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Abstract

Data assimilation is a concept involving any method which esti-
mates the initial state of a dynamical system by combining both the
information from a numerical model and from observations. The com-
puted estimated initial state of the system can then be integrated in
time to obtain a forecast. There are two main ways to solve data assim-
ilation problems. The sequential methods are based on statistical esti-
mation theory and regroup the different Kalman filtering approaches.
The variational methods are based on optimal control theory and state
nonlinear weighted least-squares problems as the four-dimensional vari-
ational (4D-Var) formulation. Approximations of these methods have
been defined to make them suitable for solving large-scale data assimi-
lation problems. In the first part of this paper, we present a theoretical
work on the equivalence between the Kalman filter and the 4D-Var,
that we then generalize to the approximate case, for the SEEK filter
and the reduced 4D-Var. We next concentrate on the solution of the
4D-Var which is usually computed with a Gauss-Newton algorithm us-
ing a preconditioned conjugate-gradient-like (CG) method. Motivated
by the equivalences shown in the first part, we explore in a second part
the techniques used in the SEEK filter, which are based on relevant
information contained in the empirical orthogonal functions (EOFs),
as an attempt to further accelerate the Gauss-Newton method. This
leads to the development of an appropriate starting point for the CG
method together with that of a powerful limited memory precondi-
tioner (LMP), as shown by preliminary numerical experiments per-
formed on a shallow water model.
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1 Introduction

To compute forecasts of the state of the ocean and of the atmosphere, dy-
namical systems are integrated on high performance computers within a
given time window starting from an initial condition. This time window is
related to the relevant time scales of the considered physical situation. The
ability to make an accurate forecast requires both that the dynamical sys-
tems be a good representation of the reality and that the initial conditions
be known precisely. Numerical weather forecasts are performed since the
1950s and have witnessed an explosion of activity since the 1980s. Over
the years, the quality of the models and methods for using observation has
improved continuously, resulting in major forecast advancements. These
progresses are also due to the increased amount of observational data and
the increased power of supercomputer that is available. The problem of
determining the initial condition for a forecast is very complex and has be-
come an active area of research on its own. Data assimilation methods aim
at specifying an initial condition of a dynamical system by combining both
the information from a numerical model and from observations (see, Kalnay,
2003; Rabier, 2005, for a review).

There are two main categories of data assimilation algorithms : sequen-
tial methods based on statistical estimation theory and variational methods
based on optimal control theory. Sequential methods, originally intended
for linear dynamical systems and linear observational operators, have been
introduced by Kalman (1960) with the Kalman filter, and have been suc-
cessfully applied in a wide range of engineering applications. Adaptations
of this filter have been developed to overcome the nonlinearities and the
computational cost inherent to large-scale observational systems (Todling
and Cohn, 1994; Rozier et al., 2007). It has led to the development of some
suboptimal Kalman filters, among which the well known singular evolutive
extended Kalman (SEEK) filter (Pham et al., 1998; Hoteit and Pham, 2003)
using empirical orthogonal functions (EOFs) . Variational data assimilation
methods have undergone a rapid development since their introduction (Le
Dimet and Talagrand, 1986). These are based on the minimization of a
sum of squares of misfits, weighted to take into acount the statistical prop-
erty of the noise in the problem. The conventional formulation is the four-
dimensional variational problem (4D-Var) (Courtier et al., 1994). As for the
Kalman filter, adaptations have been made for large nonlinear systems in
numerical weather prediction. The focus of the research has recently shifted
towards the developement of reduced control space methods. A reduced 4D-
Var formulation has been proposed by Robert et al. (2005), which solve the
4D-Var problem in a subspace spanned by empirical orthogonal functions.
Yaremchuk et al. (2009); Wang and Li (2009) consider other strategies us-
ing also the empirical orthogonal functions. Another method studied by
(Daescu and Navon, 2007; Lawless et al., 2006) is based on the reduction of

2



the model itself.
To our knowledge, while equivalence between Kalman filter and 4D-Var

has been established for linear model and observation operators (Strang and
Borre, 1997; Li and Navon, 2001), such an equivalence does not exist for the
SEEK filter and the reduced 4D-Var. It is the purpose of the first part of
this paper to prove this equivalence. The second part of the paper con-
centrates on the solution of the 4D-Var which amounts to the solution of a
nonlinear weighted least-squares problem. This problem is generally solved
by a Gauss-Newton method (Gratton et al., 2007) using a preconditioned
conjugate gradient algorithm. In Tshimanga et al. (2008), a class of lim-
ited memory preconditioners (LMP) is proposed and studied to accelerate
the convergence of the Gauss-Newton process. Motivated by the equivalence
proved in the first part, our goal here is to go one step further and to explore
the techniques used in the SEEK filter, which are based on relevant infor-
mation contained in the so-called empirical orthogonal functions (EOFs), as
an attempt to further accelerate the Gauss-Newton method. We will show
that this leads leads to the development of an appropriate starting point
for the CG together with that of a powerful preconditioner belonging to the
LMP class proposed in (Tshimanga et al., 2008) .

This paper describes, in Section 2, the sequential and the variational
approaches in data assimilation and investigates their theoretical connec-
tions in Section 3. The major result is the equivalence between the SEEK
filter and the reduced 4D-Var. In Section 4, we describe the Gauss-Newton
method to solve the 4D-Var problem, introduce the Ritz-Galerkin starting
point for the CG and present some limited memory preconditioning tech-
niques. Section 5 proposes a new approach to solve the 4D-Var problem
which improves the Gauss-Newton algorithm by combining the use of a
Ritz-Galerkin starting point and of a limited memory preconditioner based
on the first empirical orthogonal functions. In Section 6, we interpret the
numerical results obtained for a data assimilation problem on a shallow wa-
ter model. Finally, we conclude and examine perspectives for future research
in Section 7.

2 Sequential and variational approaches

For consistency with the literature on the subject, the notation proposed by
Ide et al. (1997) will be adopted here as far as possible. A discrete model
for the evolution of an atmospheric, oceanic or coupled system is governed
by the equation

xt
i+1 = Mi+1,ix

t
i, (1)

where xt
i ∈ R

n is a vector representing the true state at time ti and Mi+1,i is
a model operator. The exponent t is introduced to denote the true state of
the system and R

n is the state space. The model operator Mi+1,i describes
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the system transition from ti to ti+1 and represents the integration in time
of some partial differential equations governing the evolution of the system.
Calligraphic fonts are used whenever the considered operators are assumed
to be nonlinear. Notice that the model operator takes xt

i as argument and
is perfect since no noise has been added in this system. At each time ti, the
state vector is observed according to

yi = Hix
t
i + ǫi, (2)

where yi ∈ R
pi is the observation vector with R

pi the observation space at
time ti, Hi is an observation operator and where ǫi ∈ R

pi is the observational
noise due to instrumental and representativeness errors. These noises are
assumed to be uncorrelated random vectors with zero means and symmetric
positive definite covariance matrices Ri ∈ R

pi×pi . When the model and
observation operators are linear, the dynamical system is described by

xt
i+1 = Mi+1,ix

t
i, (3)

where Mi+1,i ∈ R
n×n is an n by n matrix, and the observations are obtained

by
yi = Hix

t
i + ǫi, (4)

where Hi ∈ R
pi×n is an pi by n matrix. The distribution of the observations

in space and time could be very nonuniform with regions which are relatively
data rich, while others are much more poorly observed. Moreover, the size
of the observation vectors yi is very much smaller than the size of the state
space (pi << n). The background, denoted by xb ∈ R

n, is a prior estimation
of the state vector. This additional information is available everywhere in
the space at the initial time t0. We suppose that the background is unbiased
and uncorrelated with the observations. The background covariance matrix
is symmetric positive definite and denoted by B ∈ R

n×n.

We are now able to describe the two main approaches to solve data as-
similation problems. We suppose that a background xb is available at the
initial time t0 and that we can perform N observations from time t1 to time
tN . All information use to estimate the state of the system comes from the
time interval [t0, tN ] which is called the assimilation window. In sequential
data assimilation, the observations y1, . . . ,yN are available sequentially at
times t1, . . . , tN . At each observation time ti, the method constructs an
analysis state xa

i which is an estimate of the true model state xt
i using the

available observations up to this time, y1, . . . ,yi, and the background xb.
The Kalman filter is originally intended for linear dynamical systems (3) and
linear observational operators (4). It computes the analysis state xa

N which
is the best linear unbiased estimate of the model state at the end of the
assimilation window. It means that the estimate is an unbiased linear com-
bination of the the background and the observations with minimal variance.
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The n by n error covariance matrix of xa
N , denoted Pa

N , is also computed by
the filter. We give the equations of the Kalman filter in Algorithm 1, that
mainly involves two steps. In the forecast step, we integrate the last analysis
state to obtain a forecast xf

i and accordingly update the covariance matrix.
In the analysis step, we correct the forecast using the observation yi and
the Kalman gain Ki to obtain the analysis at time ti. We also update the
analysis covariance matrix denoted by Pa

i .

Algorithm 1 Kalman filter with perfect model operators

1: xa
0 = xb

2: Pa
0 = B

3: for i = 1 to N do

4: (* Forecast step *)

5: x
f
i = Mi,i−1x

a
i−1

6: P
f
i = Mi,i−1P

a
i−1M

T
i,i−1

7: (* Analysis step *)

8: Ki = P
f
i H

T
i (HiP

f
i H

T
i +Ri)

−1

9: xa
i = x

f
i +Ki(yi −Hix

f
i )

10: Pa
i = P

f
i −KiHiP

f
i

11: end for

The Kalman filter has a simple expression, but its application into re-
alistic ocean and atmospheric models encounters three major difficulties :
non-linearity, computational cost and storage for large-scale problems. Non-
linearity can be partially solved by linearization of the model and of the
observation operators around the state estimate, and by performing itera-
tions. It leads to the so-called extended Kalman filter and iterated Kalman
filter (Jazwinski, 1970; Gelb, 1974; Bell and Cathey, 1993). The dominant
significant computational cost of the Kalman filter often comes from the
propagation of the error covariance matrix Pa

i−1 at line 6 of Algorithm 1
since it implies a number of model integrations equals two matrix products
where their rank is equal to the size of the state vector which is larger than
106 in many realistic applications. It comes also from the computation of
HiP

f
i H

T
i and from the inversion at line 8. Moreover, storing explicitely the

error covariance matrices Pa
i may be unrealistic for large-scale problems.

To overcome these difficulties, a set of suboptimal Kalman filters has been
developed (see, Rozier, Birol, Cosme, Brasseur, Brankart, and Verron, 2007,
for a review). The Singular Evolutive Extended Kalman filter (SEEK fil-
ter) is one of them, and has been proposed in Pham, Verron, and Roubaud
(1998). It consists of approximating the error covariance matrices by sin-
gular low-rank matrices. Finding a realistic background error covariance
matrix in the operational models is also a serious problem. The SEEK fil-
ter determines it from an ensemble of state vectors x1, . . . ,xl ∈ R

n(l ≥ 2)
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supposedly representative of the variability of the system and computed on
a time interval before the assimilation window. Regarding the state vector
as a random vector and having a sample of realizations, we calculate the
sample covariance matrix using the formula

S =
1

l − 1

l
∑

i=1

(xi − x̄)(xi − x̄)T,

where x̄ is the sample mean. Formaly, one considers a spectral decomposi-
tion on this covariance matrix

S = L0U0L
T
0 + L̂0Û0L̂

T
0 , (5)

where the diagonal matrix U0 ∈ R
r×r contains the r largest eigenvalues

of S and the diagonal matrix Û0 ∈ R
(n−r)×(n−r) contains the rest of the

eigenvalues, while the matrices L0 ∈ R
n×r and L̂0 ∈ R

n×(n−r) are formed
with the corresponding eigenvectors, called empirical orthogonal functions
(EOFs). Note that in most practical situations, only L0 and U0 are really
needed. In particular, the initial error covariance matrix in the SEEK filter
is then defined by

Pa
0 = L0U0L

T
0 ,

where only L0 and U0 have to be computed. This low-rank matrix plays
the role of the background error covariance matrix B and keeps most of
the information contained in S since U0 contains the largest eigenvalues.
The columns of the partition matrix [L0 L̂0] form an orthonormal basis
of R

n called EOFs basis The equations of the SEEK filter, given in Al-
gorithm 2, follow from the equations of the Kalman filter and from this
low-rank approximation (see, Pham et al., 1998). Notice that the error co-
variance matrices at line 7 and 12 are low-rank matrices and are computed
only for diagnostic reasons. The SEEK filter performs corrections only in
the directions spanned by the columns of Li. These columns evolve since
they are integrated in time at each iteration.

There are physical considerations with oceanographic or atmospheric
models which support the above approximation. The reason is that most
of the variability of the oceanic and atmospheric systems can be described
by a low dimensional subspace. Indeed, the ocean and atmosphere are ba-
sically forced and dissipative dynamical systems that exhibit an attractor,
meaning that asymptotically the trajectories of the state vector belong only
to a small part of the phase space. In the vicinity of this attractor, orthogo-
nal perturbations will be naturally damped while tangent perturbations will
not. This is why the SEEK filter performs corrections only in the directions
spanned by the columns of Li which are the main directions of variability
tangent to the attractor. The choice of the subspace defining the directions
of correction is not unique. It is possible to use singular vectors, Liapunov
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Algorithm 2 SEEK filter with perfect model operators

1: xa
0 = xb

2: Pa
0 = L0U0L

T
0

3: for i = 1 to N do

4: (* Forecast step *)

5: x
f
i = Mi,i−1x

a
i−1

6: Li = Mi,i−1Li−1

7: P
f
i = LiUi−1L

T
i

8: (* Analysis step *)
9: Ui = (U−1

i−1 + LT
i H

T
i R

−1
i HiLi)

−1

10: Ki = LiUiL
T
i H

T
i R

−1
i

11: xa
i = x

f
i +Ki(yi −Hix

f
i )

12: Pa
i = LiUiL

T
i

13: end for

vectors or bred grown vectors. They are computed using the tangent linear
model or the nonlinear model and contain, in a sense, the main directions
of variability of the system. Durbiano (2001) performed a study of these
families of vectors. When the data assimilation is performed on a shallow
water model, she concluded to the clear superiority of the EOFs basis with
regards to the other subspaces.

The variational data assimilation is the second approach for data as-
similation. The conventional formulation of this approach is the so-called
four-dimensional variational problem (4D-Var). The 4D-Var problem can be
stated as that of determining the system state x0 at the initial time t0 that
produces a trajectory that best fits, in a nonlinear weighted least-squares
sense, both the background xb and the observations y1, . . . ,yN . Mathemat-
ically, we formulate the minimization problem as a nonlinear least-squares
problem

min
x∈Rn

J(x) =
1

2
(x− xb)TB−1(x− xb)

+
1

2

N
∑

i=1

(yi −HiMi,0x)
TR−1

i (yi −HiMi,0x), (6)

where Mi,0 = Mi,i−1 . . .M1,0 is an operator which describes the system
transition from t0 to ti . This method uses all available observations at
the same time to define the objective function. If the model and obser-
vation operators are linear, we replace the nonlinear operators by Mi,0 =
Mi,i−1 . . .M1,0 and Hi and the 4D-Var becomes a linear least-squares prob-
lem. In every instance, the 4D-Var formulation can be written in the more
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compact form

min
x∈Rn

J(x) =
1

2
||x− xb||2

B−1

+
1

2

N
∑

i=1

||yi −HiMi,0x||
2
R

−1

i

, (7)

where weighted norms, defined by ||z||2
B−1 = zTB−1z and ||z||2

R
−1

i

= zTR−1
i z,

are used.
As for the Kalman filter, it is possible to reduce the computational cost

of the method. The 4D-Var problem (7) can be defined in a subspace of low
dimension. One can uniquely express the variable x in the EOFs basis as

x = L0x1 + L̂0x2.

The 4D-Var problem using this decomposition can then be stated as

min
x∈Rn

J(x) =
1

2
||L0x1 + L̂0x2 − xb||2

B−1

+
1

2

N
∑

i=1

||yi −HiMi,0(L0x1 + L̂0x2)||
2
R

−1

i

.

To perform corrections in the same directions as those generated by the
SEEK filter, the components of x in the range of L̂0 are neglected. A new
optimization problem depending only on x = x1 ∈ R

r can thus be defined,
which approximates the previous one

min
x∈Rr

J(x) =
1

2
||L0x− xb||2

B−1

+
1

2

N
∑

i=1

||yi −HiMi,0L0x||
2
R

−1

i

. (8)

In many oceanographic and atmospheric problems (Hoteit and Pham, 2003),
one can choose the dimension of the subspace L0 very small compared to
the dimension of the state space, since only a few EOFs explains most of
the variability of the system. As a consequence, the computational cost to
solve the approximated problem (8) is very much lower than the solution of
the initial 4D-Var problem (7).

3 Connections between sequential and variational

approaches

The connections between sequential and variational methods have been
known for long. For linear and noisy model and observation operators, both
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the Kalman filter and the 4D-Var yield the same values for the state vector at
each observation time in the assimilation window (Strang and Borre, 1997;
Li and Navon, 2001). Their proofs are based respectively on a block matrix
and on a statistical view. In this section, we prove the equivalence between
the Kalman filter and the 4D-Var in the specific case of a perfect linear
model operator and of a noisy linear observation operator. We propose an
alternative proof, which is based on quadratic optimization techniques, and
is both short and elementary. Moreover, we use some results from this proof
to establish a useful connection between the SEEK filter and the reduced
4D-Var problem presented in Section 1, that we believe to be new. In order
to be as concise as possible in what follows, we set Mi = Mi,0, H = Hi and
R = Ri. Generalizing the proof would just result in heavier notation.

3.1 Connection between 4D-Var / Kalman filter

Theorem 1 Suppose that the model operator is perfect and linear, that the
observation operator is linear and that the same background xb, observa-
tions yi, background covariance matrix B, and observation covariance ma-
trices Ri, are given. Then the analysis state xa

i computed at time ti by
the Kalman filter and the solution produced by the 4D-Var, using the first i
observations and integrated up to time ti, are identical and have same co-
variance matrices. Both methods hence produce the same results at the end
of the assimilation window.

Proof. We first introduce the notation xk
l to denote the solution of

the 4D-Var (6) using the first l observations,

min
x∈Rn

Jl(x) =
1

2
||x− xb||

2
B−1 +

1

2

l
∑

i=1

||yi −HMix||
2
R−1 ,

and integrated up to time tk, and Pk
l to denote the covariance matrix of

xk
l . We thus want to prove, for each observation time l = 1, . . . , N , that the

solution of the 4D-Var using the first l observations and integrated up to
time tl is equal to the analysis state produced by the Kalman filter after l
iterations, i.e., xl

l = xa
l , and that both state vectors have the same covariance

matrices, i.e., Pl
l = Pa

l . The proof is by induction.
To prove that x1

1 = xa
1 and P1

1 = Pa
1, we first notice that x

0
0 = xb = xa

0 since
xb is the solution of the 4D-Var problem using no observations. Moreover,
Rabier and Courtier (1992) proved that the covariance matrix of a 4D-Var
solution is equal to the Hessian inverse. One can thus conclude that the
covariance matrix of x0

0 is given by P0
0 = B = Pa

0 since B is the Hessian
inverse of the 4D-Var problem using no observations. We next define the
4D-Var problem using only the first observation y1 at time t1 as

min
x∈Rn

J1(x) =
1

2
||x− x0

0||
2
(P0

0
)−1 +

1

2
||y1 −HM1x||

2
R−1 . (9)
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The solution x0
1 of this problem is computed by nullifying its gradient

(P0
0)

−1(x0
1 − x0

0)−MT
1 H

TR−1(y1 −HM1x
0
1) = 0. (10)

Defining
W ≡ (P0

0)
−1 +MT

1 H
TR−1HM1, (11)

we obtain, by simple extraction of the vector x0
1 from (10)

x0
1 = W−1

(

MT
1 H

TR−1y1 + (P0
0)

−1x0
0

)

. (12)

Note that the matrix W is invertible since it is the sum of a positive definite
and a positive semidefinite positive matrix which gives a positive definite
matrix. From the Sherman-Morisson-Woodbury formula (see, for example,
Horn and Johnson, 2006, p.18), we have that

W−1 = P0
0 −P0

0M
T
1 H

T

(R+HM1P
0
0M

T
1 H

T)−1HM1P
0
0. (13)

Using this formula in equation (12), developing the product and reordering
the terms, we obtain

x0
1 =x0

0 +P0
0M

T
1 H

TR−1y1

−P0
0M

T
1 H

T(R+HM1P
0
0M

T
1 H

T)−1

HM1P
0
0

(

MT
1 H

TR−1y1 + (P0
0)

−1x0
0

)

. (14)

We observe that the last line of this equation can be written as

HM1P
0
0

(

MT
1 H

TR−1y1 + (P0
0)

−1x0
0

)

=HM1P
0
0M

T
1 H

TR−1y1 +HM1x
0
0

=(HM1P
0
0M

T
1 H

T +R−R)R−1y1 +HM1x
0
0

=(HM1P
0
0M

T
1 H

T +R)R−1y1 − y1 +HM1x
0
0. (15)

Substituting now equation (15) in (14), we obtain after appropriate simpli-
fications

x0
1 = x0

0 +P0
0M

T
1 H

T

(R+HM1P
0
0M

T
1 H

T)−1(y1 −HM1x
0
0) (16)

as solution of the 4D-Var (9). If we next integrate this solution x0
1 up to the

first time-step, we find

x1
1 = M1x

0
0 +M1P

0
0M

T
1 H

T

(R+HM1P
0
0M

T
1 H

T)−1(y1 −HM1x
0
0).
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We can thus conclude from Algorithm 1 that x1
1 = xa

1 sinceM1x
0
0 = M1x

a
0 =

x
f
1 , M1P

0
0M

T
1 = M1P

a
0M

T
1 = P

f
1 and since we use the same observation

y1. Moreover, observe from equation (10) that W, as defined in (11), is the
Hessian matrix of J1. We can thus conclude that the covariance matrix of
x0
1 is given by

P0
1 = W−1. (17)

We have that the covariance matrix of x1
1 is given by

P1
1 = Cov(x1

1,x
1
1) = Cov(M1x

0
1,M1x

0
1)

= M1Cov(x
0
1,x

0
1)M

T
1 = M1P

0
1M

T
1 .

By (13) and (17), we deduce from this last expression that

P1
1 = M1P

0
0M

T
1 −M1P

0
0M

T
1 H

T

(R+HM1P
0
0M

T
1 H

T)−1HM1P
0
0M

T
1 ,

which corresponds to the analysis error covariance matrix Pa
1 produced by

the Kalman filter (see Algorithm 1), since M1P
0
0M

T
1 = P

f
1 .

Now, we suppose that when the j first observations vectors are available,
the solution x0

j of the corresponding 4D-Var problem

min
x∈Rn

Jj(x) =
1

2
||x− x0

0||
2
(P0

0
)−1 +

1

2

j
∑

i=1

||yi −HMix||
2
R−1

satisfies Mjx
0
j = x

j
j = xa

j and P
j
j = Pa

j . We also assume that the Hessian

matrix of Jj is (P
0
j )

−1, allowing us to express the quadratic function Jj using

its Taylor expansion around the solution x0
j as

Jj(x) = Jj(x
0
j ) +

1

2
(x− x0

j )
T(P0

j )
−1(x− x0

j ).

We add the next available observation vector yj+1 to this expression and
obtain the expression of the 4D-Var problem using the first j+1 observation
vectors

min
x∈Rn

Jj+1(x) = Jj(x
0
j ) +

1

2
||x− x0

j ||
2
(P0

j )
−1

+
1

2
||yj+1 −HMj+1x||

2
R−1 . (18)

It remains to prove that x
j+1
j+1 = xa

j+1 and that P
j+1
j+1 = Pa

j+1. Observing
that the first term of (18) is constant, we can apply the same reasoning as
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the one used to deduce (16) and (17) from (9) to write the solution of (18)
as

x0
j+1 = x0

j +P0
jM

T
j+1H

T

(R+HMj+1P
0
jM

T
j+1H

T)−1(yj+1 −HMj+1x
0
j ) (19)

with the covariance matrix

P0
j+1 =

(

(P0
j )

−1 +MT
j+1H

TR−1HMj+1

)−1
. (20)

If we integrate the solution x0
j+1 up to the time-step tj+1, we have

x
j+1
j+1 = Mj+1x

0
j +Mj+1P

0
jM

T
j+1H

T

(R+HMj+1P
0
jM

T
j+1H

T)−1(yj+1 −HMj+1x
0
j ).

We can thus conclude, from Algorithm 1 and the recurrence assumptions,
that xj+1

j+1 = xa
j+1, since we have

Mj+1x
0
j = Mj+1,jMjx

0
j = Mj+1,jx

j
j

= Mj+1,jx
a
j = x

f
j+1,

and

Mj+1P
0
jM

T
j+1 = Mj+1,jMjP

0
jM

T
j M

T
j+1,j

= Mj+1,jP
j
jM

T
j+1,j

= Mj+1,jP
a
jM

T
j+1,j

= P
f
j+1, (21)

and the same observation yj+1. The covariance matrix of xj+1
j+1 is given by

P
j+1
j+1 = Cov(Mj+1x

0
j+1,Mj+1x

0
j+1)

= Mj+1Cov(x
0
j+1,x

0
j+1)M

T
j+1

= Mj+1P
0
j+1M

T
j+1.

Replacing P0
j+1 by its expression (20) and using (13) (with subscripts j and

j + 1 instead of 0 and 1, respectively), we obtain

P
j+1
j+1 = Mj+1P

0
jM

T
j+1 −Mj+1P

0
jM

T
j+1H

T

(R+HMj+1P
0
jM

T
j+1H

T)−1HMj+1P
0
jMj+1. (22)

Using (21) in (22), we obtain P
j+1
j+1 = Pa

j+1 which ends the proof. �

Note that the proof of this theorem shows (see equations (19) and (20))
how to update the solution of the 4D-Var and its covariance matrix incre-
mentally when observations are obtained sequentially, without processing
all the information from the beginning.

12



3.2 Connection between reduced 4D-Var / SEEK filter

Connection between reduced 4D-Var and the SEEK filter can be proved
when the background covariance matrix B is defined using the sample co-
variance matrix S computed from a set of state vectors. In this specific case,
we write the reduced 4D-Var problem as

min
x∈Rr

J(x) =
1

2
||L0x− xb||2

S−1

+
1

2

N
∑

i=1

||yi −HiMi,0L0x||
2
R

−1

i

. (23)

Before proving that this problem is equivalent to the SEEK filter, we have
to reformulate it in another way. This is the purpose of the following lemma.

Lemma 1 The solution of the reduced 4D-Var (23) is equal to the solution
of

min
x∈Rr

J(x) =
1

2
||x− xb||2

U
−1

0

+
1

2

N
∑

i=1

||yi −HMi,0L0x||
2
R

−1

i

, (24)

where xb = LT
0 x

b is the reduced background and U−1
0 is the reduced back-

ground covariance matrix which is a diagonal matrix containing the inverse
of the r largest eigenvalues of S.

Proof. Since the columns of [L0 L̂0] form an orthonormal basis of
R
n, we have the equality [L0 L̂0][L0 L̂0]

T = In (see Meyer, 2000, p.320)
which can be rewritten as L0L

T
0 + L̂0L̂

T
0 = In and used to decompose the

background vector xb as

xb = L0L
T
0 x

b + L̂0L̂
T
0 x

b. (25)

Substituting (25) in the background term of (23), we obtain

||L0x− xb||2
S−1 = ||L0(x− LT

0 x
b) + L̂0L̂

T
0 x

b||2
S−1

which can be reformulated as

||L0(x− LT
0 x

b)||2
S−1 + ||L̂0L̂

T
0 x

b||2
S−1

+ 2(L0(x− LT
0 x

b))TS−1(L̂0L̂
T
0 x

b).

We observe that the third term is equal to zero, using (5) and the decom-
position of S−1 in the basis [L0 L̂0]

S−1 = L0U
−1
0 LT

0 + L̂0Û
−1
0 L̂T

0 , (26)

13



and the equalities L̂T
0 L̂0 = In−r and LT

0 L̂0 = 0. The second term is constant
and can thus be ignored for the minimization. Finally, we can reformulate
the first term as

||x− LT
0 x

b||2
LT

0
S−1L0

which is equal to
||x− xb||2

U
−1

0

, (27)

by (26). It concludes the proof since the background term of (23) is equal
to (27) plus a constant term. �

We can now prove the main theoretical result of this paper, i.e., the
equivalence between the SEEK filter and a specific reduced 4D-Var problem.
To continue to be as concise as possible in what follows, we set Mi = Mi,0,
H = Hi and R = Ri.

Theorem 2 Suppose that the model operator are perfect and linear, that
the observation operator are linear and that the same background xb, ob-
servations yi, background covariance matrix S, and observation covariance
matrices Ri are given. Assume moreover that the initial analysis of the
SEEK filter xa

0 is equal to L0L
T
0 x

b and that its covariance matrix Pa
0 is

equal to L0U0L
T
0 . Then the analysis state xa

i computed at time ti by the
SEEK filter and the solution produced by the reduced 4D-Var (23), using the
first i observations, prolongated in the full space and integrated up to time
ti, are identical and have same covariance matrices. Both methods hence
produce the same results at the end of the assimilation period.

Proof. We have to prove that the reduced 4D-Var (23) is equivalent to
a SEEK filter. Using Lemma 1, it amounts to prove that (24) is equivalent
to the SEEK filter. At this aim, we use the same scheme as in the proof
of Theorem 1. We first introduce the notation x0

l to denote the solution
of the reduced 4D-Var (24) using the first l observations, and P0

l to denote
the covariance matrix of x0

l . Moreover, we introduce the notation xk
l to

denote the prolongation solution of x0
l integrated up to time tk and Pk

l to
denote the covariance matrix of xk

l . We thus want to prove that the solution
of the reduced 4D-Var (24) using the first l observations, prolongated and
integrated up to time tl is equal to the analysis state produced by the SEEK
filter after l iterations, i.e., xl

l = xa
l , and that both state vectors have the

same covariance matrices, i.e., Pl
l = Pa

l , for each observation time l =
1, . . . , N . The proof is by induction.
To prove that x1

1 = xa
1 and P1

1 = Pa
1, we first notice that x0

0 = L0x
0
0 =

L0x
b = L0L

T
0 x

b = xa
0, since x

b is the solution of the reduced 4D-Var problem
using no observations and from the definition of xb in Lemma 1 and the

14



assumption on xa
0. We also note that

P0
0 = Cov(x0

0,x
0
0) = Cov(L0x

0
0,L0x

0
0)

= L0Cov(x
0
0,x

0
0)L

T
0

= L0P
0
0L

T
0 = L0U0L

T
0 = Pa

0,

sinceU0 is the Hessian inverse and thus the covariance matrix of the solution
x0
0. We next define the reduced 4D-var problem when only one observation

vector is available at the first time-step as

min
x∈Rr

J1(x) =
1

2
||x− x0

0||
2
(P0

0
)−1

+
1

2
||y1 −HM1L0x||

2
R−1 .

Using the equivalent of equations (11), (16) and (17) from Theorem 1
adapted to the reduced space, we obtain as solution

x0
1 = x0

0 + P0
1L

T
0 M

T
1 H

TR−1(y1 − HM1L0x
0
0) (28)

where
P0

1 =
(

(P0
0)

−1 + LT
0 M

T
1 H

TR−1HM1L0

)−1
(29)

is its covariance matrix. We observe that the inverse of P0
1 is the Hessian

matrix of J1. If we formulate this reduced solution in the full space R
n and

integrate it up to the first time-step, we obtain

x1
1 = M1L0x

1
0 = M1L0x

0
0

+M1L0P
0
1L

T
0 M

T
1 H

TR−1(y1 −HM1L0x
0
0),

and find back the solution of Algorithm 2 after one iteration. Indeed, by
the algorithm, we have M1L0x

0
0 = M1x

0
0 = M1x

a
0 = x

f
1 and P0

1 = U1, and
we use the same observation y1. Moreover, the covariance matrix of x1

1 is
given by

P1
1 = Cov(x1

1,x
1
1) = Cov(M1L0x

0
1,M1L0x

0
1)

= M1L0Cov(x
0
1,x

0
1)L

T
0 M

T
1

= M1L0P
0
1L

T
0 M

T
1 = L1U1L

T
1 = Pa

1,

which is the analysis error covariance matrix given by the SEEK filter after
one iteration.
Now, we suppose that when the j first observation vectors are available, the
solution x0

j of the corresponding reduced 4D-Var problem

min
x∈Rr

J j(x) =
1

2
||x− xb||2

(P0

0
)−1

+
1

2

j
∑

i=1

||yi −HMiL0x||
2
R−1

15



satisfies MjL0x
0
j = x

j
j = xa

j and P
j
j = Pa

j . We also assume that P0
j = Uj ,

whose inverse equals the Hessian matrix of J j . It allows us to express the
quadratic function J j using its Taylor expansion around the solution x0

j as

J j(x) = J j(x
0
j ) +

1

2
(x− x0

j )
T(P0

j )
−1(x− x0

j ).

We add the next available observation vector yj+1 to this expression and
obtain the expression of the reduced 4D-Var problem using the first j + 1
observation vectors

min
x∈Rr

J j+1(x) = J j(x
0
j ) +

1

2
||x− x0

j ||
2
(P0

j )
−1

+
1

2
||yj+1 −HMj+1L0x||

2
R−1 .

The solution of this problem, based on the same reasoning used to derive
(28) and (29), writes

x0
j+1 = x0

j +P0
j+1L

T
0 M

T
j+1H

TR−1

(yj+1 −HMj+1L0x
0
j )

with the covariance matrix

P0
j+1 =

(

(P0
j )

−1 + LT
0 M

T
j+1H

TR−1HMj+1L0

)−1
.

By Algorithm 2, we remark that P0
j+1 = Uj+1 since P0

j = Uj . If we
formulate the solution x0

j+1 in the full space and integrate it up to the time-
step j + 1, we have

x
j+1
j+1 = Mj+1L0x

0
j+1 = Mj+1L0x

0
j +Mj+1L0

P0
j+1L

T
0 M

T
j+1H

TR−1(yj+1 −HMj+1L0x
0
j ).

Using the recurrence assumptions, we find back the Kalman filter solution
after j + 1 iterations since

Mj+1L0x
0
j = Mj+1,jMjL0x

0
j = Mj+1,jx

j
j

= Mj+1,jx
a
j = x

f
j+1,

by Algorithm 2, and since

P
j+1
j+1 = Cov(xj+1

j+1,x
j+1
j+1)

= Cov(Mj+1L0x
0
j+1,Mj+1L0x

0
j+1)

= Mj+1L0Cov(x
0
j+1,x

0
j+1)L

T
0 M

T
j+1

= Mj+1L0P
0
j+1L

T
0 M

T
j+1

= Lj+1Uj+1L
T
j+1

= Pa
j+1,
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again by Algorithm 2 and by P0
j+1 = Uj+1. �

4 Enhanced Gauss-Newton method for the 4D-

Var

In atmospheric and oceanographic applications the model and observation
operators are nonlinear and thus the 4D-Var (6) is a nonlinear least-squares
problem. A common method for solving this problem is the Gauss-Newton
algorithm (see, Bjorck (1996) and Nocedal and Wright (2006)). To present
it, we reformulate the 4D-Var problem as

min
x∈Rn

J(x) =
1

2
[x− xb]TB−1[x− xb]

+
1

2
[G(x)− y]TR−1[G(x)− y]. (30)

using the following observation vector y = ((y1)
T, . . . , (yN )T)T ∈ R

m where
yi ∈ R

mi is the observation vector at time i, and
∑N

i=1mi = m. The
covariance matrix R ∈ R

m×m is formed with each Ri for i = 1, . . . , N . The
operator G : Rn → R

m is mapping the initial condition into the space of the
observation vector and is given by

G(x) =

















H1M1,0x
...

HiMi,0x
...

HNMN,0x

















.

where the observation and model operator are assumed to be nonlinear. We
can rewrite the problem (30) in a more compact form

min
x∈Rn

J(x) =
1

2
||f(x)||22 (31)

where

f(x) =

(

B−1/2(x− xb)

R−1/2(G(x)− y)

)

.

The matrices B−1/2 and R−1/2 are the inverse of the square-root factors of
B = B1/2(B1/2)T and R = R1/2(R1/2)T.

In the Gauss-Newton problem, the solution of the nonlinear least-squares
problem (31) is computed through solving a sequence of linear least-squares
problems

min
δxk∈R

n

1

2
||Fkδxk + f(xk)||

2
2, (32)
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where Fk is the Jacobian of f at xk and is given by

Fk =

(

B−1/2

R−1/2Gk

)

,

with Gk the Jacobian matrix of G at xk. The minimum of the linear lest-
squares problem can be computed by nullifying its gradient. Thus, we have
to solve a sequence of positive definite linear system

FT
kFkδxk = −FT

k f(xk)

known as the normal equation. We rewrite the system in a more compact
form

Akδxk = bk (33)

whereAk = B−1+GT
kR

−1Gk is a symmetric positive definite approximation
of the hessian matrix of J without considering the second-order terms and
where bk = B−1(xb −xk) +GT

kR
−1(y−G(xk)) is the gradient of J . A new

approximation of the solution of (31) is computed using the update formula
xk+1 = xk+δxk. A nonlinear model integration is then performed from this
new approximation to update the reference trajectory and compute the new
value of the cost function f(xk+1). We resume the Gauss-Newton method in
Algorithm 3. The linear least-squares problems can be viewed as a sequence

Algorithm 3 Gauss-Newton

Set x0 = xb

for k=0,1,2,. . . do

Solve min
δxk∈R

n

1

2
||Fkδxk + f(xk)||

2
2

Set xk+1 = xk + δxk

end for

of quadratic problems which approximate the nonlinear function. They can
be rewritten into the well-known incremental 4D-Var formulation

min
δxk∈R

n

1

2
(δxk − dbk)TB−1(δxk − dbk)

+
1

2
(Gkδxk − dok)TR−1(Gkδxk − dok) (34)

where dbk = xb − xk and dok = y − G(xk) are departure vectors.
There are direct methods to solve (33) such as the Cholesky factoriza-

tion of Ak or the QR factorization of Fk. We opt for a conjugate-gradient-
like (CG) method because it is better suited for large operational system
(Weaver, Viliard, and Anderson, 2003). Moreover, we can not store the Hes-
sians Ak and can only compute the product between them and any vector.
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For computational cost considerations, we do not compute the exact Jaco-
bian of G in the incremental 4D-Var (34) and perform only a limited number
of outer Gauss-Newton iterations and a limited number of inner conjugate
gradient iterations to reduce the computational cost. As pointed by Law-
less, Gratton, and Nichols (2004) and Gratton, Lawless, and Nichols (2007),
we find back the incremental 4D-Var introduced by Courtier, Thépaut, and
Hollingsworth (1994). The convergence rate of the conjugate-gradient-like
method is influenced by the starting point, the right-hand side, and the ac-
tual distribution of the eigenvalues (e.g. presence of eigenvalue clusters).
Therefore, the development of good starting points and preconditioners is
essential to obtain a better convergence rate.

To define an appropriate starting point for the conjugate-gradient-like
method, we will derive a Gauss-Newton algorithm for the the reduced 4D-
Var (8). This reduced Gauss-Newton method define a sequence of reduced
space linear-least squares problem given by

min
δxk∈R

r

1

2
||FkL0δxk + f(xk)||

2
2. (35)

It leads to the sequence of positive definite linear system

LT
0 F

T
kFkL0δxk = −LT

0 F
T
k f(xk)

which can be written
LT
0 AkL0δxk = LT

0 bk. (36)

A new approximation of the solution is computed using the update formula
xk+1 = xk + δxk. The corresponding approximation in the full space is
given by L0xk+1. A nonlinear model integration is then performed from
this new approximation to update the reference trajectory and to compute
f(xk+1). This reduced version is summarized in Algorithm 4. As previously,

Algorithm 4 Reduced Gauss-Newton

Set x0 = xb

for k=0,1,2,. . . do

Solve min
δxk∈R

r

1

2
||FkL0δxk + f(xk)||

2
2

Set xk+1 = xk + L0δxk

end for

the reduced linear-least squares problems (35) can be rewritten into the
incremental formulation

min
δxk∈R

r
=

1

2
(L0δxk − dbk)TB−1(L0δxk − dbk)

+
1

2
(GkL0δxk − dok)TR−1(GkL0δxk − dok). (37)
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and called reduced incremental 4D-Var problems. The solution of the re-
duced linear-least squares problems (35) in the full space is given by

L0δxk = L0(L
T
0 AkL0)

−1LT
0 bk (38)

= L0(L
T
0 AkL0)

−1LT
0 Akδxk

and is equivalent to the solution of the full linear-least squares problems
(32) projected on L0 along the orthogonal of AkL0 (see Saad, 2008, for a
review on projection). Hence, we can choose (38) as a starting point to solve
the full linear-least squares problems. This staring point will be called the
Ritz-Galerkin starting point with respect to the subspace L0 (van der Vorst,
2003).

As already mentioned, the convergence rate of the conjugate-gradient-
like method is influenced by the distribution of the eigenvalues. Particularly,
it is roughly bounded as a function of the condition number of Ak (see, for
details, Nocedal and Wright (2006)). When this condition number is large,
it is advisable to use a preconditioned version of the conjugate gradient
method. It is widely recognized that there is no universal way to design
a preconditioner for all type of problems (Benzi, 2002) and that designing
preconditioners is a very broad and active area of research (van der Vorst,
2003). Ideally, the preconditioner must be a symmetric positive definite
matrix which is cheap to compute easy to apply. It has to reduce the condi-
tion number or to produce a more clustered spectrum. The limited memory
preconditioner (LMP) is a class of preconditioner defined by

Hk = [In − Z(ZTAkZ)
−1ZTA]M

[In −AkZ(Z
TAkZ)

−1ZT] + Z(ZTAkZ)
−1ZT

where the column of Z ∈ R
n×r are linearly independent and M plays the

role of the first-level preconditioner (see, Gratton, Sartenaer, and Ilunga
(2008)). The first-level preconditioner usually depends on the physics of
the application. In variational data assimilation problems, it is equal to the
background error covariance matrix B and is able to cluster most eigenvalues
at 1. In order to improve the efficiency of this first-level preconditioner, the
limited memory preconditioner use directions in a low dimensional subspace
Z that are left out by the first-level preconditioner and slowing down the
convergence of the conjugate-gradient-like method. Recently, Tshimanga
et al. (2008) described a limited memory preconditioner techniques in a 4D-
Var context. Their idea was to exploit information gained when solving one
system to build the limited memory preconditioner for the next system of
the sequence. The information could be, for example, Ritz pairs or descent
directions. The drawback of this method is the impossibility of constructing
a limited memory preconditioner for the first system because no information
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is available.

5 New approach

Robert, Blayo, and Verron (2006) utilized the empirical orthogonal functions
for the definition of the reduced control space and parametrization of the
background error covariance matrix. They have developed a method to
combine the full 4D-Var (6) and the reduced version of the 4D-Var (8). In
this approach, an optimal correction in the full space is sought, but the
problem of the computational cost is addressed by using a reduced 4D-
Var, to provide a relevant guess for the full space minimization. Their
approach consists in performing a few iterations to solve approximately the
first reduced incremental 4D-Var (37) where the background error covariance
matrix B is equal to the sample covariance matrix S

min
δx

0
∈Rr

1

2
||L0δx0 − db0||2

S−1

+
1

2
||G0L0δxk − do0||2

R−1 . (39)

Indeed, we can rewrite this problem to find back the same expression as in
Robert et al. (2006)

min
δx

0
∈Rr

1

2
||L0δx0||

2
L0U

−1

0
LT
0

+
1

2
||G0L0δx0 − do0||2

R−1

using the equalities db0 = 0, LT
0 S

−1L0 = U−1
0 and LT

0 L0 = Ir. The pro-
longation of the approximate solution is then used as starting point of the
Gauss-Newton method to solve approximately the full 4D-Var (6) where the
background error covariance matrix B is used as preconditioner. They ap-
ply this reduced-order approach in the OPA model with its TDH configura-
tion and the variational data assimilation package OPAVAR (Weaver et al.,
2003). Using theorem 2, we can prove that the solution of (39) is equivalent
to the solution of a SEEK filter where xa0 is a zero vector, where P a

0 is given
by L0U0L

T
0 , where the i-th observation is given by the i-th component of

do0 and where the observation and model operators are the Jacobian of the
nonlinear one at x0. This equivalence helps justify the introduction of this
reduced incremental 4D-Var and the basis of their approach.

In this work, we present a new approach to solve data assimilation prob-
lem which joins up some previous presented ideas. We compute a solution
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of the 4D-Var problem (6) using the Gauss-Newton algorithm with a pre-
conditioned conjugate-gradient-like method. For the first outer iteration of
the Gauss-Newton algorithm, we choose as starting point of the CG method
a nonzero vector which is the Ritz-Galerkin starting point (38) with respect
to the subspace L0 given by

δx0
0 = L0(L

T
0 A0L0)

−1LT
0 b0. (40)

A direct method compute the matrix inverse since its dimension is equal to
r and is very small in apllications. This is the solution of the first reduced
incremental 4D-Var (37) with the background error covariance matrix B
prolongated into the full space. It would be a relevant starting point for the
CG method since the subspace L0 contains the main directions of variability
and since L0 shows its worth in the SEEK filter. We choose as preconditioner
the limited memory preconditioner

H0 = [In − L0(L
T
0 A0L0)

−1LT
0 A0]B

[In −A0L0(L
T
0 A0L0)

−1LT
0 ] + L0(L

T
0 A0L0)

−1LT
0 . (41)

This preconditioner is available from the first to the last system of the se-
quence. The cost to build this preconditioner is dominated by the product
A0L0. Therefore, it is available without any extra computational cost since
this product as been computed for the starting point (40). We assume that
the Hessian matrix does not change significantly from one outer iteration to
the next. Thus, we can keep unchanged this preconditioner for each system.

6 Numerical experiments

The model we wish to consider is the one-dimensional shallow-water system
describing the flow of a fluid over an obstacle (see, Lawless (2001)). The
governing equation can be written

Du

Dt
+

∂φ

∂z
= −g

∂h̄

∂z
,

Dφ

Dt
+ φ

∂u

∂z
= 0,

where D
Dt =

∂
∂t +u ∂

∂u is the material derivative. In these equations h̄ = h̄(z)
is the height of bottom orography, u = u(z, t) is the velocity of the fluid and
φ = gh(z, t) is the geopotential, where g is the gravitational constant and
h > 0, the depth of the fluid above the orography. The problem is defined on
the domain z ∈ [0, l] with periodic boundary condition such that z(0) = z(l)
and we let t ∈ [0, T ]. The values of u and φ are specified everywhere at the
initial time, such that

u(z, 0) = u0(z)

φ(z, 0) = φ0(z).
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For time t < 0 the fluid is at rest and the geopotential φ is equal to g(h0 −
h̄(z)), with h0 constant. At t = 0, the fluid is impulsively set in motion with
a constant velocity u0 for all z. From this impulse a wave motion develops
and moves away from the obstacle in both directions. In our example,
the domain is defined to be periodic over 250 grid points, with a distance
∆z = 0.01m between them, so that z ∈ [0m, 2.5m]. The height of the
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Figure 1: Velocity, geopotential and water level in an instant for the shallow
water model

obstacle is given by

h̄(z) = h̄c

(

1−
z2

a2

)

for 0 ≤ |z| ≤ a,

and h̄(z) = 0 otherwise. h̄c is the maximum height of the obstacle and a is
half the length over which the base of the obstacle extends. The value of a
is taken to be 0.4m and the height of the obstacle h̄c = 0.05m. As initial
fields, we choose u0(z) = 0.1m/s and h0(z) = 0.2m for all z. For simplicity,
we set the gravitational constant g at 10m/s2. The time step ∆t for model
integration is 4.6× 10−3s. The state vector of this system at an instant t is
the combination of the velocity and the geopotential at each grid point and
is noted by x(t). Its dimension is 500 since there are 250 grid points in the
discretized space.

The framework for the numerical tests is the classical twin experiment.
To create the reference states, we integrate the model from an arbitrary
initial condition during 400 time steps which is approximately the system
period. These reference states will be considered to be our truth and could
be compared with the states produced by the assimilation method. The
experiments are performed using pseudo-measurement which are extracted
from the reference states. More precisely, the observations used during the
assimilation are created by adding Gaussian noises to the reference fields.
We observe only two components of the state vector at each time step.
The assimilation problem is divided into 10 assimilation windows. Each of
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them is composed of 40 time steps. The background xb is the true state
perturbed by a Gaussian noise. The background covariance matrix B is
computed using a Laplacian-based correlation model.

To build the sampling covariance matrix S needed to compute the sub-
space L0, we create a set of state vectors. We integrate the model during
400 time steps but from an arbitrary initial condition which occurs before
the assimilation windows. We retain the state vector with a 8-time step
periodicity since successive states are similar and do not bring additional
information.We apply the spectral decomposition (5) to compute the EOF
basis. The percentage of variation accounted for by the first r EOFs is given
by

100

∑r
i=1 λi

∑n
i=1 λi

where λi are the eigenvalues of S ordered in decreasing order. We plot this
percentage in figure 2 and see that retaining 5 EOFs enables to explain 80%
of the system’s variability. This is a good compromise since we account
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Figure 2: Percentage of explained system’s variability versus the number of
selected EOFs

for most of the variation without increasing to much the dimension of the
subspace spanned by the EOFs. All of these parameters are chosen accord-
ing to the choice made for operational data assimilation problem and the
dimension of the model state vector.

The set of experiments is designed to illustrate the impact of the Ritz-
Galerkin starting point and of the LMP when the subspace is defined by the
first EOFs. We allow three outer integrations in the Gauss-Newton algo-
rithm with 5 inner CG iterations to solve each linear system. These are pos-
sible heuristics to solve the 4D-Var problem. In Figure 3, we plot the history
of the quadratic cost function and the non- linear function (the quadratic
with lines and the nonlinear with circles) of the 3 systems. The curves are
placed one after the other in sequence and the inner iterations are cumu-
lated. Note that the nonlinear function value is available only at outer iter-
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ations when linearization is performed in the Gauss-Newton algorithm. The
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Figure 3: Convergence of the basic 4D-var and of the basic 4D-Var with the
Ritz-Galerkin starting point

dash-dot line is obtained using a basic Gauss-Newton algorithm using the
background covariance matrix B as preconditioner in the CG method. The
dotted line is obtained using the same approach but with the Ritz-Galerkin
starting point (40). It means that the starting point for the minimization
is the solution of a reduced incremental 4D-Var problem prolongated into
the full space. We see that the Ritz-Galerkin starting point provides a good
reduction for the first quadratic problem and improves the convergence rate
of the Gauss-Newton method. Nevertheless, both approaches do not have
the same cost for the whole minimization since it is dominated by the num-
ber of Hessian-vector products. Indeed, the calculation of the Ritz-Galerkin
starting point needs five extra Hessian-vector products to evaluate A0L0

while each CG iteration needs one Hessian-vector product. The nonlinear
function is equal to 228.3 with the basic 4D-Var after 15 cumulated inner
iterations and is equal to 219.1 after 10 cumulated inner iterations with the
Ritz-Galerkin. Thus, for the same computational effort, the Ritz-Galerkin
starting point gives a better reduction in the nonlinear function.

The choice of the preconditioner has also an influence on the conver-
gence rate. In figure 4, we take back the dotted line which is obtained
with the background covariance matrix B as preconditioner and with the
Ritz-Galerkin starting point. The use of B as preconditioner is a simple
choice often used for data assimilation problem. The dashed line shows the
convergence curve when we use the limited memory preconditioner based
on the first EOFs (41) with the Ritz-Galerkin starting point. As seen in
Section 4, this LMP is available without any extra computational cost since
the product A0L0 has already been computed for the Ritz-Galerkin start-
ing point. With this approach, the nonlinear cost function is equal to 193.3
after 10 cumulated inner iterations. It is a significant asset for the use of
the LMP since we have obtain, for a same computational effort, a better
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Figure 4: Convergence of the basic and LMP 4D-Var with Ritz-Galerkin
starting point

reduction in the nonlinear function than when using B as preconditioner
with the Ritz-Galerkin starting point.

We can partly explain this good result from the spectrum of the first
matrix system since the rate of convergence of the conjugate gradient method
dpends, to a large extend, on the condition number and on the clustering
of the eigenvalues. In figure 5, we plot the spectrum of the first matrix
system A0 and its preconditioned versions BA0 and H0A0. The matrix A0

has a continuous spectrum and its condition number is equal to 9.58× 107.
If we use B as preconditioner, the preconditioned matrix BA0 is given by
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Figure 5: Spectrum of the first preconditioned matrix system

In + (G0)
TR−1G0. Thus, the spectrum becomes bounded below 1 and has

a cluster at 1 of size at least max{0, n−m} where m is the dimension of the
observation vector y (Tshimanga et al., 2008). In our case the size of the
cluster is at least 460 and the condition number is 3.66×106. With the LMP
preconditioner, the condition number falls to 3.31× 103 while the cluster do
not decrease. In figure 6, we zoom in the largest eigenvalue to make easier
the comparison between the spectrum of the preconditioned matrices. This
spectral analysis shed some light on the good performance of the LMP on
the first linear system.

26



480 485 490 495 500
10

0

10
2

10
4

10
6

10
8

 

 
λ(B*A

0
)

λ(H
0
*A

0
)

Figure 6: End of spectrum of the first preconditioned matrix system

7 Conclusions and perspectives

In the data assimilation community, the variants of Kalman filter and the
4D-Var formulation are the two major approaches to solve data assimilation
problems. We have presented a theoretical work about the correspondences
between these approaches and generalized them to the reduced case. These
results have been used as a baseline for combining both methods.

We have enhanced the Gauss-Newton method using a Ritz-Galerkin
starting point with respect to the first empirical orthogonal functions. We
have shown that it is equivalent to the solution of a reduced incremental
4D-Var problem. Moreover, we have developed a limited memory precon-
ditioner based on the same information. The combination of these two
elements improves the convergence rate of the Gauss-Newton method for a
data assimilation problem on a shallow water model.

For further research, we are concerned by the application of our algo-
rithm in an operational oceanographic or atmospheric application to show
that the same conclusion can be drawn for more realistic assimilation prob-
lems. We also want to use information as Ritz pairs or descent directions,
gained when solving one system, to update the limited memory precondi-
tioner based on the EOFs for the next system of the sequence.
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