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Abstract. Towards Exascale Climate Model implementations, we propose to 
explore the possibility of resilience on the NEMO ocean model, without the 
help  of  spare  resources  and  avoiding  to  handle  the  associated  on-line  data 
recovery.  A  simple,  non  intrusive  error  repair  have  been  implemented  and 
tested, simulating failure on one core and analyzing its consequences on the 
corresponding sub-domain of the global ORCA2 grid. Despite locally restrained 
biases, a simulation subject to a one month long failure on a Pacific Ocean sub-
domain has been achieved without performance losses. We are encouraged to 
evaluate with larger configurations our strategy impact on global circulation.
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1   Introduction

Exascale is a major challenge for climate modeling. For decades, climate modeling 
has been benefiting of computing progress; now, to fit supercomputing hardware and 
software evolution, legacy codes, made of millions of lines, have to be adapted or 
partly re-written for more efficiency.

Progress  have  been  made  in  parallelism:  changing  spatial  discretization,  new 
dynamical  cores  avoid  costly  filtering  at  pole  regions  [1];  better  organizing  data 
throughput, new scientific libraries reduce important bottlenecks [2].

Supercomputer  new  facilities  are  fully  exploited  to  increase  model  resolution, 
better represent low scale phenomena and understand scale interactions [3]. Most of 
the Top500 machines have been, and presently are, operated by climate modeling 
groups all over the world (Earth Simulator in Japan, Oakridge or Argonne machines 
in the United States, PRACE tier-0 facilities in Europe ...) 

 In this context, given that machine gathering millions to trillions of computing 
cores is a clear target of climate modeling community, it appeared that the emerging 
issue of fault tolerance has to be taken into account. At the origin of our work, the 
french ANR collaborative project “SPADES” [4], involving both climate modeling 
engineers and resiliency experts, has been set up to prepare climate models to fault 
tolerance.

Obviously, an efficient resiliency strategy could not only rely on future hardware 
and  software  environment  enhancements:  our  parallel  MPI-based  climate  models 



have  to  be  adapted  to  be  able  to  handle  fault  tolerant  MPI  implementations  [5], 
assuming that MPI will be enhanced [6] to satisfy Exascale constraints [7].

 
To make a program resilient is a non transparent change: fault tolerance handling 

leads to modify scientific  programs. We assume that  MPI will detect  and provide 
information on failure characteristics but, at this point, model modifications will be 
necessary to start the repair process and/or contain fault propagation. 

2   Purpose

In this study, we propose to describe a strategy that will lead to implement a resilient 
climate  model  component  (ocean),  detail  this  first  implementation  and  give  a 
preliminary result. This practical work comes up against different difficulties. 

Even if standards are still a work-in-progress, the different possible behaviors of 
fault tolerant MPI parallel library have to be foreseen. Indeed, the message passing 
system is a key tool to articulate a resiliency strategy on scientific programs such as 
climate models: it is when MPI communications are necessary to keep calculating on 
a MPI process that failure can be detected by all instances and that a repair process 
can be started.

The structure of repair process strongly depends on the kind of preparatory fault 
detection and handling provided by the new MPI implementations, as well as their 
different performances. They could be suitable or not for the specificity of climate 
modeling. One of the challenges on resiliency strategy efficiency lies on this choice: a 
high degree of fault tolerance (full data recovery, same computing resources after 
than  before  failure)  requiring  too  much time  (comparable  to  simulation  duration) 
cannot be considered as efficient.  

Consequently, as a first step, hypothesis on the best suitable MPI error handling 
have to be made, considering both state-of-the-art standard of fault tolerant MPI and 
version  of  highest  parallel  climate  models.  In  order  to  validate  some  of  those 
hypothesis,  a  repair  process  has  been  implemented  on  a  selected  climate  system 
module: it will be described in the present work. 

But an effective and realistic test of a resilient version of our model requires both 
hardware  (Exascale  machine)  and  software  (massively  parallel  climate  model) 
environment that will not be achievable prior to several years. Consequently, on a 
first  step,  we  will  choose  an  existing  climate  model  configuration  and  mimic 
conditions  that  will  prevail  on  Exascale  machine.  Our  first  objective  is  not  to 
quantitatively validate a fully resilient version of a climate model, but to confirm the 
first hypothesis on which our implementation strategy is based, that repair process 



duration can be achieved on a reasonable time and that resulting errors do not lead to 
numerical scheme divergence. 

More generally speaking, we expect that this experiment will give us a clearer idea 
on how to design the  future version of  climate  models  (massively  parallel,  using 
graphics  processors  … )  that  will  be  developed in the  coming years,  taking  into  
account resiliency requirements.  This work would be strongly facilitated if an error 
handling  strategy,  simple,  efficient  and  compatible  with  climate  modeling 
characteristics, has been already tested. 

3   Method

3.1   Climate model and MPI state-of-the-art

As far as we know, there is no existing full or partial climate model implementation 
that could be considered as resilient. We call full climate model the complete system 
necessary to simulate the Earth Climate with enough complexity to address scientific 
questions such as Climate Change or  seasonal to decadal forecasts or  predictions. 
CGCMs  (Coupled  Global  Circulation  Models),  encompassing  different  modules 
gridded on the whole globe, are mandatory for such experiments. Those components 
can  be  assembled  on  a  single  executable  [8]  or  launched  in  parallel  executables, 
coupled with an appropriate tool [9].

In order to simplify our problem, we decide to choose one of the two essential 
components  of  the  ARPEGE-NEMO CGCM,  widely  used  on  the  most  advanced 
supercomputers  [10].  Indeed,  NEMO  Ocean  model  [11]  combines  standard 
characteristics of climate model components such as Fortran writing, MPI parallelism 
following 2D spatial decomposition. Due to its long elapsed duration (from days to 
months), an ocean only simulation is performed as a climate one: its 3D prognostic 
variables  have  to  be  regularly  checkpointed  (every  simulated  month  to  every 
simulated year) and simulation restarted from this point.

 
Moreover, the NEMO code length is compatible with a quick adaptation for an 

error handling; its MPI interface is isolated on a single file of only 23 routines.

The multi-executable structure of our CGCM allows separate adaptation of a single 
module. The fault tolerant NEMO version will be used on stand alone mode. It must 
be clear that, to fully evaluate performances and reliability of a climate model, the 
other modules and the coupler should also be made resilient. But modularity of the 
system should facilitate incremental modifications.



NEMO  model  has  a  3D  spatial  discretization  on  the  whole  globe  (spherical 
coordinates).  Parallelism  consists  on  separating  grid  points  into  sub-domains 
(following  latitude  and  longitude  axes).  The  MPI  library  is  used  to  exchange 
information  at  boundaries  of  the  sub-domains,  mostly  through  point-to-point 
communications, several time per time step, for several variables.

We assume that future implementations of resilient MPI will detect and begin to 
handle failures at communicator level and let the application manage the repair [12].  
We  suppose  that  this  implementation  will  be  mostly  similar  to  those  previously 
developed on FT-MPI / OpenMPI. Our practical test will be made with OpenMPI.

3.2   Error handling strategies

Error handling begins on NEMO code when an error is signaled by any MPI library 
call.  We have identified 3 different error repair strategies ensuing 3 different MPI 
error handling type:

(a) No repair process, MPI is disabled. It implies that model has to save current 
prognostic variables, stop and restart.

(b) The failed process is replaced by a new resource. It implies that the model 
has to recover the lost part of its prognostic variables and resume simulation 
on the corresponding time step.

(c) The failed process is not replaced but point-to-point communications are still 
possible  except  with  failed  process,  and  a  special  treatment  is  done  for 
collective communications.  It implies that  simulation can go on, but with 
missing information.

A simple analysis of NEMO present behavior on scalar machines already reveals 
how expensive checkpoint/restart operations are. Their cost is supposed to increase 
[13] with resolution (Exascale computing will address problems of more and more 
accuracy)  and  parallelism  (parallel  access  to  disk  or  cache  memory).  Climate 
modeling is already considered as one of the most consuming sciences regarding to 
memory and output requirements: to reduce those needs and satisfy future Exascale 
constraints,  we  think  that  error  treatment  only  based  on  checkpointing  has  to  be 
avoided: perform a checkpoint/restart operation as often as failure frequency would 
lead system to spend most of its time in I/O operations rather than calculating.

The same data volume considerations suggest us to prefer not to deal with data 
recovery. This operation implies, on climate model, to continuously keep a copy of an 
important volume of data, certainly uneasy to transfer to the spare memory resource 
during error repair. Moreover, this additional cost does not include the additional time 
needed  by  MPI  management  to  dynamically  reallocate  an  equally  efficient  spare 
resource.



The error  handling  strategy we propose is  based on the  following assumption: 
when  a  failure  occurs,  a  simulation  can  be  carried  out  despite  missing  data  and 
calculations on the sub-domain corresponding to the failed resource.

A  clear  consequence  is  the  simulation  non  reproducibility.  Moreover,  if  data 
located on the failed sub-domain are lost, the model no more ensures energy and mass 
conservation. 

This  bias  will  have  to  be  evaluated  and  compared  to  other  sources  of  non 
conservation. The main argument that leads us to move forward in this direction is 
that  increasing  parallelism  leads  to  decrease  the  relative  failed  sub-domain  size, 
compared to the global domain. The question is then: at which parallelism level could 
the bias and its propagation be considered as a simple perturbation ? Even though this 
limit can not be found on present machines, a test case configuration of our model has 
been chosen to represent the problem as realistically as possible and give a first idea 
on the acceptable limit.

To reduce the error impact, our error repair strategy combines three repair levels,  
which first two will be detailed at ‘Implementation and first test’ chapter:

− Just  after  failure,  no  spare  resource  is  needed;  model  keep  exchanging 
boundary  conditions  at  sub-domain limits  through the  failed  sub-domain, 
using values of the nearest valid sub-domain neighbor.

− Before  resuming  calculations,  area  of  grid  point  neighbors  (halo)  to  the 
failed sub-domain is increased to compensate the missing grid points area.

− When the next regular checkpoint is performed, values of those neighbors 
grid points  are extrapolated to  fill  failed sub-domain on restart  variables. 
Calculations can then be started again with regular resources number.

3.3   Test case configuration

Several  global  or  regional  NEMO  configurations  are  currently  available  on 
supercomputers,  but  resolutions  expected  to  be  used  at  Exascale  are  relatively 
difficult to operate on present machines.

On the basis of the last considerations on the topic [14], we guess that a code able 
to fully exploit an Exascale computer should be parallelized on a trillion of cores. It is 
presently  impossible  to  ensure  that  CGCMs  could  reach  such  level.  Considering 
present performances, a million cores hypothesis seems more reasonable. 

On these machines, a node could be composed of 103 to 104 cores. It is still unclear 
if the entire node will be effected entirely of partially by failures. Consequently, the 
ratio between the global Earth surface area and the area affected by failure could vary 
a lot depending on the various hypothesis. 



It  seems presently impossible to  determine a realistic  value  of  this  global/sub-
domain ratio, necessary to evaluate realistically the impact of the error repair strategy 
on ocean physics.  Nevertheless,  the error repair algorithm can be implemented on 
NEMO  and  tested  with  an  existing  configuration  such  as  ORCA2  (2  degrees 
resolution, global domain) on 100 cores of CINES SGI Altix supercomputer. For a 
failure of one sub-domain, this ratio is equal to 100. 

Even though we suppose  that  reaching an Exascale-realistic  value  of  this  ratio  
requires finer model resolution and higher parallelism, the present configuration will 
help you to quickly test if, with the implemented error handling, and despite failure 
affecting a non negligible part of its global domain, the model is able to go on and 
process the entire simulation.

Failure simulator are not already available on our supercomputers, as well as MPI 
implementation  that  can  provide  error  messages  after  failure  detecting.  Our 
implementation will have to simulate those events with simple Fortran instructions.

3.4   Implementation and first test

Our error repair routine (mpp_reinit) follows the existing structure of the initial global 
domain partitioning (mpp_init). In this routine, index of neighbors sub-domain are 
initialized.  When  failure  occurs,  this  routine  is  called  to  redefine  sub-domain 
neighbors and redirect communications through the failed sub-domain.  

Fig. 1. First level of implemented error repair strategy. Shaded arrows represent MPI 
exchanges  necessary  to  fill  extra  lines/columns  (hatched)  at  boundaries  of  sub-
domains.  At  left,  a  regular  situation.  At  right,  after  failure  of  central  sub-domain 
(shaded area). Transparent arrows represent inner communications on pseudo-failed 
sub-domain.

In  this  new  configuration,  south-northernmost  (east-westernmost)  grid  points 
neighbors of the failed sub-domain, located on boundary lines (columns) are spaced at 
a sub-domain width (length) interval. 



To temporary simulate failures, which can not be produced by present hardware 
and handled by the available MPI library, the failed sub-domain calculations must be 
stopped (Fig 1, right, shaded area). This could be done replacing ocean grid points by 
land grid points. As communications from boundary are still necessary on the sub-
domain  to  avoid  MPI  collective  blocking,  eastern-western  (northern-southern) 
boundary conditions are internally exchanged (Fig 1, right, transparent arrows). An 
advantage of this solution is that collective communications can go on: for example, 
global mean values can be calculated, via a MPI collective communication, with a 
global domain, pseudo-truncated (masked) on the failed sub-domain.

Fig. 2. Second and third implemented error repair strategy. Width (or height) of grid 
point neighbors of the failed sub-domain are increased to compensate missing area 
area  (right).  During  the  next  regular  checkpoint/restart  phase,  the  restart  file  is 
repaired:  missing  grid  point  values  are  extrapolated  from  values  of  grid  point 
neighbors. Simulation can be resumed on the whole domain (left).

Both to ensure gradient calculation validity on those regions and conserve total  
area of the global domain, length/width of those grid points must be increased to half  
failed sub-domain length/width (Fig 2, left). One can consider that resolution of grid 
point located at failed sub-domain boundaries has been increased until the missing 
area was filled.

On our first experiment, a failure is simulated on one sub-domain located at center  
of Pacific Ocean, to avoid a special treatment necessary if its boundaries intersect 
continents. The experiment starts from the result of a previous regular one.

 
In the worst case, our first and second level error repair must be applied during a 

one month period, from the beginning of a run to the first regular checkpoint: a one 
month  long  simulation  has  been  performed  successfully  in  these  conditions, 
validating stability of the implemented repair algorithm.

Results  of  a  regular  and  a  fault  tolerant  simulation  have  been  compared. 
Differences are maximum at sub-surface, where currents maxima are observed and 
where the damping effect of surface fluxes is weaker. After a short increase following 
failure,  their  values  tend  to  stabilize.  Spatially,  differences  decrease  under  model 



variability level at a distance equivalent to one failed sub-domain length. Those first  
analysis suggests that the implemented error repair and handling leads to a locally 
restrained and temporally constant bias.

No significative slowing-down has been measured during or after repairing. For 
example, the number of iterations to reach convergence on pressure solver regains its 
initial value after a short period of perturbation.

4   Conclusion

The present study excludes impact evaluation of the third repair level of our strategy, 
after  model  prognostics  values  at  boundary  of  the  failed  sub-domain  were 
extrapolated on missing grid points during simulation restart (Fig 3, right). Resuming 
calculations on the failed sub-domain is supposed to nullify the observed biases after 
a given time period.

A statistical evaluation of the effect produced by our full error repair strategy must 
be performed. It will be necessary to produce ensembles of regular and fault tolerant 
simulations, varying failure localization and duration. To try to determine at which 
parallelism level the error produced by our resiliency strategy could be compared to a 
simple perturbation, a finer and more realistic ocean model configuration is required, 
like, for example, NEMO ORCA12 (1/12 degrees, global domain), already available 
on about 105 cores of PRACE tier-0 class machines. In parallel, error severity could 
be quantified regarding of geographical position of the failed sub-domain.

It  is  only at  this stage that  it  will  be possible to conclude to the possibility  of  
resiliency on the NEMO model, without the help of spare resources and associated 
on-line data recovery handling. Nevertheless, community must be warned about the 
non reproducibility and non conservativeness of this solution and probably keeps its 
use to particular short term simulation such as seasonal forecast or decadal prediction.
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