LOC
integer {i , j ,n, INFO ,LWORK}
integer {IPIV (1 : 2 · order + 1)}
real {WORK (1 : 2 · order + 1)}

n = 2 · order + 1

LWORK = n

CALL DGETF2( n, n, B, n, IPIV, INFO)

CALL DGETRI( n, B, n, IPIV, WORK, LWORK, INFO)

for i = 1,n

for j = 1,n

A(i , j ) = B(i , j )

The subroutines DGETF2 and DGETRI are included in dgetrf.f and dgetri.f respectively of the
LAPACK - Linear Algebra PACKage (http://www.netlib.org/lapack/): dgetri.f computes the in-
verse of a general matrix, using the LU factorisation, computed by dgetrf.f. dgetrf.f computes an
LU factorisation of a general matrix, using partial pivoting with row interchanges.

Subroutine souhbtmultifreqd

C IN
integer {order}
real {dAdt(1 : (2 · order + 1), 1 : (2 · order + 1))}
real {AInv(1 : (2 · order + 1), 1 : (2 · order + 1))}

C OUT
real {dCoeff (1 : (2 · order + 1), 1 : (2 · order + 1))}

C LOC
integer {i, j, k, n}

n = 2 · order + 1

for i = 1,n

for j = 1,n

dcoeff (i , j ) = 0

for k = 1,n

dcoeff (i , j ) = dcoeff (i , j ) + dAdt(i , k) · AInv(k , j )
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TmoSetOfSolver::computeLhs

loop over the whole source term list


.......................................................................................................................................................................................................................................................................

same brotherhood

yes no





fmono > fmulti

(either fmono or fmulti 6= 0)
yes no

monofrequential approach l = current instant
m = time step of the element in
the source term list
d = dCoeff(l,m)

call souhbtdeform (. . . , d, . . . )
(addition of the source terms)

∅

∅

The D-coefficients are needed in the implicit phase. This is why the above differentiation between
the monofrequential and the multifrequential approach has to be inserted.

TmoTimeStepLocalConvGridMotion::computeLocalTimeStep

hbtFreq = 0 (initialise the maximum frequency variable)




fmono > fmulti

(either fmono or fmulti 6= 0)

yes no

hbtFreq = order · fmono hbtFreq = fmulti ,max (see function
SouHbtMultiFreq::getMaxFrequency)∅

In computeLocalTimeStep the subroutine compcellspecradius2 is called and expects as an input the
maximum occurring frequency, this is why the above query has to be inserted.

TmoCpCellSpecRadius2F.for

The only change that has to be effected in TmoCpCellSpecRadius2F.for is the calculation of the
correction term kp . It changes from kp = 2π · N · f to kp = 2π · fmax , because the input for
the FORTRAN subroutine compcellspecradius2 is not anymore the frequency, but the maximum
occurring frequency now.
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